1
|
Yue J, Wang Q, Zhao W, Wu B, Ni J. Long non-coding RNA Snhg16 Lessens Ozone Curative Effect on Chronic Constriction Injury mice via microRNA-719/SCN1A axis. Mol Biotechnol 2024; 66:2273-2286. [PMID: 37632673 DOI: 10.1007/s12033-023-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/29/2023] [Indexed: 08/28/2023]
Abstract
We investigated the function and molecular mechanism of long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (Snhg16) in modifying ozone treatment for neuropathic pain (NP) in a mouse model of chronic constriction injury (CCI). Pain-related behavioral responses were evaluated using paw withdrawal threshold (PWT), paw lifting number (PLN), and paw withdrawal latency (PWL) tests. Interleukin (IL)-1β, IL-10, IL-6, and tumor necrosis factor-alpha (TNF-α) were measured by ELISA and qRT-PCR to evaluate neuroinflammation. qRT-PCR was performed to detect expressions of Snhg16, microRNA (miR)-719, sodium voltage-gated channel alpha subunit 1 (SCN1A), and inflammatory factors. Bioinformatics, dual-luciferase reporter assay, and RNA pull-down verified the underlying molecular mechanisms. Snhg16 expression increased in CCI mice. Snhg16 overexpression retarded the curative effect of ozone and induced NP. miR-719 was sponged by Snhg16. SCN1A was a target of miR-719. Inhibition of miR-719 markedly reversed the effects of Snhg16 on pain-related behavioral responses and neuroinflammation. Upregulation of SCN1A partly abrogated the effects of elevated miR-719 levels on the occurrence of NP. The findings demonstrate that lncRNA Snhg16 promotes NP progression in CCI mice by binding to miR-719 to increase SCN1A expression. The Snhg16/miR-719/SCN1A axis may influence the curative effects of ozone therapy in treating NP.
Collapse
Affiliation(s)
- Jianning Yue
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Qi Wang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Wenxing Zhao
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Baishan Wu
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
2
|
Du A, Chen Y, Qiao S, Dong J, Li Y, Cao B, Zhao R, Zhang R. Analysis of microRNAs and the microRNA-messengerRNA regulatory network in chronic alcohol exposure. Front Pharmacol 2024; 15:1377501. [PMID: 39234114 PMCID: PMC11371712 DOI: 10.3389/fphar.2024.1377501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/28/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction: Chronic alcoholism is one of the most common neurological diseases in modern society. However, the key mechanisms underlying learning and memory impairments caused by chronic alcohol exposure remain unclear. In this study, a microRNA-messenger RNA (miRNA-mRNA) network was constructed to explore the potential function of key genes in chronic alcohol exposure, their effects on the hippocampus, and their mechanisms which facilitate brain injury in mice. Methods: The Morris water maze test was used to assess the learning ability of mice in each group. Mitochondrial ATPase activity and H2S levels in the hippocampi of mice were determined. Differentially expressed miRNAs and mRNAs in the mouse hippocampus were identified using second-generation sequencing. Using the TargetScan, miRTarBase, and miRDB databases, we predicted miRNA target genes and constructed a miRNA-mRNA regulatory network. Furthermore, using the Gene Ontology and KEGG databases we performed functional enrichment and protein-protein interaction analyses. Real-time quantitative polymerase chain reaction (qPCR) and other methods were employed to verify the mRNA expression of related genes. Results: The Morris water maze test revealed that mice exposed to chronic alcohol exhibited a significantly reduced learning ability compared to the control group (p < 0.05). Compared with the control group, the activity of mitochondrial ATPase in the hippocampal tissue of alcohol-treated mice was significantly decreased (p < 0.01), suggesting brain injury. In the model group, H2S significantly increased in the mice hippocampi (p < 0.01), indicating that chronic alcohol exposure could activate cystathionineβ-synthase (CBS) and catalyze the mass formation of H2S, suggesting brain injury. A total of 208 differentially expressed miRNAs and 377 differentially expressed mRNAs were screened through bioinformatic analysis. Enrichment analysis indicated that the main pathways were involved in neurodegeneration and regulation of the Wnt signaling pathway. The PCR detected a significant downregulation in the expressions of FOS and EGR1 genes. Discussion: Consequently, chronic alcohol exposure may regulate the expression of FOS and EGR1 in the hippocampus through miR-222-3p, miR-132-3p, miR-212-3p, and miR-191-5p, reduce the activity of hippocampal mitochondrial ATPase, activate CBS, catalyze the large amount of H2S formation, and destroy the mitochondrial structure, resulting in decreased learning ability. Our findings revealed valuable genes and miRNAs for the study of chronic alcohol exposure.
Collapse
Affiliation(s)
- Ailin Du
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingying Chen
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Siyu Qiao
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yulin Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bokai Cao
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Rongyu Zhao
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Henan International Joint Laboratory of Noninvasive Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
朱 瑾, 欧阳 欣, 刘 屿, 钱 叶, 夏 斌, 施 延, 俞 力. [MiR-132-3p negatively regulates CAMTA1 to promote Schwann cell proliferation and migration and alleviates I-125 seeds-induced exacerbation of facial nerve injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:571-577. [PMID: 38597449 PMCID: PMC11006691 DOI: 10.12122/j.issn.1673-4254.2024.03.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the regulatory effect of miR-132-3p on calmodulin-binding transcription activator 1 (CAMTA1) and Schwann cell activity in rats with facial nerve injury (FNI) treated with I-125 seeds. METHODS Rat Schwann cells were irradiated with I-125 seeds and transfected with miR-132-3p mimic, miR-132-3p inhibitor or sh-CAMTA1. The expressions of S100B and β-tubulin Ⅲ in the cells were detected with immunofluorescence assay, and the expressions of miR-132-3p and CAMTA1 protein were determined using RT-qPCR and Western blotting, respectively. EdU staining and Transwell assay were used to evaluate the changes in cell proliferation and migration ability. In a rat model of FNI, I-125 seeds were implanted into the facial tissues near the facial nerve 2 weeks before modeling, and miR-132-3p mimic was injected subcutaneously in the face after modeling. The pathologies of the facial nerve was assessed by HE, LFB and immunofluorescence staining. The targeting relationship between miR-132-3p and CAMTA1 was verified using StarBase v2.0 database and dual-luciferase reporter assay. RESULTS Rat Schwann cells showed high expressions of S100B and β-tubulin Ⅲ. I-125 seeds radiation significantly decreased miR-132-3p expression and repressed proliferation and migration of the cells (P < 0.001). Overexpression of miR-132-3p or CAMTA1 knockdown obviously enhanced proliferation and migration of the Schwann cells, while miR-132-3p knockdown produced the opposite effect. MiR-132-3p negatively regulated CAMTA1 expression. In the rat models of FNI, miR-132-3p injection significantly inhibited CAMTA1 expression and attenuated I-125 seeds-induced exacerbation of FNI. CONCLUSION Overexpression of miR-132-3p suppresses CAMTA1 expression and promotes Schwann cell proliferation and migration to alleviate I-125 seeds-induced exacerbation of FNI in rats.
