1
|
Fard YA, Sadeghi EN, Pajoohesh Z, Gharehdaghi Z, Khatibi DM, Khosravifar S, Pishkari Y, Nozari S, Hijazi A, Pakmehr S, Shayan SK. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32986. [PMID: 38837296 DOI: 10.1002/ajmg.b.32986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
Collapse
Affiliation(s)
| | | | - Zohreh Pajoohesh
- Faculty of Medicine, Zabol Univeristy of Medical Sciences, Zabol, Iran
| | - Zahra Gharehdaghi
- Department of Pharmacology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Nozari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmed Hijazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Zhang S, Mi P, Luan J, Sun M, Zhao X, Feng X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. ENVIRONMENTAL RESEARCH 2024; 255:119169. [PMID: 38763277 DOI: 10.1016/j.envres.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 μM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Camussi D, Naef V, Brogi L, Della Vecchia S, Marchese M, Nicoletti F, Santorelli FM, Licitra R. Delving into the Complexity of Valproate-Induced Autism Spectrum Disorder: The Use of Zebrafish Models. Cells 2024; 13:1349. [PMID: 39195239 PMCID: PMC11487397 DOI: 10.3390/cells13161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to valproic acid (VPA) has been extensively associated with the development of the disorder. The zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects during embryonic development and to identify new potential biomarkers associated with ASD-like features. Dose-response analyses were performed in vivo to study larval phenotypes and mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae were monitored daily to assess survival and hatching rates, and numerous analyses and tests were conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours. VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Diletta Camussi
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Valentina Naef
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy;
| | - Stefania Della Vecchia
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy;
- IRCSS Neuromed, “La Sapienza” University of Rome, 86077 Pozzilli, Italy
| | - Filippo M. Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Bu LK, Jia PP, Huo WB, Pei DS. Assessment of Probiotics' Impact on Neurodevelopmental and Behavioral Responses in Zebrafish Models: Implications for Autism Spectrum Disorder Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10335-y. [PMID: 39090455 DOI: 10.1007/s12602-024-10335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder; the prevalence of which has been on the rise with unknown causes. Alterations in the gut-brain axis have been widely recognized in ASD patients, and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. However, the effectiveness and mechanisms of multiple probiotics on zebrafish models are still not clearly revealed. This study aims to use the germ-free (GF) and conventionally raised (CR) AB wild-type zebrafish and the mutant Tbr1b-/- and Katnal2-/- lines as human-linked ASD animal models to evaluate the effects of multiple probiotics on mitigating developmental and behavioral defects. Results showed that the addition of probiotics increased the basic important developmental indexes, such as body length, weight, and survival rate of treated zebrafish. Moreover, the Lactobacillus plantarum and Lactobacillus rhamnosus affected the behavior of CR zebrafish by increasing their mobility, lowering the GF zebrafish manic, and mitigating transgenic zebrafish abnormal behavior. Moreover, the expression levels of key genes related to gamma-aminobutyric acid (GABA), dopamine (DA), and serotonin (5-HT) as important neuropathways to influence the appearance and development of autism-related disorders, including gad1b, tph1a, htr3a, th, and slc6a3, were significantly activated by some of the probiotics' treatment at some extent. Taken together, this study indicates the beneficial effects of different probiotics, which may provide a novel understanding of probiotic function in related diseases' therapy.
Collapse
Affiliation(s)
- Ling-Kang Bu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing, 400025, China.
| |
Collapse
|
6
|
Ricarte M, Tagkalidou N, Bellot M, Bedrossiantz J, Prats E, Gomez-Canela C, Garcia-Reyero N, Raldúa D. Short- and Long-Term Neurobehavioral Effects of Developmental Exposure to Valproic Acid in Zebrafish. Int J Mol Sci 2024; 25:7688. [PMID: 39062930 PMCID: PMC11277053 DOI: 10.3390/ijms25147688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models can serve as crucial tools for understanding the complexity of ASD. In this study, a chemical model of ASD has been developed in zebrafish by exposing embryos to valproic acid (VPA) from 4 to 48 h post-fertilization, rearing them to the adult stage in fish water. For the first time, an integrative approach combining behavioral analysis and neurotransmitters profile has been used for determining the effects of early-life exposure to VPA both in the larval and adult stages. Larvae from VPA-treated embryos showed hyperactivity and decreased visual and vibrational escape responses, as well as an altered neurotransmitters profile, with increased glutamate and decreased acetylcholine and norepinephrine levels. Adults from VPA-treated embryos exhibited impaired social behavior characterized by larger shoal sizes and a decreased interest for their conspecifics. A neurotransmitter analysis revealed a significant decrease in dopamine and GABA levels in the brain. These results support the potential predictive validity of this model for ASD research.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), 08034 Barcelona, Spain;
| | - Cristian Gomez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, MS 39762, USA;
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| |
Collapse
|
7
|
Jiao D, Xu Y, Tian F, Zhou Y, Chen D, Wang Y. Establishment of animal models and behavioral studies for autism spectrum disorders. J Int Med Res 2024; 52:3000605241245293. [PMID: 38619175 PMCID: PMC11022675 DOI: 10.1177/03000605241245293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
In recent years, the incidence of autism spectrum disorder (ASD) has increased, but the etiology and pathogenesis remain unclear. In this narrative review, we review and systematically summarize the methods used to construct animal models to study ASD and the related behavioral studies based on recent literature. Utilization of various ASD animal models can complement research on the etiology, pathogenesis, and core behaviors of ASD, providing information and a foundation for further basic research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Daiyan Jiao
- Department of Rehabilitation, Affiliated Hai'an Hospital of Nantong University, Nantong, China
- Department of Acupuncture, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingkai Xu
- Department of Medicine, Hai’an Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Fei Tian
- Department of Medical Imaging, Hai’an Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Yaqing Zhou
- Department of Critical Care Medicine, Affiliated Hai’an Hospital of Nantong University, Nantong, China
| | - Dong Chen
- Department of Acupuncture, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujue Wang
- Department of Paediatrics, Rugao Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
8
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
9
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
10
|
Wang J, Zou L, Jiang P, Yao M, Xu Q, Hong Q, Zhu J, Chi X. Vitamin A ameliorates valproic acid-induced autism-like symptoms in developing zebrafish larvae by attenuating oxidative stress and apoptosis. Neurotoxicology 2024; 101:93-101. [PMID: 38191030 DOI: 10.1016/j.neuro.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive/stereotyped behaviors. Prenatal exposure to valproic acid (VPA) has been reported to induce ASD-like symptoms in human and rodents. However, the etiology and pathogenesis of ASD have not been well elucidated. This study aimed to explore the mechanisms underlying VPA-induced ASD-like behaviors using zebrafish model and investigated whether vitamin A could prevent VPA-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 25 and 50 μM VPA from 4 to 96 h post fertilization (hpf) and the neurotoxicity was assessed. Our results showed that VPA affected the normal development of zebrafish larvae and induced ASD-like behaviors, including reduced locomotor activity, decreased distance near conspecifics, impaired social interaction and repetitive swimming behaviors. Exposure to VPA decreased the GFP signal in transgenic HuC:egfp zebrafish according to the negative effect of VPA on the expression of neurodevelopmental genes. In addition, VPA enhanced oxidative stress by promoting the production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) and inhibiting the activity of superoxide dismutase, then triggered apoptosis by upregulation of apoptotic genes. These adverse outcomes were mitigated by vitamin A, suggesting that vitamin A rescued VPA-induced ASD-like symptoms by inhibiting oxidative stress and apoptosis. Overall, this study identified vitamin A as a promising strategy for future therapeutic regulator of VPA-induced ASD-like behaviors.
