1
|
Hartmann J, Henschel N, Bartmann K, Dönmez A, Brockerhoff G, Koch K, Fritsche E. Molecular and Functional Characterization of Different BrainSphere Models for Use in Neurotoxicity Testing on Microelectrode Arrays. Cells 2023; 12:cells12091270. [PMID: 37174670 PMCID: PMC10177384 DOI: 10.3390/cells12091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The currently accepted methods for neurotoxicity (NT) testing rely on animal studies. However, high costs and low testing throughput hinder their application for large numbers of chemicals. To overcome these limitations, in vitro methods are currently being developed based on human-induced pluripotent stem cells (hiPSC) that allow higher testing throughput at lower costs. We applied six different protocols to generate 3D BrainSphere models for acute NT evaluation. These include three different media for 2D neural induction and two media for subsequent 3D differentiation resulting in self-organized, organotypic neuron/astrocyte microtissues. All induction protocols yielded nearly 100% NESTIN-positive hiPSC-derived neural progenitor cells (hiNPCs), though with different gene expression profiles concerning regional patterning. Moreover, gene expression and immunocytochemistry analyses revealed that the choice of media determines neural differentiation patterns. On the functional level, BrainSpheres exhibited different levels of electrical activity on microelectrode arrays (MEA). Spike sorting allowed BrainSphere functional characterization with the mixed cultures consisting of GABAergic, glutamatergic, dopaminergic, serotonergic, and cholinergic neurons. A test method for acute NT testing, the human multi-neurotransmitter receptor (hMNR) assay, was proposed to apply such MEA-based spike sorting. These models are promising tools not only in toxicology but also for drug development and disease modeling.
Collapse
Affiliation(s)
- Julia Hartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Noah Henschel
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Kristina Bartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Arif Dönmez
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Gabriele Brockerhoff
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Katharina Koch
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Vegas-Suárez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguélez C, Ugedo L. Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 2022; 13:953652. [PMID: 36133803 PMCID: PMC9483552 DOI: 10.3389/fphar.2022.953652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone's effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Catalina Requejo
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
3
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
4
|
Vegas‐Suárez S, Aristieta A, Requejo C, Bengoetxea H, Lafuente JV, Miguelez C, Ugedo L. The effect of 5-HT 1A receptor agonists on the entopeduncular nucleus is modified in 6-hydroxydopamine-lesioned rats. Br J Pharmacol 2021; 178:2516-2532. [PMID: 33686657 PMCID: PMC8252460 DOI: 10.1111/bph.15437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA prolonged treatment leads to disabling motor complications as dyskinesia that could be decreased by drugs acting on 5-HT1A receptors. Since the internal segment of the globus pallidus, homologous to the entopeduncular nucleus in rodents, seems to be involved in the etiopathology of l-DOPA-induced dyskinesia, we investigated whether the entopeduncular nucleus is modulated by the 5-HT1A receptor partial and full agonists, buspirone, and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in control and 6-hydroxydopamine (6-OHDA)-lesioned rats with or without long-term l-DOPA treatment. EXPERIMENTAL APPROACH Extracellular single-unit electrocorticogram and local field potential recordings under anaesthesia, immunostaining assays and optogenetic manipulation coupled to electrophysiological recordings were performed. KEY RESULTS Systemic buspirone reduced the entopeduncular nucleus firing rate in the sham animals and burst activity in the 6-OHDA-lesioned rats (with or without l-DOPA treatment), while local administration reduced entopeduncular nucleus activity in all the groups, regardless of DA integrity. Systemic 8-OH-DPAT also induced inhibitory effects only in the sham animals. Effects triggered by buspirone and 8-OH-DPAT were reversed by the 5-HT1A receptor antagonist, WAY-100635. Neither buspirone nor 8-OH-DPAT modified the low-frequency oscillatory activity in the entopeduncular nucleus or its synchronization with the motor cortex. Buspirone did not alter the response induced by subthalamic nucleus opto-stimulation in the entopeduncular nucleus. CONCLUSION AND IMPLICATIONS Systemic 5-HT1A receptor activation elicits different effects on the electrophysiological properties of the entopeduncular nucleus depending on the integrity of the nigrostriatal pathway and it does not alter the relationship between subthalamic nucleus and entopeduncular nucleus neuron activity.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Asier Aristieta
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPAUSA
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghPAUSA
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - José Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| |
Collapse
|
5
|
Yu Z, Bai R, Zhou J, Huang H, Zhao W, Huo X, Yang Y, Luan Z, Zhang B, Sun C, Ma X. Uncarialins J—M from
Uncaria rhynchophylla
and Their Anti‐depression Mechanism in Unpredictable Chronic Mild
Stress‐Induced
Mice
via
Activating
5‐HT
1A
Receptor. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen‐Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, Tongji University Shanghai 200120 China
| | - Jun‐Jun Zhou
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Hui‐Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi 330103 China
| | - Wen‐Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Kui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Ya‐Hui Yang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Zhi‐Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Bao‐Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Cheng‐Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| |
Collapse
|
6
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
7
|