Collapse
Affiliation(s)
- 瑾 朱
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| | - 欣 欧阳
- 云南省第一人民医院口腔医学中心,云南 昆明 6500321Stomatology Center, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 屿 刘
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| | - 叶梅 钱
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| | - 斌 夏
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| | - 延安 施
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| | - 力夫 俞
- 昆明医科大学附属口腔医院颌面外科,云南 昆明 650106Department of Maxillofacial Surgery, Stomatological Hospital of Kunming Medical University, Kunming 650106, China
| |
Collapse
|
4
|
Liu Y, Wang L, Zhou C, Yuan Y, Fang B, Lu K, Xu F, Chen L, Huang L. MiR-31-5p regulates the neuroinflammatory response via TRAF6 in neuropathic pain. Biol Direct 2024; 19:10. [PMID: 38267979 PMCID: PMC10807213 DOI: 10.1186/s13062-023-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. METHODS We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. RESULTS We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. CONCLUSIONS All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Chengcheng Zhou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Bin Fang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Kaimei Lu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
5
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
6
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
8
|
Kovanur Sampath K, Belcher S, Hales J, Thomson OP, Farrell G, Gisselman AS, Katare R, Tumilty S. The role of micro-RNAs in neuropathic pain-a scoping review. Pain Rep 2023; 8:e1108. [PMID: 37928202 PMCID: PMC10624461 DOI: 10.1097/pr9.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain can be caused by a lesion or disease of the somatosensory system characterised by pathological neuro-immune alterations. At a molecular level, microRNAs (miRNAs) act as regulators of gene expression orchestrating both immune and neuronal processes. Thus, miRNAs may act as essential modulators of processes for the establishment and maintenance of neuropathic pain. The objective/aims of this scoping review was to explore and chart the literature to identify miRNAs that are dysregulated in neuropathic pain. The following databases were searched from inception to March 2023: PubMed, EBSCO, CINAHL, Cochrane Library, and SCOPUS. Two independent reviewers screened, extracted data, and independently assessed the risk of bias in included studies. The JBI critical appraisal checklist was used for critical appraisal. A narrative synthesis was used to summarise the evidence. Seven studies (total of 384 participants) that met our eligibility criteria were included in this scoping review. Our review has identified different miRNAs that are commonly involved in the chronic neuropathic pain conditions including miR-132, miR-101, and miR-199a. Our review findings further suggest that expression of miRNAs to be significantly associated with increased diabetic disease duration, HbA1C levels, and fibrinogen levels. Our review findings suggest that there is clear association between miRNA expression and chronic neuropathic pain conditions. Therefore, increasing the specificity by selecting a candidate miRNA and identifying its target mRNA is an area of future research.
Collapse
Affiliation(s)
- Kesava Kovanur Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Suzie Belcher
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - James Hales
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Oliver P. Thomson
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Gerard Farrell
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| | - Angela Spontelli Gisselman
- Doctor of Physical Therapy Program, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Phoenix, AZ, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| |
Collapse
|
9
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
10
|
Rivi V, Rigillo G, Toscano Y, Benatti C, Blom JMC. Narrative Review of the Complex Interaction between Pain and Trauma in Children: A Focus on Biological Memory, Preclinical Data, and Epigenetic Processes. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1217. [PMID: 37508714 PMCID: PMC10378710 DOI: 10.3390/children10071217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ylenia Toscano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
11
|
Teixeira-Santos L, Martins S, Sousa T, Albino-Teixeira A, Pinho D. The pro-resolving lipid mediator Maresin 1 ameliorates pain responses and neuroinflammation in the spared nerve injury-induced neuropathic pain: A study in male and female mice. PLoS One 2023; 18:e0287392. [PMID: 37347750 PMCID: PMC10286986 DOI: 10.1371/journal.pone.0287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discriminative and affective-motivational components of pain were evaluated with von Frey and place escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activation were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immunoassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11 in both male and female mice, and appeared to ameliorate the affective component of pain in males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical stimulation of the affected paw in the dark compartment did not increase the preference of vehicle-treated SNI females for the light side, during the PEAP test session (a fundamental assumption for PAEP's validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and (ii) this antinociception may extend for several days beyond the treatment time-frame. These therapeutic effects are associated with attenuated microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF action in males.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
García-Fernández P, Reinhold C, Üçeyler N, Sommer C. Local Inflammatory Mediators Involved in Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24097814. [PMID: 37175520 PMCID: PMC10178336 DOI: 10.3390/ijms24097814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous system, 50% of which present with neuropathic pain. In some types of PNP, pain is restricted to the skin distally in the leg, suggesting a local regulatory process leading to pain. In this study, we proposed a pro-inflammatory pathway mediated by NF-κB that might be involved in the development of pain in patients with painful PNP. To test this hypothesis, we have collected nerve and skin samples from patients with different etiologies and levels of pain. We performed RT-qPCR to analyze the gene expression of the proposed inflammatory pathway components in sural nerve and in distal and proximal skin samples. In sural nerve, we showed a correlation of TLR4 and TNFα to neuropathic pain, and an upregulation of TNFα in patients with severe pain. Patients with an inflammatory PNP also presented a lower expression of TRPV1 and SIRT1. In distal skin, we found a reduced expression of TLR4 and miR-146-5p, in comparison to proximal skin. Our findings thus support our hypothesis of local inflammatory processes involved in pain in PNP, and further show disturbed anti-inflammatory pathways involving TRPV1 and SIRT1 in inflammatory PNP.
Collapse
Affiliation(s)
| | - Colette Reinhold
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
14
|
Differential Expression of microRNAs in Serum of Patients with Chronic Painful Polyneuropathy and Healthy Age-Matched Controls. Biomedicines 2023; 11:biomedicines11030764. [PMID: 36979743 PMCID: PMC10045018 DOI: 10.3390/biomedicines11030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polyneuropathies (PNP) are the most common type of disorder of the peripheral nervous system in adults. However, information on microRNA expression in PNP is lacking. Following microRNA sequencing, we compared the expression of microRNAs in the serum of patients experiencing chronic painful PNP with healthy age-matched controls. We have been able to identify four microRNAs (hsa-miR-3135b, hsa-miR-584-5p, hsa-miR-12136, and hsa-miR-550a-3p) that provide possible molecular links between degenerative processes, blood flow regulation, and signal transduction, that eventually lead to PNP. In addition, these microRNAs are discussed regarding the targeting of proteins that are involved in high blood flow/pressure and neural activity dysregulations/disbalances, presumably resulting in PNP-typical symptoms such as chronical numbness/pain. Within our study, we have identified four microRNAs that may serve as potential novel biomarkers of chronic painful PNP, and that may potentially bear therapeutic implications.