Collapse
Affiliation(s)
- Jingyu Wang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China; Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Peiyun Jiang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Mengmeng Yao
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China.
| |
Collapse
|
11
|
Robea MA, Ilie OD, Nicoara MN, Solcan G, Romila LE, Ureche D, Ciobica A. Vitamin B 12 Ameliorates Pesticide-Induced Sociability Impairment in Zebrafish ( Danio rerio): A Prospective Controlled Intervention Study. Animals (Basel) 2024; 14:405. [PMID: 38338046 PMCID: PMC10854844 DOI: 10.3390/ani14030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Constant exposure to a variety of environmental factors has become increasingly problematic. A variety of illnesses are initiated or aided by the presence of certain perturbing factors. In the case of autism spectrum disorder, the environmental component plays an important part in determining the overall picture. Moreover, the lack of therapies to relieve existing symptoms complicates the fight against this condition. As a result, animal models have been used to make biomedical research easier and more suited for disease investigations. The current study used zebrafish as an animal model to mimic a real-life scenario: acute exposure to an increased dose of pesticides, followed by prospective intervention-based therapy with vitamin B12 (vit. B12). It is known that vit. B12 is involved in brain function nerve tissue, and red blood cell formation. Aside from this, the role of vit. B12 in the redox processes is recognized for its help against free radicals. To investigate the effect of vit. B12, fish were divided into four different groups and exposed to a pesticide mixture (600 μg L-1 fipronil + 600 μg L-1 pyriproxyfen) and 0.24 μg L-1 vit. B12 for 14 days. The impact of the compounds was assessed daily with EthoVision XT 11.5 software for behavioral observations, especially for sociability, quantified by the social interaction test. In addition, at the end of the study, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured. The results showed significant improvements in locomotor activity parameters and a positive influence of the vitamin on sociability. Regarding the state of oxidative stress, high activity was found for SOD and GPx in the case of vit. B12, while fish exposed to the mixture of pesticides and vit. B12 had a lower level of MDA. In conclusion, the study provides new data about the effect of vit. B12 in zebrafish, highlighting the potential use of vitamin supplementation to maintain and support the function of the organism.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
| | - Ovidiu Dumitru Ilie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania;
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Gheorghe Solcan
- Internal Medicine Clinic, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, 700489 Iasi, Romania;
| | | | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University “Vasile Alecsandri“ of Bacau, Calea Marasesti Street, No. 157, 600115 Bacau, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Academy of Romanian Scientists, 54, Independence Street, Sector 5, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
| |
Collapse
|
12
|
Deng J, Liu C, Hu M, Hu C, Lin J, Li Q, Xu X. Dynamic Regulation of brsk2 in the Social and Motor Development of Zebrafish: A Developmental Behavior Analysis. Int J Mol Sci 2023; 24:16506. [PMID: 38003696 PMCID: PMC10671324 DOI: 10.3390/ijms242216506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Both social and motor development play an essential role in an individual's physical, psychological, and social well-being. It is essential to conduct a dynamic analysis at multiple time points during the developmental process as it helps us better understand and evaluate the trajectory and changes in individual development. Recently, some studies found that mutations in the BRSK2 gene may contribute to motor impairments, delays in achieving motor milestones, and deficits in social behavior and communication skills in patients. However, little is known about the dynamic analysis of social and motor development at multiple time points during the development of the brsk2 gene. We generated a novel brsk2-deficient (brsk2ab-/-) zebrafish model through CRISPR/Cas9 editing and conducted comprehensive morphological and neurobehavioral evaluations, including that of locomotor behaviors, social behaviors, and anxiety behaviors from the larval to adult stages of development. Compared to wild-type zebrafish, brsk2ab-/- zebrafish exhibited a catch-up growth pattern of body length and gradually improved locomotor activities during the developmental process. In contrast, multimodal behavior tests showed that the brsk2ab-/- zebrafish displayed escalating social deficiency and anxiety-like behaviors over time. We reported for the first time that the brsk2 gene had dynamic regulatory effects on motor and social development. It helps us understand developmental trends, capture changes, facilitate early interventions, and provide personalized support and development opportunities for individuals.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunxue Liu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Meixin Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunchun Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Xiu Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| |
Collapse
|
13
|
Eghan K, Lee S, Yoo D, Kim CH, Kim WK. Adverse effects of bifenthrin exposure on neurobehavior and neurodevelopment in a zebrafish embryo/larvae model. CHEMOSPHERE 2023; 341:140099. [PMID: 37690556 DOI: 10.1016/j.chemosphere.2023.140099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 μg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Donggon Yoo
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| |
Collapse
|
14
|
Chaoul V, Dib EY, Bedran J, Khoury C, Shmoury O, Harb F, Soueid J. Assessing Drug Administration Techniques in Zebrafish Models of Neurological Disease. Int J Mol Sci 2023; 24:14898. [PMID: 37834345 PMCID: PMC10573323 DOI: 10.3390/ijms241914898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
Neurological diseases, including neurodegenerative and neurodevelopmental disorders, affect nearly one in six of the world's population. The burden of the resulting deaths and disability is set to rise during the next few decades as a consequence of an aging population. To address this, zebrafish have become increasingly prominent as a model for studying human neurological diseases and exploring potential therapies. Zebrafish offer numerous benefits, such as genetic homology and brain similarities, complementing traditional mammalian models and serving as a valuable tool for genetic screening and drug discovery. In this comprehensive review, we highlight various drug delivery techniques and systems employed for therapeutic interventions of neurological diseases in zebrafish, and evaluate their suitability. We also discuss the challenges encountered during this process and present potential advancements in innovative techniques.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Emanuel-Youssef Dib
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Chakib Khoury
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Omar Shmoury
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Frédéric Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| |
Collapse
|
15
|
Maslov GO, Zabegalov KN, Demin KA, Kolesnikova TO, Kositsyn YM, de Abreu MS, Petersen EV, Kalueff AV. Towards experimental models of delirium utilizing zebrafish. Behav Brain Res 2023; 453:114607. [PMID: 37524203 DOI: 10.1016/j.bbr.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Delirium is an acute neuropsychiatric condition characterized by impaired behavior and cognition. Although the syndrome has been known for millennia, its CNS mechanisms and risk factors remain poorly understood. Experimental animal models, especially rodent-based, are commonly used to probe various pathogenetic aspects of delirium. Complementing rodents, the zebrafish (Danio rerio) emerges as a promising novel model organism to study delirium. Zebrafish demonstrate high genetic and physiological homology to mammals, easy maintenance, robust behaviors in various sensitive behavioral tests, and the potential to screen for pharmacological agents relevant to delirium. Here, we critically discuss recent developments in the field, and emphasize the developing utility of zebrafish models for translational studies of delirium and deliriant drugs. Overall, the zebrafish represents a valuable and promising aquatic model species whose use may help understand delirium etiology, as well as develop novel therapies for this severely debilitating disorder.