Vegas‐Suárez S, Pisanò CA, Requejo C, Bengoetxea H, Lafuente JV, Morari M, Miguelez C, Ugedo L. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br J Pharmacol 2020; 177:3957-3974. [PMID: 32464686 PMCID: PMC7429490 DOI: 10.1111/bph.15145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA-induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5-HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5-HT-based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5-HT antidyskinetic treatments. EXPERIMENTAL APPROACH Buspirone was studied using in vivo single-unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6-hydroxydopamine (6-OHDA)-lesioned or 6-OHDA-lesioned and l-DOPA-treated (6-OHDA/l-DOPA) rats. KEY RESULTS Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6-OHDA-lesioned rats (with or without l-DOPA treatment), whereas 8-OH-DPAT, a full 5-HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8-OH-DPAT markedly modified the low-frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6-OHDA-lesioned rats but no effect in 6-OHDA/l-DOPA rats. In the 6-OHDA/l-DOPA group, increased 5-HT transporter and decreased 5-HT1A receptor expression was found. CONCLUSIONS AND IMPLICATIONS The effects of buspirone in SNr are influenced by dopamine loss and l-DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Jose Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
8
|
Serotonergic treatment normalizes midbrain dopaminergic neuron increase after periaqueductal gray stimulation. Brain Struct Funct 2020; 225:1957-1966. [PMID: 32594260 DOI: 10.1007/s00429-020-02102-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) in rats has been shown to elicit panic-like behaviour and can be a useful as an unconditioned stimulus for modelling anticipatory fear and agoraphobia in a contextual fear conditioning paradigm. In this study, we further analysed our previous data on the effects of escitalopram (a selective serotonin reuptake inhibitor, SSRI) and buspirone (a 5-HT1A receptor partial agonist) on dlPAG-induced anticipatory fear behaviour in a rat model using freezing as a measure. We then attempted to unravel some of the interactions with dopamine signalling using tyrosine hydroxylase (TH) immunohistochemistry to probe the effects on dopaminergic neurons. We showed that acute treatment of escitalopram, but not buspirone, was effective in reducing anticipatory freezing behaviour, while chronic administrations of both drugs were effective. We found that the dlPAG stimulation induced increase number of dopaminergic neurons in the ventral tegmental area (VTA) which was reversed in both chronic buspirone and escitalopram groups. We further found a strong positive correlation between the number of dopaminergic neurons and freezing in the VTA and showed positive correlations between dopaminergic neurons in the VTA and substantia nigra pars compacta (SNpc) in escitalopram and buspirone groups, respectively. Overall, we showed that chronic treatment with an SSRI and a 5-HT1A agonist reduced anticipatory freezing behaviour which seems to be associated, through correlative studies, with a reversal of dlPAG stimulation induced increase in number of dopaminergic neurons in the VTA and/or SNpc.
Collapse
|
9
|
Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L. Dysfunction of serotonergic neurons in Parkinson's disease and dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:259-279. [PMID: 31349930 DOI: 10.1016/bs.irn.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra, the depletion of striatal dopamine and the presence of Lewy aggregates containing alpha-synuclein. Clinically, there are motor impairments involving cardinal movement symptoms, bradykinesia, resting tremor, muscle rigidity, and postural abnormalities, along with non-motor symptoms such as sleep, behavior and mood disorders. The current treatment for PD focuses on restoring dopaminergic neurotransmission by l-3,4-dihydroxyphenylalanine (levodopa), which loses therapeutic efficacy and induces disabling abnormal involuntary movements known as levodopa-induced dyskinesia (LID) after several years. Evidence indicates that the pathophysiology of both PD and LID disorders is also associated with the dysfunctional activity of the serotonergic (5-HT) neurons that may be responsible for motor and non-motor disturbances. The main population of 5-HT neurons is located in the dorsal raphe nuclei (DRN), which provides extensive innervation to almost the entire neuroaxis and controls multiple functions in the brain. The degeneration of DRN 5-HT neurons occurs in early PD. These neurons can also take exogenous levodopa to transform it into dopamine, which may disturb neuron activity. This review will provide an overview of the underlying mechanisms responsible for 5-HT dysfunction and its clinical relevance in PD and dyskinesia.
Collapse
Affiliation(s)
- Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Aristieta
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jose V Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Nanosurgery, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
10
|
Vidal PM, Pacheco R. Targeting the Dopaminergic System in Autoimmunity. J Neuroimmune Pharmacol 2019; 15:57-73. [PMID: 30661214 DOI: 10.1007/s11481-019-09834-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Dopamine has emerged as a fundamental regulator of inflammation. In this regard, it has been shown that dopaminergic signalling pathways are key players promoting homeostasis between the central nervous system and the immune system. Dysregulation in the dopaminergic system affects both innate and adaptive immunity, contributing to the development of numerous autoimmune and inflammatory pathologies. This makes dopamine receptors interesting therapeutic targets for either the development of new treatments or repurposing of already available pharmacological drugs. Dopamine receptors are broadly expressed on different immune cells with multifunctional effects depending on the dopamine concentration available and the pattern of expression of five dopamine receptors displaying different affinities for dopamine. Thus, impaired dopaminergic signalling through different dopamine receptors may result in altered behaviour of immunity, contributing to the development and progression of autoimmune pathologies. In this review we discuss the current evidence involving the dopaminergic system in inflammatory bowel disease, multiple sclerosis and Parkinson's disease. In addition, we summarise and analyse the therapeutic approaches designed to attenuate disease development and progression by targeting the dopaminergic system. Graphical Abstract Targetting the dopaminergic system in autoimmunity. Effector T-cells (Teff) orchestrate inflamamtion involved in autoimmunity, whilst regulatory T-cells (Tregs) suppress Teff activity promoting tolerance to self-constituents. Dopamine has emerged as a key regulator of Teff and Tregs function, thereby dopamine receptors have becoming important therapeutic targets in autoimmune disorders, especially in those affecting the brain and the gut, where dopamine levels strongly change with inflammation.