Collapse
|
15
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
16
|
García-Fernández P, Höfflin K, Rausch A, Strommer K, Neumann A, Cebulla N, Reinhold AK, Rittner H, Üçeyler N, Sommer C. Systemic inflammatory markers in patients with polyneuropathies. Front Immunol 2023; 14:1067714. [PMID: 36860843 PMCID: PMC9969086 DOI: 10.3389/fimmu.2023.1067714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction In patients with peripheral neuropathies (PNP), neuropathic pain is present in 50% of the cases, independent of the etiology. The pathophysiology of pain is poorly understood, and inflammatory processes have been found to be involved in neuro-degeneration, -regeneration and pain. While previous studies have found a local upregulation of inflammatory mediators in patients with PNP, there is a high variability described in the cytokines present systemically in sera and cerebrospinal fluid (CSF). We hypothesized that the development of PNP and neuropathic pain is associated with enhanced systemic inflammation. Methods To test our hypothesis, we performed a comprehensive analysis of the protein, lipid and gene expression of different pro- and anti-inflammatory markers in blood and CSF from patients with PNP and controls. Results While we found differences between PNP and controls in specific cytokines or lipids, such as CCL2 or oleoylcarnitine, PNP patients and controls did not present major differences in systemic inflammatory markers in general. IL-10 and CCL2 levels were related to measures of axonal damage and neuropathic pain. Lastly, we describe a strong interaction between inflammation and neurodegeneration at the nerve roots in a specific subgroup of PNP patients with blood-CSF barrier dysfunction. Conclusion In patients with PNP systemic inflammatory, markers in blood or CSF do not differ from controls in general, but specific cytokines or lipids do. Our findings further highlight the importance of CSF analysis in patients with peripheral neuropathies.
Collapse
Affiliation(s)
| | - Klemens Höfflin
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Antonia Rausch
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Astrid Neumann
- Department of Bioanalytics, Bionorica research GmbH, Innsbruck, Austria
| | - Nadine Cebulla
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kristin Reinhold
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Sun Y, Chen L, Xu T, Gou B, Mai JW, Luo DX, Xin WJ, Wu JY. MiR-672-5p-Mediated Upregulation of REEP6 in Spinal Dorsal Horn Participates in Bortezomib-Induced Neuropathic Pain in Rats. Neurochem Res 2023; 48:229-237. [PMID: 36064821 DOI: 10.1007/s11064-022-03741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/07/2023]
Abstract
Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yang Sun
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Li Chen
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Ting Xu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bo Gou
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jia-Yan Wu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Chen WC, Zhang LH, Bai YY, Liu YB, Liang JW, He HF. Nomogram prediction of chronic postsurgical pain in patients with lung adenocarcinoma after video-assisted thoracoscopic surgery: A prospective study. Front Surg 2022; 9:1004205. [PMID: 36439523 PMCID: PMC9681821 DOI: 10.3389/fsurg.2022.1004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 09/13/2023] Open
Abstract
Chronic postsurgery pain (CPSP) refers to persistent or repeated pain around the incision after surgery. Different from acute postoperative pain, the persistence of CPSP seriously affects the quality of life of patients. CPSP has a considerable global impact due to large surgical volumes. Although the development of video-assisted thoracoscopy (VATS) has reduced the risk of CPSP, it still seriously affects patients' quality of life. Clinical recognition of CPSP at an early stage is limited; therefore, we aimed to develop and validate a nomogram to identify the significant predictive factors associated with CPSP after VATS in patients with lung adenocarcinoma. We screened 137 patients with invasive adenocarcinoma of the lung from among 312 patients undergoing VATS. In this prospective study, patients were divided into the CPSP (n = 52) and non-CPSP (n = 85) groups according to the occurrence of CPSP. Relevant information was collected 1 day before surgery and 1-3 days after surgery, and the occurrence of CPSP was followed up by telephone at 3 months after surgery. Data on clinical characteristics and peripheral blood leukocyte miRNAs were used to establish a nomogram for predicting CPSP using least absolute shrinkage and selection operator (LASSO) regression methods. The area under curve (AUC) was used to determine the recognition ability of the nomograms. The model was subjected to correction and decision curve analyses. Four variables-body mass index (BMI), history of chronic pain, miR 550a-3p, and visual analog scale (VAS) score on postoperative day 2 (VAS2d)-were selected according to LASSO regression to build the nomogram. The nomogram demonstrated adequate calibration and discrimination in the prediction model, with an AUC of 0.767 (95% confidence interval: 0.679-0.856). The calibration plot showed the best fit between model predictions and practical observations, suggesting that the use of the proposed nomogram to predict CPSP is beneficial. A nomogram consisting of BMI, history of chronic pain, miR 550a-3p, and VAS2d predicted the risk of CPSP after VATS in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | - Jin-wei Liang
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - He-fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
19
|
Roganović J, Petrović N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. Int J Mol Sci 2022; 23:ijms23158278. [PMID: 35955417 PMCID: PMC9368403 DOI: 10.3390/ijms23158278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) represent a research hotspot by playing a key role in epigenetic and transcriptional regulation of diverse biological functions and due to their involvement in different diseases, including oral inflammatory diseases. Based on ncRNAs’ suitability for salivary biomarkers and their involvement in neuropathic pain and tissue regeneration signaling pathways, the present narrative review aims to highlight the potential clinical applications of ncRNAs in oral inflammatory diseases, with an emphasis on salivary diagnostics, regenerative dentistry, and precision medicine for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-641976330
| | - Nina Petrović
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Huang B, Guo S, Zhang Y, Lin P, Lin C, Chen M, Zhu S, Huang L, He J, Zhang L, Zheng Y, Wen Z. MiR-223-3p alleviates trigeminal neuropathic pain in the male mouse by targeting MKNK2 and MAPK/ERK signaling. Brain Behav 2022; 12:e2634. [PMID: 35608154 PMCID: PMC9304854 DOI: 10.1002/brb3.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia (TN) is a neuropathic pain that occurs in branches of the trigeminal nerve. MicroRNAs (miRNAs) have been considered key mediators of neuropathic pain. This study was aimed to elucidate the pathophysiological function and mechanisms of miR-223-3p in mouse models of TN. METHODS Infraorbital nerve chronic constriction injury (CCI-ION) was applied in male C57BL/6J mice to establish mouse models of TN. Pain responses were assessed utilizing Von Frey method. The expression of miR-223-3p, MKNK2, and MAPK/ERK pathway protein in trigeminal ganglions (TGs) of CCI-ION mice was measured using RT-qPCR and Western blotting. The concentrations of inflammatory cytokines were evaluated using Western blotting. The relationship between miR-223-3p and MKNK2 was tested by a luciferase reporter assay. RESULTS We found that miR-223-3p was downregulated, while MKNK2 was upregulated in TGs of CCI-ION mice. MiR-223-3p overexpression by an intracerebroventricular injection of Lv-miR-223-3p attenuated trigeminal neuropathic pain in CCI-ION mice, as well as reduced the protein levels of pro-inflammatory cytokines in TGs of CCI-ION mice. MKNK2 was verified to be targeted by miR-223-3p. Additionally, miR-223-3p overexpression decreased the phosphorylation levels of ERK1/2, JNK, and p38 protein in TGs of CCI-ION mice to inhibit MAPK/ERK signaling. CONCLUSIONS Overall, miR-223-3p attenuates the development of TN by targeting MKNK2 to suppress MAPK/ERK signaling.