Collapse
Affiliation(s)
- Gleb O Maslov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Ural Federal University, Ekaterinburg, Russia
| | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana O Kolesnikova
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Yuriy M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Novosibirsk State University, Novosibirsk, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
16
|
Kareklas K, Teles MC, Nunes AR, Oliveira RF. Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology. J Neuroendocrinol 2023; 35:e13280. [PMID: 37165563 DOI: 10.1111/jne.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.
Collapse
Affiliation(s)
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
17
|
Kareklas K, Teles MC, Dreosti E, Oliveira RF. Autism-associated gene shank3 is necessary for social contagion in zebrafish. Mol Autism 2023; 14:23. [PMID: 37391856 PMCID: PMC10311831 DOI: 10.1186/s13229-023-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal
| | - Elena Dreosti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal.
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal.
| |
Collapse
|
18
|
Kuroda T, Ritchey CM, Podlesnik CA. Selective effects of conspecific movement on social preference in zebrafish (Danio rerio) using real-time 3D tracking and 3D animation. Sci Rep 2023; 13:10502. [PMID: 37380673 DOI: 10.1038/s41598-023-37579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
Zebrafish show social behavior such as shoaling and schooling, which is a result of complex and interdependent interactions among conspecifics. Zebrafish social behavior is interdependent in the sense that one fish's behavior affects both conspecific behavior and, as a result, their own behavior. Previous research examined effects of the interdependent interactions on the preference for social stimulus but lacked clear evidence that specific conspecific movements were reinforcing. The present research examined whether dependency between individual experimental fish's motion and a social-stimulus fish's motions contributes to preference for the social stimulus. In Experiment 1, a 3D animated stimulus fish either chased individual experimental fish or was motionless, serving as dependent and independent motions, respectively. In Experiment 2, the stimulus fish either chased experimental fish, moved away, or moved independently of the experimental fish. In both experiments, experimental fish spent more time near the stimulus fish showing dependent and interactive movements, indicating preference for dependent motion over independent motion, and chasing over other motions. Implications of these results are discussed including a potential role of operant conditioning in the preference for social stimuli.
Collapse
Affiliation(s)
- Toshikazu Kuroda
- Huckle Co., Ltd., 2-51 Shiroki, Chikusa, Nagoya, Aichi, 464-0846, Japan.
- Aichi Bunkyo University, 5969-3 Okusa, Komaki, Aichi, 485-8565, Japan.
- Department of Dynamic Brain Imaging, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika-cho, Kyoto, 619-0288, Japan.
| | | | - Christopher A Podlesnik
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL, 32611, USA
| |
Collapse
|
19
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Kaminski VDL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, Roman T, Chies JAB. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023; 9:e15593. [PMID: 37305482 PMCID: PMC10256833 DOI: 10.1016/j.heliyon.2023.e15593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders usually observed in early life, with impacts on behavioral and social skills. Incidence of ASD has been dramatically increasing worldwide, possibly due to increase in awareness/diagnosis as well as to genetic and environmental triggers. Currently, it is estimated that ∼1% of the world population presents ASD symptoms. In addition to its genetic background, environmental and immune-related factors also influence the ASD etiology. In this context, maternal immune activation (MIA) has recently been suggested as a component potentially involved in ASD development. In addition, extracellular vesicles (EVs) are abundant at the maternal-fetal interface and are actively involved in the immunoregulation required for a healthy pregnancy. Considering that alterations in concentration and content of EVs have also been associated with ASD, this article raises a debate about the potential roles of EVs in the processes surrounding MIA. This represents the major differential of the present review compared to other ASD studies. To support the suggested correlations and hypotheses, findings regarding the roles of EVs during pregnancy and potential influences on ASD are discussed, along with a review and update concerning the participation of infections, cytokine unbalances, overweight and obesity, maternal anti-fetal brain antibodies, maternal fever, gestational diabetes, preeclampsia, labor type and microbiota unbalances in MIA and ASD.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Rafael Tomoya Michita
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil - ULBRA, Canoas, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Degani Veit
- Instituto de Ciências Básicas da Saúde, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Hasani H, Sun J, Zhu SI, Rong Q, Willomitzer F, Amor R, McConnell G, Cossairt O, Goodhill GJ. Whole-brain imaging of freely-moving zebrafish. Front Neurosci 2023; 17:1127574. [PMID: 37139528 PMCID: PMC10150962 DOI: 10.3389/fnins.2023.1127574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
One of the holy grails of neuroscience is to record the activity of every neuron in the brain while an animal moves freely and performs complex behavioral tasks. While important steps forward have been taken recently in large-scale neural recording in rodent models, single neuron resolution across the entire mammalian brain remains elusive. In contrast the larval zebrafish offers great promise in this regard. Zebrafish are a vertebrate model with substantial homology to the mammalian brain, but their transparency allows whole-brain recordings of genetically-encoded fluorescent indicators at single-neuron resolution using optical microscopy techniques. Furthermore zebrafish begin to show a complex repertoire of natural behavior from an early age, including hunting small, fast-moving prey using visual cues. Until recently work to address the neural bases of these behaviors mostly relied on assays where the fish was immobilized under the microscope objective, and stimuli such as prey were presented virtually. However significant progress has recently been made in developing brain imaging techniques for zebrafish which are not immobilized. Here we discuss recent advances, focusing particularly on techniques based on light-field microscopy. We also draw attention to several important outstanding issues which remain to be addressed to increase the ecological validity of the results obtained.