Collapse
Affiliation(s)
- Pia M Vidal
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile. .,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146, Santiago, Chile.
| |
Collapse
|
11
|
Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019; 148:1-10. [PMID: 30612008 DOI: 10.1016/j.neuropharm.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Oscillatory activities within basal ganglia (BG) circuitry in L-DOPA induced dyskinesia (LID), a condition that occurs in patients with Parkinson disease (PD), are not well understood. The aims of this study were firstly to investigate oscillations in main BG input and output structures-the dorsolateral striatum (dStr) and substantia nigra pars reticulata (SNr), respectively- including the direction of oscillation information flow, and secondly to investigate the effects of 5-HT1A/B receptor agonism with eltoprazine on oscillatory activities and abnormal involuntary movements (AIMs) characteristic. To this end, we conducted local field potential (LFP) electrophysiology in the dStr and SNr of LID rats simultaneous with AIM scoring. The LFP data were submitted to power spectral density, coherence, and partial Granger causality analyses. AIM data were analyzed relative to simultaneous oscillatory activities, with and without eltoprazine. We obtained four major findings. 1) Theta band (5-8 Hz) oscillations were enhanced in the dStr and SNr of LID rats. 2) Theta power correlated with AIM scores in the 180-min period after the last LID-inducing L-DOPA injection, but not with daily summed AIM scores during LID development. 3) Oscillatory information flowed from the dStr to the SNr. 4) Chronic eltoprazine reduced BG theta activity in LID rats and normalized information flow directionality, relative to that in LID rats not given eltoprazine. These results indicate that dStr activity plays a determinative role in the causal interactions of theta oscillations and that serotonergic inhibition may suppress dyskinesia by reducing dStr-SNr theta activity and restoring theta network information flow.
Collapse
|
12
|
McFarthing K, Prakash N, Simuni T. CLINICAL TRIAL HIGHLIGHTS - DYSKINESIA. JOURNAL OF PARKINSON'S DISEASE 2019; 9:449-465. [PMID: 31356217 PMCID: PMC6704371 DOI: 10.3233/jpd-199002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Neha Prakash
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Haleem DJ, Nawaz S, Salman T. Dopamine and serotonin metabolism associated with morphine reward and its inhibition with buspirone: A study in the rat striatum. Pharmacol Biochem Behav 2018; 170:71-78. [PMID: 29782941 DOI: 10.1016/j.pbb.2018.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Adaptations within the nucleus accumbens (NAc) and caudate nucleus (CN) dopamine neurotransmission are involved in behavioral sensitization and enhanced incentive motivation towards drug paired stimuli which lead to drug addiction. Serotonin (5-hydroxytryptamine; 5-HT) can modulate dopamine neurotransmission to reduce rewarding effects of drugs of abuse. A recent study from our laboratory shows that rewarding effects of morphine are inhibited in rats co-treated with buspirone. To understand the neurochemical mechanism involved in morphine addiction and its inhibition with buspirone, present study determines the effects of buspirone, morphine and their co-administration on the metabolism of serotonin and dopamine in the NAc and CN. We find that rewarding effects of morphine are associated with an enhancement and attenuation of dopamine metabolism, respectively in the CN and NAc. Serotonin metabolism is enhanced in both regions. Co-administration of buspirone not only prevents rewarding effects of morphine, but its effects on the metabolism of dopamine and serotonin in the NAc and CN are also reversed. Results suggest that 5-HT1A receptor dependent modulation of dopamine neurotransmission in the CN and NAc is involved in the modulation of the rewarding effects of morphine in buspirone co-treated animals. The findings documenting an important role of 5-HT1A receptors in drug addiction suggest that synthetic opioid drugs with agonist activity of 5-HT1A receptors may prove non addictive analgesics.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Tabinda Salman
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
14
|
Morari M, Brugnoli A, Pisanò CA, Novello S, Caccia C, Melloni E, Padoani G, Vailati S, Sardina M. Safinamide Differentially Modulates In Vivo Glutamate and GABA Release in the Rat Hippocampus and Basal Ganglia. J Pharmacol Exp Ther 2017; 364:198-206. [DOI: 10.1124/jpet.117.245100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
|
15
|
Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 2016; 165:164-77. [DOI: 10.1016/j.pharmthera.2016.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022]
|