Collapse
Affiliation(s)
- Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, Putian, China
| | - Yipan Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Pengxing Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Changgui Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Meixia Chen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shengyin Zhu
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Liyu Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Junwei He
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Lingfeng Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Yanping Zheng
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Zhipeng Wen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
21
|
Gao Y, Mei C, Chen P, Chen X. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord. Int Immunopharmacol 2022; 107:108700. [DOI: 10.1016/j.intimp.2022.108700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
22
|
Sabina S, Panico A, Mincarone P, Leo CG, Garbarino S, Grassi T, Bagordo F, De Donno A, Scoditti E, Tumolo MR. Expression and Biological Functions of miRNAs in Chronic Pain: A Review on Human Studies. Int J Mol Sci 2022; 23:ijms23116016. [PMID: 35682695 PMCID: PMC9181121 DOI: 10.3390/ijms23116016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic pain is a major public health problem and an economic burden worldwide. However, its underlying pathological mechanisms remain unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in physiological and pathological processes. This review aims to synthesize the human studies examining miRNA expression in the pathogenesis of chronic primary pain and chronic secondary pain. Additionally, to understand the potential pathophysiological impact of miRNAs in these conditions, an in silico analysis was performed to reveal the target genes and pathways involved in primary and secondary pain and their differential regulation in the different types of chronic pain. The findings, methodological issues and challenges of miRNA research in the pathophysiology of chronic pain are discussed. The available evidence suggests the potential role of miRNA in disease pathogenesis and possibly the pain process, eventually enabling this role to be exploited for pain monitoring and management.
Collapse
Affiliation(s)
- Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, c/o ex Osp. Di Summa, Piazza Di Summa, 72100 Brindisi, Italy;
| | - Carlo Giacomo Leo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via Edoardo Orabona, 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Correspondence: ; Tel.: +39-(08)-3229-8860
| | - Maria Rosaria Tumolo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| |
Collapse
|
23
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Huang T, Xiao Y, Zhang Y, Wang C, Chen X, Li Y, Ge Y, Gao J. miR‑223 ameliorates thalamus hemorrhage‑induced central poststroke pain via targeting NLRP3 in a mouse model. Exp Ther Med 2022; 23:353. [PMID: 35493427 PMCID: PMC9019782 DOI: 10.3892/etm.2022.11280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
Central poststroke pain (CPSP) is a central neuropathic pain syndrome that occurs following a stroke and mainly manifests as pain and paresthesia in the body region corresponding to the brain injury area. At present, due to the lack of clinical attention given to CPSP, patients suffer from long-term pain that seriously affects their quality of life. Current literature indicates that microRNA (miR)-223 can impede inflammation and prevent collateral damage. The NLR family pyrin domain containing 3 (NLRP3) inflammasome induces IL-18 and IL-1β secretion and maturation and participates in the inflammatory response. Previous evidence has confirmed that miR-223 can negatively regulate NLRP3 in the development of inflammatory responses. However, whether the miR-223 targeting of NLRP3 is involved in CPSP remains unclear. In the present study, the expression of miR-223 was detected by reverse transcription-quantitative PCR analysis. The expression levels of NLRP3, caspase-1, ASC, IL-18, IL-1β, ERK1/2, p-ERK1/2 and GFAP were detected by western blot analysis. The results demonstrated that thalamic hemorrhagic stroke triggered by microinjection of collagenase Ⅳ (Coll IV) into the ventral posterior lateral (VPL) nucleus results in pain hypersensitivity. miR-223 expression level were significantly reduced in the CPSP model. The expression levels of NLRP3, caspase-1, ASC, IL-18 and IL-1β were significantly increased in the CPSP model. The expression level of GFAP was detected to determine astrocyte activation. The results demonstrated that astrocyte activation induced by Coll IV produced a CPSP model. The p-ERK1/2 expression level was demonstrated to be significantly increased in the CPSP model. The introduction of an miR-223 agomir significantly attenuated thalamic pain and significantly decreased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokines (IL-18 and IL-1β). Furthermore, introducing a miR-223 antagomir into the VPL nucleus of naïve mice mimicked thalamic pain and significantly increased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokine levels (IL-18 and IL-1β). These results indicated that miR-223 inhibited NLRP3 inflammasome activity (caspase-1, NLRP3 and ASC), which ameliorated thalamus hemorrhage-induced CPSP in mice via NLRP3 downregulation. In conclusion, these results may determine the mechanisms underlying CPSP and facilitate development of targeted therapy for CPSP.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yinggang Xiao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoping Chen
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yong Li
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yali Ge
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
25
|
Huang A, Ji L, Huang Y, Yu Q, Li Y. miR-185-5p alleviates CCI-induced neuropathic pain by repressing NLRP3 inflammasome through dual targeting MyD88 and CXCR4. Int Immunopharmacol 2022; 104:108508. [PMID: 34999395 DOI: 10.1016/j.intimp.2021.108508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are important modulators in the evolvement and progression of neuropathic pain (NP). According to reports, miR-185-5p contributes to various diseases and inflammatory responses. However, it is not clear whether miR-185-5p mediates neuroinflammation and NP following chronic constrictive injury (CCI). The CCI model was constructed in rats to induce NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were employed to evaluate pain threshold in CCI rats. The expression of miR-185-5p, GFAP, Iba1, Caspase-3-positive cells, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-labeled apoptotic neurons, inflammatory mediators, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) in lumbar portion (L4-L6) of CCI rats were determined. Furthermore, the targets of miR-185-5p were predicted by the Starbase, and the binding association between miR-185-5p and MyD88, miR-185-5p and CXCR4 was verified by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. As shown by the data, miR-185-5p was distinctly reduced in L4-L6 spinal cord tissues of rats after CCI. Up-regulating miR-185-5p alleviated mechanical and thermal hyperalgesia, inactivated microglia and astrocytes accumulation, and abated the contents of IL-1β, IL-6 and TNF-α in L4-L6 spinal cord tissues of CCI rats. Bioinformatics analysis suggested that MyD88 and CXCR4 were potential target genes of miR-185-5p. Increasing miR-185-5p expression notably impeded the expression of MyD88, CXCR4 and NLRP3 inflammasome in BV2 microglia, while attenuating miR-185-5p expression exerted the opposite effects. Notably, down-regulating MyD88 and CXCR4 significantly enhanced the miR-185-5p-mediated anti-inflammatory effects, and reversed miR-185-5p inhibitor-mediated proinflammatory effects. Additionally, up-regulating miR-185-5p repressed BV2-induced neuronal apoptosis and increased neuronal viability. In conclusion, this study suggested that miR-185-5p chokes CCI-induced NP and neuroinflammation by targeting MyD88 and CXCR4, indicating that miR-186-5p is an underlying therapeutic target for NP.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, PR China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, PR China
| | - Yilong Huang
- Gastrointestinal surgery, Pidu District People's Hospital, Chengdu, Sichuan 611730, PR China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, PR China.