Collapse
Affiliation(s)
- Hamid Hasani
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Jipeng Sun
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Qiangzhou Rong
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Florian Willomitzer
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Oliver Cossairt
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Geoffrey J. Goodhill
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Machado Lara Carvalho L, Varella Branco E, Delgado Sarafian R, Shigeru Kobayashi G, Tófoli de Araújo F, Santos Souza L, de Paula Moreira D, Shih Ping Hsia G, Maria Goloni Bertollo E, Barbosa Buck C, Souza da Costa S, Mendes Fialho D, Tadeu Galante Rocha de Vasconcelos F, Abreu Brito L, Elena de Souza Fraga Machado L, Cabreira Ramos I, da Veiga Pereira L, Priszkulnik Koiffmann C, Rita Dos Santos E Passos-Bueno M, Antonio de Oliveira Mendes T, Cristina Victorino Krepischi A, Rosenberg C. Establishment of iPSC lines and zebrafish with loss-of-function AHDC1 variants: models for Xia-Gibbs syndrome. Gene 2023; 871:147424. [PMID: 37054903 DOI: 10.1016/j.gene.2023.147424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/12/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Xia-Gibbs syndrome (XGS) is a syndromic form of intellectual disability caused by heterozygous AHDC1 variants, but the pathophysiological mechanisms underlying this syndrome are still unclear. In this manuscript, we describe the development of two different functional models: three induced pluripotent stem cell (iPSC) lines with different loss-of-function (LoF) AHDC1 variants, derived by reprogramming peripheral blood mononuclear cells from XGS patients, and a zebrafish strain with a LoF variant in the ortholog gene (ahdc1) obtained through CRISPR/Cas9-mediated editing. The three iPSC lines showed expression of pluripotency factors (SOX2, SSEA-4, OCT3/4, and NANOG). To verify the capacity of iPSC to differentiate into the three germ layers, we obtained embryoid bodies (EBs), induced their differentiation, and confirmed the mRNA expression of ectodermal, mesodermal, and endodermal markers using the TaqMan hPSC Scorecard. The iPSC lines were also approved for the following quality tests: chromosomal microarray analysis (CMA), mycoplasma testing, and short tandem repeat (STR) DNA profiling. The zebrafish model has an insertion of four base pairs in the ahdc1 gene, is fertile, and breeding between heterozygous and wild-type (WT) animals generated offspring in a genotypic proportion in agreement with Mendelian law. The established iPSC and zebrafish lines were deposited on the hpscreg.eu and zfin.org platforms, respectively. These biological models are the first for XGS and will be used in future studies that investigate the pathophysiology of this syndrome, unraveling its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Raquel Delgado Sarafian
- National Embryonic Stem Cell Laboratory Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gerson Shigeru Kobayashi
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiano Tófoli de Araújo
- National Embryonic Stem Cell Laboratory Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Santos Souza
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Danielle de Paula Moreira
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriella Shih Ping Hsia
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Silvia Souza da Costa
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Davi Mendes Fialho
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Luciano Abreu Brito
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Igor Cabreira Ramos
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lygia da Veiga Pereira
- National Embryonic Stem Cell Laboratory Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Celia Priszkulnik Koiffmann
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Bai C, Zheng Y, Tian L, Lin J, Song Y, Huang C, Dong Q, Chen J. Structure-based developmental toxicity and ASD-phenotypes of bisphenol A analogues in embryonic zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114643. [PMID: 36805134 DOI: 10.1016/j.ecoenv.2023.114643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has become more prevalent in recent years. Environmental endocrine disruptor bisphenol A (BPA) has been linked to ASD. BPA analogues (BPs) are structure-modified substitutes widely used as safer alternatives in consumer products, yet few studies have explored the developmental neurotoxicity (DNT) of BPA analogues. In the present study, we used the larval zebrafish model to assess the DNT effects of BPA and its analogues. Our results showed that many BPA analogues are more toxic than BPA in the embryonic zebrafish assay regarding teratogenic effect and mortality, which may partially due to differences in lipophilicity and/or different substitutes of structural function groups such as CF3, benzene, or cyclohexane. At sublethal concentrations, zebrafish embryos exposed to BPA or BPs also displayed reduced prosocial behavior in later larval development, evidenced by increased nearest neighbor distance (NND) and the interindividual distance (IID) in shoaling, which appears to be structurally independent. An in-depth analysis of BPA, bisphenol F (BPF), and bisphenol S (BPS) revealed macrocephaly and ASD-like behavioral deficits resulting from exposures to sublethal concentrations of these chemicals. The ASD-like behavioral deficits were characterized by hyperactivity, increased anxiety-like behavior, and decreased social contact. Mechanistically, accelerated neurogenesis that manifested by increased cell proliferation, the proportion of newborn mature neurons, and the number of neural stem cells in proliferation, as well as upregulated genes related to the K+ channels, may have contributed to the observed ASD-like morphological and behavioral alterations. Our findings indicate that BPF and BPS may also pose significant risks to ASD development in humans and highlight the importance of a comprehensive assessment of DNT effects for all BPA analogues in the future.