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, PR China.
| |
Collapse
|
26
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
27
|
Abstract
Neuropathic pain is a challenging clinical problem and remains difficult to treat. Altered gene expression in peripheral sensory nerves and neurons due to nerve injury is well documented and contributes critically to the synaptic plasticity in the spinal cord and the initiation and maintenance of chronic pain. However, our understanding of the epigenetic mechanisms regulating the transcription of pro-nociceptive (e.g., NMDA receptors and α2δ-1) and antinociceptive (e.g., potassium channels and opioid and cannabinoid receptors) genes are still limited. In this review, we summarize recent studies determining the roles of histone modifications (including methylation, acetylation, and ubiquitination), DNA methylation, and noncoding RNAs in neuropathic pain development. We review the epigenetic writer, reader, and eraser proteins that participate in the transcriptional control of the expression of key ion channels and neurotransmitter receptors in the dorsal root ganglion after traumatic nerve injury, which is commonly used as a preclinical model of neuropathic pain. A better understanding of epigenetic reprogramming involved in the transition from acute to chronic pain could lead to the development of new treatments for neuropathic pain.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
28
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
29
|
Hu C, He M, Xu Q, Tian W. Advances With Non-coding RNAs in Neuropathic Pain. Front Neurosci 2022; 15:760936. [PMID: 35002601 PMCID: PMC8733285 DOI: 10.3389/fnins.2021.760936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain (NP) is one of the most common types of clinical pain. The common causes of this syndrome include injury to the central or peripheral nervous systems and pathological changes. NP is characterized by spontaneous pain, hyperalgesia, abnormal pain, and paresthesia. Because of its diverse etiology, the pathogenesis of NP has not been fully elucidated and has become one of the most challenging problems in clinical medicine. This kind of pain is extremely resistant to conventional treatment and is accompanied by serious complications. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), contribute to diverse biological processes by regulating the expression of various mRNAs involved in pain-related pathways, at the posttranscriptional level. Abnormal regulation of ncRNAs is closely related to the occurrence and development of NP. In this review, we summarize the current state of understanding of the roles of different ncRNAs in the development of NP. Understanding these mechanisms can help develop novel therapeutic strategies to prevent or treat chronic pain.
Collapse
Affiliation(s)
- Cheng Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Menglin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Mechanism of miR-132-3p Promoting Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson's Disease. eNeuro 2022; 9:ENEURO.0393-21.2021. [PMID: 34983831 PMCID: PMC8805200 DOI: 10.1523/eneuro.0393-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
The major pathology in Parkinson’s disease (PD) is neuron injury induced by degeneration of dopaminergic neurons and the activation of microglial cells. The objective of this study is to determine the effect and mechanism of miR-132-3p in regulating neuroinflammation and the degeneration of dopaminergic neuron in PD. The expressions of miR-132-3p in brain tissues of PD patients, lipopolysaccharide (LPS)-induced BV-2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models were detected. The effect of miR-132-3p and GLRX in cell viability, apoptosis and inflammation was verified in BV-2 cells. The activation of Iba1 in substantia nigra pars compacta (SNc) and the loss of tyrosine hydroxylase were detected in PD mouse models and the mobility of mouse models was assessed as well. The targeting relationship between miR-132-3p and GLRX was confirmed by RNA immunoprecipitation (RIP) and dual luciferase reporter gene assay. Elevated expression of miR-132-3p and decreased expression of GLRX were found in PD patients and cells models. Overexpression of miR-132-3p can induce activation of microglial cells, which can be reversed by GLRX overexpression. Collected evidence in both cell model and mouse models showed the effect of miR-132-3p in enhancing the activation of microglial cells and the loss of microglia cells, which was achieved by mediating GLRX.
Collapse
|
31
|
Regional and temporal miRNAs expression profile in a transgenic mouse model of tauopathy: implication for its pathogenesis. Mol Psychiatry 2021; 26:7020-7028. [PMID: 31988432 DOI: 10.1038/s41380-020-0655-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022]
Abstract
Studies have shown that the expression level of different microRNAs (miRNAs) is altered in neurodegenerative disorders including tauopathies, a group of diseases pathologically defined by accumulation of tau protein in neurons and glia cells. However, despite this evidence we still do not know whether miRNA changes precede their onset, thus potentially contributing to the pathogenesis, or are downstream events secondary to tau pathology. In the current paper, we assessed the miRNA expression profile at different age time points and brain regions in a relevant mouse model of human tauopathy, the hTau mice, in relationship with the development of behavioral deficits and tau neuropathology. Compared with age-matched control, four specific miRNAs (miR-132-3p, miIR-146a-5p, miR-22-3p, and miR-455-5p) were found significantly upregulated in 12-month-old hTau mice. Interestingly, three of them (miR-132-3p, miR-146a-5p, and miR-22-3p) were already increased in 6-month-old mice, an age before the development of tau pathologic phenotype. Investigation of their predicted targets highlighted pathways relevant to neuronal survival and synaptic function. Collectively, our findings support the new hypothesis that in tauopathies the change in the expression level of specific miRNAs is an early event and plays a functional role in the pathogenesis of the diseases by impacting several mechanisms involved in the development of the associated neuropathology.
Collapse
|
32
|
Abuelezz NZ, Nasr FE, AbdulKader MA, Bassiouny AR, Zaky A. MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities. Front Aging Neurosci 2021; 13:743573. [PMID: 34712129 PMCID: PMC8546247 DOI: 10.3389/fnagi.2021.743573] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and deleterious neurodegenerative disease, strongly affecting the cognitive functions and memory of seniors worldwide. Around 58% of the affected patients live in low and middle-income countries, with estimates of increasing deaths caused by AD in the coming decade. AD is a multifactor pathology. Mitochondrial function declines in AD brain and is currently emerging as a hallmark of this disease. It has been considered as one of the intracellular processes severely compromised in AD. Many mitochondrial parameters decline already during aging; mitochondrial efficiency for energy production, reactive oxygen species (ROS) metabolism and the de novo synthesis of pyrimidines, to reach an extensive functional failure, concomitant with the onset of neurodegenerative conditions. Besides its impact on cognitive functions, AD is characterized by loss of synapses, extracellular amyloid plaques composed of the amyloid-β peptide (Aβ), and intracellular aggregates of hyperphosphorylated Tau protein, accompanied by drastic sleep disorders, sensory function alterations and pain sensitization. Unfortunately, till date, effective management of AD-related disorders and early, non-invasive AD diagnostic markers are yet to be found. MicroRNAs (miRNAs) are small non-coding nucleic acids that regulate key signaling pathway(s) in various disease conditions. About 70% of experimentally detectable miRNAs are expressed in the brain where they regulate neurite outgrowth, dendritic spine morphology, and synaptic plasticity. Increasing studies suggest that miRNAs are intimately involved in synaptic function and specific signals during memory formation. This has been the pivotal key for considering miRNAs crucial molecules to be studied in AD. MicroRNAs dysfunctions are increasingly acknowledged as a pivotal contributor in AD via deregulating genes involved in AD pathogenesis. Moreover, miRNAs have been proved to control pain sensitization processes and regulate circadian clock system that affects the sleep process. Interestingly, the differential expression of miRNA panels implies their emerging potential as diagnostic AD biomarkers. In this review, we will present an updated analysis of miRNAs role in regulating signaling processes that are involved in AD-related pathologies. We will discuss the current challenges against wider use of miRNAs and the future promising capabilities of miRNAs as diagnostic and therapeutic means for better management of AD.
Collapse
Affiliation(s)
- Nermeen Z Abuelezz
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Fayza Eid Nasr
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Zhang D, Lu H, Hou W, Bai Y, Wu X. Effect of miR-132-3p on sepsis-induced acute kidney injury in mice via regulating HAVCR1/KIM-1. Am J Transl Res 2021; 13:7794-7803. [PMID: 34377256 PMCID: PMC8340183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the effect of miR-132-3p and HAVCR1/kidney injury molecule (KIM)-1 on sepsis-induced acute kidney injury (AKI) in mice. METHODS One hundred C57BL/6 mice were divided into five groups with 20 mice in each group: the normal group (normal mice), the model group (mice with sepsis), the miR-132-3p mimic group (miR-132-3p overexpression), the oe-HAVCR1/KIM-1 group (HAVCR1/KIM-1 overexpression), and the miR-132-3p mimic + oe-HAVCR1/KIM-1 group. Dual-luciferase reporter assay was performed to verify the targeting relationship between miR-132-3p and HAVCR1/KIM-1. The expressions of miR-132-3p and HAVCR1/KIM-1 in mice' kidneys, the levels of renal function markers, the expressions of apoptosis-associated proteins, the renal cell apoptosis rate, and the inflammatory factors in serum were all examined. RESULTS We found that miR-132-3p can target HAVCR1/KIM-1 and regulate its expression. Compared with the normal mice, the septic mice exhibited lower miR-132-3p level and higher HAVCR1/KIM-1 level (both P<0.05). Moreover, the septic mice had higher levels of cleaved caspase-3, Bax, blood urea nitrogen, creatinine, tumor necrosis factor-α, interleukin-1β, and interleukin-6, higher renal cell apoptosis rate, and lower Bcl-2 level than the normal mice (all P<0.05). MiR-132-3p overexpression could improve the renal function of the mice with sepsis and inhibit renal cell apoptosis and inflammatory progression, whereas HAVCR1/KIM1 overexpression exhibited an opposite effect and could block the renal protective effects of miR-132-3p overexpression on the septic mice. CONCLUSION MiR-132-3p overexpression can inhibit renal cell apoptosis and inflammatory progression via suppressing HAVCR1/KIM-1 expression, thereby exert renal protective effects on mice with sepsis.
Collapse
Affiliation(s)
- Duyi Zhang
- Department of Emergency, Tianjin Third Central Hospital Tianjin, China
| | - Hongda Lu
- Department of Emergency, Tianjin Third Central Hospital Tianjin, China
| | - Weijing Hou
- Department of Emergency, Tianjin Third Central Hospital Tianjin, China
| | - Yanlou Bai
- Department of Emergency, Tianjin Third Central Hospital Tianjin, China
| | - Xiaodi Wu
- Department of Emergency, Tianjin Third Central Hospital Tianjin, China
| |
Collapse
|
34
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
35
|
Nie PY, Ji LL, Fu CH, Peng JB, Wang ZY, Tong L. miR-132 Regulates PTSD-like Behaviors in Rats Following Single-Prolonged Stress Through Fragile X-Related Protein 1. Cell Mol Neurobiol 2021; 41:327-340. [PMID: 32333305 DOI: 10.1007/s10571-020-00854-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Fragile X-related protein 1 (FXR1) is a member of the fragile X family of RNA-binding proteins, which regulates a number of neurological and neuropsychiatric disorders such as fragile X syndrome, and is expected as a novel therapeutic target for some psychiatric diseases. However, it is unknown how FXR1 changes and functions in post-traumatic stress disorder (PTSD), a common mental disorder related to trauma and stressor. In this study, we characterized the expression pattern of FXR1 in the pathophysiological process of PTSD and further investigated the possible mechanism underlying these changes by finding an upstream regulator, namely miRNA-132 (miR-132). Furthermore, we verified whether miR-132 silence had an effect on the PTSD-like behaviors of single prolonged stress (SPS) rats through open field test, forced swimming test, and water maze test. At last, we examined the expression levels of PSD95 and synapsin I in the hippocampus, which was one of the key brain regions associated with PTSD. We showed that the levels of FXR1 and fragile X mental retardation protein (FMRP), an autosomal homolog of FXR1, were decreased in the hippocampus of PTSD rats, but the levels of PSD95 and synapsin I were increased, which could be reversed by downregulation of miR-132. The results revealed that miR-132 could modulate PTSD-like behaviors in rats following SPS through regulating FXR1 and FMRP.