Collapse
Affiliation(s)
- Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yi Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Linjie Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PR China
| | - Changjiang Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Jiangfei Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
24
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
25
|
Household based-pyrethroids on adult zebrafish (Danio rerio) exert behavioral and cholinergic changes in different brain regions. Neurotoxicology 2023; 96:19-27. [PMID: 36868382 DOI: 10.1016/j.neuro.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Pyrethroid-based insecticides are largely used for mosquito control. These compounds have household and agricultural applications with different formulations. Two important compounds used as household insecticides are prallethrin and transfluthrin, both from the pyrethroid chemical group. With the mode of action centered on sodium channels, pyrethroids keep the ionic sodium channels open for a long time causing the death of the insect by nervous hyperexcitability. Given the increased use of household insecticides by humans and the incidence of disease outbreaks with unknown etiology such as autism spectrum disease, schizophrenia, and Parkinson's disease we investigate some physiological inputs of these compounds on zebrafish. In this study, we evaluated the social interaction, shoaling formation, and anxiety-like behavior of zebrafish exposed chronically to transfluthrin- and prallthrin-based insecticides (T-BI and P-BI). In addition, we quantified the activity of the enzyme acetylcholinesterase (AChE) in different brain regions. We observed that both compounds caused anxiolytic behavior and reduced shoaling formation and social interaction. Their behavioral biomarkers indicated a harmful ecological effect on the specie as well as a possible impact of these compounds on autism spectrum disorder (ASD) and schizophrenia (SZP). In addition, the AChE activity would change its activity in different brain regions modulating the anxiety-like behavior and social behavior in zebrafish. We conclude that P-BI and T-BI make us alert about the relationship of these compounds with nervous diseases related to cholinergic signaling.
Collapse
|
26
|
Hu H, Long Y, Song G, Chen S, Xu Z, Li Q, Wu Z. Dysfunction of Prkcaa Links Social Behavior Defects with Disturbed Circadian Rhythm in Zebrafish. Int J Mol Sci 2023; 24:ijms24043849. [PMID: 36835261 PMCID: PMC9961154 DOI: 10.3390/ijms24043849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Protein kinase Cα (PKCα/PRKCA) is a crucial regulator of circadian rhythm and is associated with human mental illnesses such as autism spectrum disorders and schizophrenia. However, the roles of PRKCA in modulating animal social behavior and the underlying mechanisms remain to be explored. Here we report the generation and characterization of prkcaa-deficient zebrafish (Danio rerio). The results of behavioral tests indicate that a deficiency in Prkcaa led to anxiety-like behavior and impaired social preference in zebrafish. RNA-sequencing analyses revealed the significant effects of the prkcaa mutation on the expression of the morning-preferring circadian genes. The representatives are the immediate early genes, including egr2a, egr4, fosaa, fosab and npas4a. The downregulation of these genes at night was attenuated by Prkcaa dysfunction. Consistently, the mutants demonstrated reversed day-night locomotor rhythm, which are more active at night than in the morning. Our data show the roles of PRKCA in regulating animal social interactions and link the social behavior defects with a disturbed circadian rhythm.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaoxiong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhengli Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| |
Collapse
|
27
|
Wu J, Lin X, Wu D, Yan B, Bao M, Zheng P, Wang J, Yang C, Li Z, Jin X, Jiang K. Poly(I:C)-exposed zebrafish shows autism-like behaviors which are ameliorated by fabp2 gene knockout. Front Mol Neurosci 2023; 15:1068019. [PMID: 36683854 PMCID: PMC9849760 DOI: 10.3389/fnmol.2022.1068019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders mainly representing impaired social communication. The etiology of ASD includes genetic and environmental risk factors. Rodent models containing ASD risk gene mutations or environmental risk factors, such as exposure to maternal inflammation, show abnormal behavior. Although zebrafish conserves many important brain structures of humans and has sophisticated and fine behaviors in social interaction, it is unknown whether the social behaviors of their offspring would be impaired due to exposure to maternal inflammation. Methods We exposed zebrafish to maternal immune activation (MIA) by injection with polyinosinic:polycytidylic acid [poly(I:C)], and screened their behaviors through social behavioral tests such as social preference and shoaling behavior tests. We compared phenotypes resulted from different ways of poly(I:C) exposure. RNA sequencing was performed to explore the differential expression genes (DEGs). Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis was performed with the detected DEGs to find the concentrated pathways. Finally, we knocked out the fatty acid-binding protein 2 (fabp2), a key node of the concentrated PPI network, to find its rescues on the altered social behavior. Results We reported here that MIA offspring born to mothers injected with poly(I:C) exhibited impaired social approach and social cohesion that mimicked human ASD phenotypes. Both maternal exposure and direct embryo exposure to poly(I:C) resulted in activations of the innate immune system through toll-like receptors 3 and 4. RNA-sequencing results from MIA brain tissues illustrated that the numbers of overexpressed genes were significantly more than that of underexpressed genes. GO and KEGG analyses found that MIA-induced DEGs were mainly concentrated in complement and coagulation cascade pathways. PPI network analyses suggested that villin-1 (vil1) pathway might play a key role in MIA-induced ASD. Knockout of fabp2 in F0 zebrafish rescued the social behavior deficits in MIA offspring. Conclusions Overall, our work established an ASD model with assessable behavior phenotype in zebrafish and provided key insights into environmental risk factor in ASD etiology and the influence of fabp2 gene on ASD-like behavior.
Collapse
Affiliation(s)
- Jing Wu
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Xueting Lin
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Dian Wu
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Binhong Yan
- Department of Biobank Center, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Mengyi Bao
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Peilei Zheng
- Department of Biobank Center, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Jiangping Wang
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Cuiwei Yang
- Department of Neurology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Zhongxia Li
- Department of Pediatrics, The Seventh Affiliated Hospital of Guangxi Medical University (Wuzhou GongRen Hospital), Wuzhou, Guangxi, China
| | - Xiaoming Jin
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States,Stark Neuroscience Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kewen Jiang
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China,Department of Biobank Center, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China,*Correspondence: Kewen Jiang,
| |
Collapse
|
28
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
29
|
Zhao M, Lin XH, Zeng YH, Su HZ, Wang C, Yang K, Chen YK, Lin BW, Yao XP, Chen WJ. Knockdown of myorg leads to brain calcification in zebrafish. Mol Brain 2022; 15:65. [PMID: 35870928 PMCID: PMC9308368 DOI: 10.1186/s13041-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a neurogenetic disorder characterized by bilateral calcified deposits in the brain. We previously identified that MYORG as the first pathogenic gene for autosomal recessive PFBC, and established a Myorg-KO mouse model. However, Myorg-KO mice developed brain calcifications until nine months of age, which limits their utility as a facile PFBC model system. Hence, whether there is another typical animal model for mimicking PFBC phenotypes in an early stage still remained unknown. In this study, we profiled the mRNA expression pattern of myorg in zebrafish, and used a morpholino-mediated blocking strategy to knockdown myorg mRNA at splicing and translation initiation levels. We observed multiple calcifications throughout the brain by calcein staining at 2–4 days post-fertilization in myorg-deficient zebrafish, and rescued the calcification phenotype by replenishing myorg cDNA. Overall, we built a novel model for PFBC via knockdown of myorg by antisense oligonucleotides in zebrafish, which could shorten the observation period and replenish the Myorg-KO mouse model phenotype in mechanistic and therapeutic studies.
Collapse
|
30
|
Lombana DAB, Porfiri M. Collective response of fish to combined manipulations of illumination and flow. Behav Processes 2022; 203:104767. [DOI: 10.1016/j.beproc.2022.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
31
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
32
|
Ochenkowska K, Herold A, Samarut É. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders. Front Mol Neurosci 2022; 15:944693. [PMID: 35875659 PMCID: PMC9298522 DOI: 10.3389/fnmol.2022.944693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 12/17/2022] Open
Abstract
Personalized medicine is currently one of the most promising tools which give hope to patients with no suitable or no available treatment. Patient-specific approaches are particularly needed for common diseases with a broad phenotypic spectrum as well as for rare and yet-undiagnosed disorders. In both cases, there is a need to understand the underlying mechanisms and how to counteract them. Even though, during recent years, we have been observing the blossom of novel therapeutic techniques, there is still a gap to fill between bench and bedside in a patient-specific fashion. In particular, the complexity of genotype-to-phenotype correlations in the context of neurological disorders has dampened the development of successful disease-modifying therapeutics. Animal modeling of human diseases is instrumental in the development of therapies. Currently, zebrafish has emerged as a powerful and convenient model organism for modeling and investigating various neurological disorders. This model has been broadly described as a valuable tool for understanding developmental processes and disease mechanisms, behavioral studies, toxicity, and drug screening. The translatability of findings obtained from zebrafish studies and the broad prospect of human disease modeling paves the way for developing tailored therapeutic strategies. In this review, we will discuss the predictive power of zebrafish in the discovery of novel, precise therapeutic approaches in neurosciences. We will shed light on the advantages and abilities of this in vivo model to develop tailored medicinal strategies. We will also investigate the newest accomplishments and current challenges in the field and future perspectives.
Collapse
Affiliation(s)
- Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Aveeva Herold
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
33
|
Deng J, Wang Y, Hu M, Lin J, Li Q, Liu C, Xu X. Deleterious Variation in BR Serine/Threonine Kinase 2 Classified a Subtype of Autism. Front Mol Neurosci 2022; 15:904935. [PMID: 35754711 PMCID: PMC9231588 DOI: 10.3389/fnmol.2022.904935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, deleterious variants in the BR serine/threonine kinase 2 (BRSK2) gene have been reported in patients with autism spectrum disorder (ASD), suggesting that BRSK2 is a new high-confidence ASD risk gene, which presents an opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, we performed clinical and neurobehavioral evaluations of a proband with a de novo non-sense variant in BRSK2 (p.R222X) with other reported BRSK2 mutant patients. To validate BRSK2 as an ASD risk gene, we generated a novel brsk2b-deficient zebrafish line through CRISPR/Cas9 and characterized its morphological and neurobehavioral features as well as performed molecular analysis of neurogenesis-related markers. The proband displayed typical ASD behaviors and language and motor delay, which were similar to other published BRSK2 mutant patients. Morphologically, brsk2b–/– larvae exhibited a higher embryonic mortality and rate of pericardium edema, severe developmental delay, and depigmentation as well as growth retardation in the early developmental stage. Behaviorally, brsk2b–/– zebrafish displayed significantly decreased activity in open field tests and enhanced anxiety levels in light/dark tests and thigmotaxis analysis. Specifically, brsk2b–/– zebrafish showed a prominent reduction of social interaction with peers and disrupted social cohesion among homogeneous groups. Molecularly, the mRNA expression levels of homer1b (a postsynaptic density scaffolding protein), and mbpa, mpz, and plp1b (molecular markers of oligodendrocytes and myelination) were increased in the brain tissues of adult brsk2b–/– zebrafish, while the expression level of isl1a, a marker of motor neurons, was decreased. Taken together, for the first time, we established a novel brsk2b-deficient zebrafish model that showed prominent ASD-like behaviors. In addition, the disturbed mRNA expression levels of neurogenesis-related markers implied that the processes of postsynaptic signaling as well as oligodendrocytes and myelination may be involved. This discovery may suggest a path for further research to identify the underlying neuropathological mechanisms between BRSK2 and ASD.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meixin Hu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxue Liu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
35
|
Anastasiadi D, Piferrer F, Wellenreuther M, Benítez Burraco A. Fish as Model Systems to Study Epigenetic Drivers in Human Self-Domestication and Neurodevelopmental Cognitive Disorders. Genes (Basel) 2022; 13:genes13060987. [PMID: 35741749 PMCID: PMC9222608 DOI: 10.3390/genes13060987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Modern humans exhibit phenotypic traits and molecular events shared with other domesticates that are thought to be by-products of selection for reduced aggression. This is the human self-domestication hypothesis. As one of the first types of responses to a novel environment, epigenetic changes may have also facilitated early self-domestication in humans. Here, we argue that fish species, which have been recently domesticated, can provide model systems to study epigenetic drivers in human self-domestication. To test this, we used in silico approaches to compare genes with epigenetic changes in early domesticates of European sea bass with genes exhibiting methylation changes in anatomically modern humans (comparison 1), and neurodevelopmental cognitive disorders considered to exhibit abnormal self-domestication traits, i.e., schizophrenia, Williams syndrome, and autism spectrum disorders (comparison 2). Overlapping genes in comparison 1 were involved in processes like limb morphogenesis and phenotypes like abnormal jaw morphology and hypopigmentation. Overlapping genes in comparison 2 affected paralogue genes involved in processes such as neural crest differentiation and ectoderm differentiation. These findings pave the way for future studies using fish species as models to investigate epigenetic changes as drivers of human self-domestication and as triggers of cognitive disorders.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Seafood Technologies, The New Zealand Institute for Plant and Food Research, Nelson 7010, New Zealand;
- Correspondence:
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), 08003 Barcelona, Spain;