Collapse
Affiliation(s)
- Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
36
|
Fang H, Li HF, Pan Q, Jin HL, Yang M, Wang RR, Wang QY, Zhang JP. MiR-132-3p Modulates MEKK3-Dependent NF-κB and p38/JNK Signaling Pathways to Alleviate Spinal Cord Ischemia-Reperfusion Injury by Hindering M1 Polarization of Macrophages. Front Cell Dev Biol 2021; 9:570451. [PMID: 33644040 PMCID: PMC7905026 DOI: 10.3389/fcell.2021.570451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
Spinal cord ischemia-reperfusion (SCIR) injury is a serious complication of open surgical and endovascular aortic procedures. MicroRNA-132-3p (miR-132-3p) has been reported to be involved in the progression of various diseases, but its role in SCIR injury is unclear. Thus, we aimed in this study to investigate the mechanism of miR-132-3p in SCIR injury and explore its pathway as a therapeutic target for SCIR injury. We first constructed a SCIR injury rat model and documented motor function in the model. Reverse transcription quantitative polymerase chain reaction (RT-qPC)R and Western blot analysis were used to detect the expression of miR-132-3p and mitogen-activated protein kinase kinase kinase 3 (MEKK3) in SCIR injury rats. The interaction between miR-132-3p and MEKK3 was identified by dual-luciferase reporter gene assay. Then, the effects of miR-132-3p and MEKK3 on macrophage M1 polarization were evaluated in vitro and in vivo by altering their expression in macrophages of SCIR injury rats, with treatments altering the nuclear factor-kappaB (NF-κB) and c-Jun N-terminal kinase (JNK)/p38 signaling pathways using SP600125, SB203580, or PDTC. The SCIR injury rats had a high Tarlov score and low miR-132-3p expression along with high MEKK3 expression. miR-132-3p could directly bind to MEKK3, and that macrophage M1 polarization and inflammation could be inhibited by overexpression of miR-132-3p through downregulating MEKK3 and inactivating the NF-κB and p38/JNK signaling pathways. Besides, increased miR-132-3p expression could decrease the injured rat Tarlov score. Overall, our study demonstrated that miR-132-3p can suppress M1 polarization of macrophages and alleviate SCIR injury by blocking the MEKK3-dependent activation of the NF-κB and p38/JNK signaling pathway. Thus, miR-132-3p and its downstream pathways may be useful targets to alleviate the symptoms of SCIR injury.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| |
Collapse
|
37
|
Li X, Wang S, Yang X, Chu H. miR‑142‑3p targets AC9 to regulate sciatic nerve injury‑induced neuropathic pain by regulating the cAMP/AMPK signalling pathway. Int J Mol Med 2020; 47:561-572. [PMID: 33416140 PMCID: PMC7797458 DOI: 10.3892/ijmm.2020.4824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-142-3p on neuropathic pain caused by sciatic nerve injury in chronic compression injury (CCI) rats, and further investigate its mechanism. Rat experiments were divided into four parts in the study. In the first part, the rats were divided into the Sham and CCI groups. The expression of miR-142-3p, AC9 and cAMP were detected. In the second part, the rats were divided into the Sham, CCI, miR-142-3p mimic, mimic-negative control (NC), miR-142-3p small interfering RNA (siRNA) and siRNA-NC groups. The expression of cAMP and the levels of AMPK pathway-related proteins were detected. In the third part, the rats were randomly divided into Sham, CCI, AC9 mimic, mi-NC, AC9 siRNA and si-NC groups. Double luciferase reporter assay was used to analyse the targeting relationship between miR-142-3p and AC9. In the fourth part, the rats were divided into the Sham, CCI, miR-142-3p siRNA, AC9 mimic, miR-142-3p siRNA + AC9 siRNA, cAMP activator (Forskolin) and miR-142-3p siRNA + cAMP inhibitor groups. The expres-sion of miR-142-3p was significantly increased while AC9 and cAMP expression significantly decreased in CCI rats. However, AC9 overexpression significantly increased the levels of cAMP protein. Luciferase reporter assay also proved that AC9 is the target gene of miR-142-3p. Moreover, miR-142-3p silencing was found to reduce neuropathic pain in CCI rats by upregulating the expression of AC9. It was also found that cAMP activation can relieve neuropathic pain and promote the expression of AMPK-related proteins in CCI rats. Silencing miR-142-3p can target AC9 to reduce the expression of inflammatory factors and neuropathic pain in CCI rats by increasing the expression of cAMP/AMPK pathway-related proteins.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hand Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shoupeng Wang
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| | - Xiaoli Yang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Hongjun Chu
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
38
|
Li L, Luo Y, Zhang Y, Wei M, Zhang M, Liu H, Su Z. CircZNF609 aggravates neuropathic pain via miR-22-3p/ENO1 axis in CCI rat models. Gene 2020; 763:145069. [DOI: 10.1016/j.gene.2020.145069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
39
|
Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, Sudbery IM, Wilson HL, Kiss-Toth E. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front Immunol 2020; 11:574046. [PMID: 33329538 PMCID: PMC7728618 DOI: 10.3389/fimmu.2020.574046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3’untranslated region (3’UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple “high confidence” miRNAs potentially binding to the 3’UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3’UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.
Collapse
Affiliation(s)
- Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumeet R Deshmukh
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Swapna Satam
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany
| | - Ziyanda Shologu
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Ian M Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Heather L Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Li X, Wang D, Zhou J, Yan Y, Chen L. Evaluation of circulating microRNA expression in patients with trigeminal neuralgia: An observational study. Medicine (Baltimore) 2020; 99:e22972. [PMID: 33235064 PMCID: PMC7710236 DOI: 10.1097/md.0000000000022972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trigeminal neuralgia (TN) is a chronic neuropathic pain that seriously affects the daily life of patients. There is increasing evidence that microRNAs (miRNAs) play an important role in the development of neuropathic pain.In this study, the TaqMan Low Density Array (TLDA) was used to analyze the serum miRNA levels of 28 TN patients, and 31 healthy people without any neuropathic pain were used as controls.The results showed that the expression profile of serum miRNA in TN patients was different from that in healthy controls. Compared with the control group, 13 miRNAs in the serum of TN patients were up-regulated and 115 miRNAs were down-regulated by >2 times. Quantitative reverse transcription PCR (RT-qPCR) analysis and receiver operating characteristic (ROC) curve were performed. The analysis further confirmed that the expression levels of 4 miRNAs, including miR-132-3p, miR-146b-5p, miR-155-5p, and miR-384, were significantly higher than those of healthy controls, and the difference was statistically significant.This study preliminarily confirmed the changes of serum miRNA expression profile in TN patients. Among them, 4 kinds of serum miRNA are likely to be related to the occurrence and development of TN.
Collapse
Affiliation(s)
| | | | - Jianbin Zhou
- Department of Pain, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China
| | | | | |
Collapse
|
41
|
MicroRNAs as systemic biomarkers to assess distress in animal models for gastrointestinal diseases. Sci Rep 2020; 10:16931. [PMID: 33037288 PMCID: PMC7547723 DOI: 10.1038/s41598-020-73972-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Severity assessment of animal experiments is mainly conducted by using subjective parameters. A widely applicable biomarker to assess animal distress could contribute to an objective severity assessment in different animal models. Here, the distress of three murine animal models for gastrointestinal diseases was assessed by multiple behavioral and physiological parameters. To identify possible new biomarkers for distress 750 highly conserved microRNAs were measured in the blood plasma of mice before and after the induction of pancreatitis. Deregulated miRNA candidates were identified and further quantified in additional animal models for pancreatic cancer and cholestasis. MiR-375 and miR-203 were upregulated during pancreatitis and down regulated during cholestasis, whereas miR-132 was upregulated in all models. Correlation between miR-132 and plasma corticosterone concentrations resulted in the highest correlation coefficient, when compared to the analysis of miR-375, miR-203 and miR-30b. These results indicate that miR-132 might function as a general biomarker for distress, whereas the other miRNAs were altered in a disease specific manner. In conclusion, plasma miRNA profiling may help to better characterize the level of distress in mouse models for gastrointestinal diseases.