| | - Maren Wellenreuther
- Seafood Technologies, The New Zealand Institute for Plant and Food Research, Nelson 7010, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Antonio Benítez Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, 41004 Seville, Spain;
| |
Collapse
|
36
|
Tamagno WA, de Oliveira Sofiatti JR, Alves C, Sutorillo NT, Vanin AP, Bilibio D, Pompermaier A, Barcellos LJG. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103857. [PMID: 35342012 DOI: 10.1016/j.etap.2022.103857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Estrogen is considered to be an endocrine disrupter and is becoming increasingly more prevalent in the daily life of humans. In some cases, estrogen is not fully metabolized by organisms and may be excreted in either its original form or in organic complex forms, into water residue systems reaching concentrations of 0.05 ng.L-1 to 75 ng.L-1. However, estrogen 17α-ethinylestradiol (EE2), which is used in oral contraceptives, is very difficult to remove from water. Here, we evaluated whether the synthetic hormone, EE2, affects the nervous system and the behavior of adult zebrafish. We established a range of concentrations (0.05, 0.5, 5, 50, and 75 ng.L-1), in addition to the control, to evaluate the effect of this compound and its bioaccumulation in zebrafish tissues. Here we show that EE2 bioaccumulates in fish and can change its behavior with an increased time in the upper zone (novel tank test) and far from the shoal segment (social preference test), demonstrating a clear anxiolytic pattern. The anxiolytic effect of EE2 can be harmful as it can affect the stress response of the species. The results presented herein reinforce the idea that the presence of EE2 in environmental water can be dangerous for non-target animals.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| | - Jessica Reis de Oliveira Sofiatti
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Carla Alves
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Nathália Tafarel Sutorillo
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Ana Paula Vanin
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Denise Bilibio
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Aline Pompermaier
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
37
|
Perdikaris P, Dermon CR. Behavioral and neurochemical profile of MK-801 adult zebrafish model: Forebrain β 2-adrenoceptors contribute to social withdrawal and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110494. [PMID: 34896197 DOI: 10.1016/j.pnpbp.2021.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
Deficits in social communication and interaction are core clinical symptoms characterizing multiple neuropsychiatric conditions, including autism spectrum disorder (ASD) and schizophrenia. Interestingly, elevated anxiety levels are a common comorbid psychopathology characterizing individuals with aberrant social behavior. Despite recent progress, the underlying neurobiological mechanisms that link anxiety with social withdrawal remain poorly understood. The present study developed a zebrafish pharmacological model displaying social withdrawal behavior, following a 3-h exposure to 4 μΜ (+)-MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, for 7 days. Interestingly, MK-801-treated zebrafish displayed elevated anxiety levels along with higher frequency of stereotypical behaviors, rendering this zebrafish model appropriate to unravel a possible link of catecholaminergic and ASD-like phenotypes. MK-801-treated zebrafish showed increased telencephalic protein expression of metabotropic glutamate 5 receptor (mGluR5), dopamine transporter (DAT) and β2-adrenergic receptors (β2-ARs), supporting the presence of excitation/inhibition imbalance along with altered dopaminergic and noradrenergic activity. Interestingly, β2-ARs expression, was differentially regulated across the Social Decision-Making (SDM) network nodes, exhibiting increased levels in ventral telencephalic area (Vv), a key-area integrating reward and social circuits but decreased expression in dorso-medial telencephalic area (Dm) and anterior tuberal nucleus (ATN). Moreover, the co-localization of β2-ARs with elements of GABAergic and glutamatergic systems, as well as with GAP-43, a protein indicating increased brain plasticity potential, support the key-role of β2-ARs in the MK-801 zebrafish social dysfunctions. Our results highlight the importance of the catecholaminergic neurotransmission in the manifestation of ASD-like behavior, representing a site of potential interventions for amelioration of ASD-like symptoms.
Collapse
Affiliation(s)
- Panagiotis Perdikaris
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece
| | - Catherine R Dermon
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece.
| |
Collapse
|
38
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
39
|
Xu Y, Zhao H, Wang Z, Gao H, Liu J, Li K, Song Z, Yuan C, Lan X, Pan C, Zhang S. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging. CHEMOSPHERE 2022; 291:132802. [PMID: 34752834 DOI: 10.1016/j.chemosphere.2021.132802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a worldwide environmental pollutant that postures serious threats to humans and ecosystems. Over the years, its adverse effects on the central nervous system (CNS) have been concerned, whereas the underlying cellular/molecular mechanisms remain unclear. In this study, taking advantages of zebrafish model in high-throughput imaging and behavioral tests, we have explored the potential developmental neurotoxicity of Cd at environmentally relevant levels, from the perspectives of neurobehavior and neuroimaging. Briefly, Cd2+ exposure resulted in a general impairment of zebrafish early development. Zebrafish neurobehavioral patterns including locomotion and reactivity to environmental signals were significantly perturbed upon Cd2+ exposure. Importantly, a combination of in vivo two-photon neuroimaging, flow cytometry and gene expression analyses revealed notable neurodevelopmental disorders as well as neuroimmune responses induced by Cd2+ exposure. Both cell-cycle arrest and apoptosis contributed jointly to a significant decrease of neuronal density in zebrafish larvae exposed to Cd2+. The dramatic morphological alterations of microglia from multi-branched to amoeboid, the microgliosis, as well as the modulation of gene expression profiles demonstrated a strong activation of microglia and neuroinflammation triggered by environmental levels of Cd2+. Together, our study points to the developmental toxicity of Cd in inducing CNS impairment and neuroinflammation thereby providing visualized etiological evidence of this heavy metal induced neurodevelopmental disorders. It's tempting to speculate that this research model might represent a promising tool not only for understanding the molecular mechanisms of Cd-induced neurotoxicity, but also for developing pharmacotherapies to mitigate the neurological damage resulting from exposure to Cd, and other neurotoxicants.