Collapse
|
42
|
Braun A, Evdokimov D, Frank J, Sommer C, Üçeyler N. MiR103a-3p and miR107 are related to adaptive coping in a cluster of fibromyalgia patients. PLoS One 2020; 15:e0239286. [PMID: 32941517 PMCID: PMC7498021 DOI: 10.1371/journal.pone.0239286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) mainly inhibit post-transcriptional gene expression of specific targets and may modulate disease severity. OBJECTIVE We aimed to identify miRNA signatures distinguishing patient clusters with fibromyalgia syndrome (FMS). SUBJECTS AND METHODS We previously determined four FMS patient clusters labelled "maladaptive", "adaptive", "vulnerable", and "resilient". Here, we cluster-wise assessed relative gene expression of miR103a-3p, miR107, miR130a-3p, and miR125a-5p in white blood cell (WBC) RNA of 31 FMS patients and 16 healthy controls. Sum scores of pain-, stress-, and resilience-related questionnaires were correlated with miRNA relative gene expression. A cluster-specific speculative model of a miRNA-mediated regulatory cycle was proposed, and its potential targets verified by the online tool "target scan human". RESULTS One-way ANOVA revealed lower gene expression of miR103a-3p, miR107, and miR130a-3p in FMS patients compared to controls (p < 0.05). Follow-up post-hoc tests indicated the highest peak of gene expression of miR103a-3p for the adaptive cluster (p < 0.05), i.e. in patients with low disability in all symptom categories. Gene expression of miR103a-3p correlated with FMS related disability and miR107 with the score "physical abuse" of the trauma questionnaire (p < 0.05). Target scan identified sucrose non-fermentable serine/threonine protein kinase, nuclear factor kappa-b, cyclin dependent kinase, and toll-like receptor 4 as genetic targets of the miR103a/107 miRNA family. CONCLUSION We show an association between upregulated gene expression of miR103a, tendentially of miR107, and adaptive coping in FMS patients. Validation of this pair of miRNA may enable to identify a somatic resilience factor in FMS.
Collapse
Affiliation(s)
- Alexandra Braun
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | - Johanna Frank
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Liu JH, Cao L, Zhang CH, Li C, Zhang ZH, Wu Q. Dihydroquercetin attenuates lipopolysaccharide-induced acute lung injury through modulating FOXO3-mediated NF-κB signaling via miR-132-3p. Pulm Pharmacol Ther 2020; 64:101934. [PMID: 32805387 DOI: 10.1016/j.pupt.2020.101934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is a potent flavonoid which has been demonstrated to have multiple biological activities including anti-inflammation activity, antioxidant activity as well as anti-cancer activity etc. Recently, many studies have focused on the antioxidant activity of DHQ. However, the use of the anti-inflammation activity of DHQ in acute lung injury (ALI) has not been reported. METHODS Cell viability was examined by CCK-8 assay. The relative expression of miR-132-3p, FOXO3 were detected by qPCR. The levels of TNF-α, IL-6 and IL-1β were detected using enzyme-linked immunosorbent assay. The amount of apoptosis cells was detected by flow cytometry. The protein levels of Bcl-2, Bax, p-p65 and p-IκBα were measured by western blot. RESULTS We found that DHQ-induced the expression of miR-132-3p in LPS-induced ALI. Overexpression of miR-132-3p resulted in the inhibition of FOXO3 expression and then suppressed FOXO3-activated NF-κB pathway, attenuating LPS-induced inflammatory response and apoptosis. CONCLUSION We demonstrated FOXO3 to be a target of miR-132-3p, and DHQ could induce the expression of miR-132-3p, relieving LPS-induced ALI via miR-132-3p/FOXO3/NF-κB axis, providing a promising therapeutic target for ALI.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Liang Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chang-Hong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China.
| |
Collapse
|
44
|
Montague-Cardoso K, Malcangio M. The role of microRNAs in neurons and neuroimmune communication in the dorsal root ganglia in chronic pain. Neurosci Lett 2020; 735:135230. [PMID: 32621949 DOI: 10.1016/j.neulet.2020.135230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Despite being a life-restricting condition, chronic pain remains poorly treated. A better understanding of the underlying mechanisms of chronic pain and thence development of innovative targets is therefore essential. Recently we have started to elucidate the importance of the role of microRNAs (miRs) in preclinical chronic pain. miRs are small, non-coding RNAs that regulate genes including those involved in nociceptive signalling. MiRs can exert their effects both intracellularly and extracellularly, the latter of which requires that they are released either as naked species or packaged in exosomes. Here we discuss changes in miR expression that occur in the dorsal root ganglia in murine models of chronic pain. We consider the downstream targets of changes in miR expression, including voltage-gated ion channels, as well as discuss extracellular consequences such as changes in macrophage phenotype that constitute of means by which neuron-immune cell crosstalk occurs. Such miR-mediated intracellular communication could provide a novel target for the treatment of chronic pain, which would be most effective if tailored to the specific cause of pain. Indeed, we conclude by reviewing evidence for the involvement of miRs in clinical cases of chronic pain, supporting the notion that tailored, miR-targeted therapies could prove to be an effective new strategy for the treatment of chronic pain clinically.
Collapse
Affiliation(s)
| | - Marzia Malcangio
- Wolfson CARD, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
45
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
46
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
47
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Zhang X, Chen Q, Shen J, Wang L, Cai Y, Zhu K. miR‐194 relieve neuropathic pain and prevent neuroinflammation via targeting FOXA1. J Cell Biochem 2020; 121:3278-3285. [PMID: 31930555 DOI: 10.1002/jcb.29598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xian Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Qiuqing Chen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jian Shen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Li Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST)& Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan University Wuhan China
| | - Yi Cai
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Kai‐Run Zhu
- Department of Anesthesiology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
49
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Wu B, Li J, Wang H, Wu Q, Liu H. MiR-132-3p serves as a tumor suppressor in mantle cell lymphoma via directly targeting SOX11. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2197-2208. [PMID: 32040593 DOI: 10.1007/s00210-020-01834-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) is an uncommon type of non-Hodgkin's lymphoma (NHL), comprising about 6% of NHL cases. SOX11 is a member of the group C of Sry-related high-mobility group (HMG) box (Sox) transcription factors, which is ubiquitously expressed in approximate 90% MCL cases. However, the underlying mechanisms of the SOX11 expression aberration are not fully unveiled. In the present study, we firstly observed that miR-132-3p was dramatically down-regulated in CD19+ lymphocytes isolated from peripheral blood mononuclear cells (PBMCs) of MCL patients. Subsequently, we found miR-132-3p exhibited potentials in clinical application, indicated by its negative association with high-risk clinical features. In terms of function, ectopic miR-132-3p aggravated cell apoptosis and arrested cell cycle in G0/G1, and then inhibited cell proliferation in vitro and tumor growth in vivo. Also, we identified miR-132-3p's direct target, SOX11, in MCL cell lines, and loss-function of SOX11 blocked its inhibitory effect on cell proliferation in vitro. Collectively, our observations bring about a novel mechanism to explain the aberrant expression of SOX11 in MCL. Therefore, miR-132-3p may be a promising biomarker for the diagnosis of MCL.
Collapse
Affiliation(s)
- Baoyu Wu
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Li
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Wang
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Wu
- Department of Dermatology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Liu
- Department of Pathology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|