Collapse
Affiliation(s)
- Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hao Gao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Junru Liu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Cong Yuan
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
40
|
Rai AR, Joy T, Rashmi KS, Rai R, Vinodini NA, Jiji PJ. Zebrafish as an experimental model for the simulation of neurological and craniofacial disorders. Vet World 2022; 15:22-29. [PMID: 35369579 PMCID: PMC8924399 DOI: 10.14202/vetworld.2022.22-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Coolidge, St. John's, Antigua
| | - K. S. Rashmi
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N. A. Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
41
|
Tayanloo-Beik A, Hamidpour SK, Abedi M, Shojaei H, Tavirani MR, Namazi N, Larijani B, Arjmand B. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Front Psychiatry 2022; 13:911770. [PMID: 35911241 PMCID: PMC9329562 DOI: 10.3389/fpsyt.2022.911770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a complicated range of childhood neurodevelopmental disorders which can occur via genetic or non-genetic factors. Clinically, ASD is associated with problems in relationships, social interactions, and behaviors that pose many challenges for children with ASD and their families. Due to the complexity, heterogeneity, and association of symptoms with some neuropsychiatric disorders such as ADHD, anxiety, and sleep disorders, clinical trials have not yielded reliable results and there still remain challenges in drug discovery and development pipeline for ASD patients. One of the main steps in promoting lead compounds to the suitable drug for commercialization is preclinical animal testing, in which the efficacy and toxicity of candidate drugs are examined in vivo. In recent years, zebrafish have been able to attract the attention of many researchers in the field of neurological disorders such as ASD due to their outstanding features. The presence of orthologous genes for ASD modeling, the anatomical similarities of parts of the brain, and similar neurotransmitter systems between zebrafish and humans are some of the main reasons why scientists draw attention to zebrafish as a prominent animal model in preclinical studies to discover highly effective treatment approaches for the ASD through genetic and non-genetic modeling methods.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamide Shojaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Current knowledge, challenges, new perspectives of the study, and treatments of Autism Spectrum Disorder. Reprod Toxicol 2021; 106:82-93. [PMID: 34695561 DOI: 10.1016/j.reprotox.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Over the past 70 years, the understanding of Autism Spectrum Disorder (ASD) improved greatly and is characterized as a heterogeneous neuropsychiatric syndrome. ASD is characterized by difficulties in social communication, restricted and repetitive behavior, interests, or activities. And it is often described as a combination of genetic predisposition and environmental factors. There are many treatments and approaches to ASD, including pharmacological therapies with antipsychotics, antidepressants, mood regulators, stimulants, and behavioral ones. However, no treatment is capable of reverting ASD. This review provides an overview of animal models of autism. We summarized genetic and environmental models and then valproic acid treatment as a useful model for ASD. As well as the main therapies and approaches used in the treatment, relating them to the neurochemical pathways altered in ASD, emphasizing the pharmacological potential of peptides and bioinspired compounds found in animal venoms as a possible future treatment for ASD.
Collapse
|
43
|
Yu Y, Zhao F. Microbiota-gut-brain axis in autism spectrum disorder. J Genet Genomics 2021; 48:755-762. [PMID: 34373221 DOI: 10.1016/j.jgg.2021.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Extensive studies, largely during the past decade, identify the dynamic and bidirectional interaction between the bacteria resident in the intestines and their host brain along the "microbiota-gut-brain axis". This interaction modulates the development and function of the central nervous system and is implicated in neurological disorders. As a neurodevelopmental disorder, autism spectrum disorder (ASD) is considered a historically defect in the brain. With accumulating evidence showing how the microorganisms modulate neural activities, more and more research is focusing on the role of the gut microbiota in mitigating ASD symptoms and the underlying mechanisms. In this review, we describe the intricate and crucial pathways via which the gut microbiota communicates with the brain, the microbiota-gut-brain axis, and summarize the specific pathways that mediate the crosstalk of the gut microbiota to the brain in ASD.
Collapse
Affiliation(s)
- You Yu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Petersen EV, Rosemberg DB, Kalueff AV. Exploring CNS effects of American traditional medicines using zebrafish models. Curr Neuropharmacol 2021; 20:550-559. [PMID: 34254921 DOI: 10.2174/1570159x19666210712153329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Although American traditional medicine (ATM) has been practiced for millennia, its complex multi-target mechanisms of therapeutic action remain poorly understood. Animal models are widely used to elucidate the therapeutic effects of various ATMs, including their modulation of brain and behavior. Complementing rodent models, the zebrafish (Danio rerio) is a promising novel organism in translational neuroscience and neuropharmacology research. Here, we emphasize the growing value of zebrafish for testing neurotropic effects of ATMs and outline future directions of research in this field. We also demonstrate the developing utility of zebrafish as complementary models for probing CNS mechanisms of ATM action and their potential to treat brain disorders.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Fabiano Costa
- Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil
| | - Ana C V V Giacomini
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | | | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | | |
Collapse
|
45
|
Campbell KA, Hickman R, Fallin MD, Bakulski KM. Prenatal exposure to metals and autism spectrum disorder: Current status and future directions. CURRENT OPINION IN TOXICOLOGY 2021; 26:39-48. [PMID: 39119269 PMCID: PMC11309009 DOI: 10.1016/j.cotox.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with genetic and environmental contributors to etiology. Many metals have the potential to be neurotoxic and their exposures are widespread. The field of metals exposure and ASD research is emerging, and in this review article we assess the current state of the literature, with emphasis on the previous two years. Epidemiology studies are discussed with respect to exposure timing, exposure matrix, and outcome assessment. Toxicology studies are described for exposure dosing and timing, as well as behavioral and molecular outcomes. Further epidemiological and toxicological investigations can identify the timing and importance of metals as ASD risk factors and uncover biological mechanisms for risk mitigation and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle A. Campbell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruby Hickman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Robea MA, Ciobica A, Curpan AS, Plavan G, Strungaru S, Lefter R, Nicoara M. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder. Brain Sci 2021; 11:brainsci11050556. [PMID: 33924776 PMCID: PMC8146635 DOI: 10.3390/brainsci11050556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most salient developmental neurological diseases and remarkable similarities have been found between humans and model animals of ASD. A common method of inducing ASD in zebrafish is by administrating valproic acid (VPA), which is an antiepileptic drug that is strongly linked with developmental defects in children. In the present study we replicated and extended the findings of VPA on social behavior in zebrafish by adding several sleep observations. Juvenile zebrafish manifested hyperactivity and an increase in ASD-like social behaviors but, interestingly, only exhibited minimal alterations in sleep. Our study confirmed that VPA can generate specific ASD symptoms, indicating that the zebrafish is an alternative model in this field of research.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
- Correspondence:
| | - Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Stefan Strungaru
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I Avenue, 11, 700505 Iasi, Romania;
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, Bd. Carol I, No 8, 700505 Iasi, Romania;
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| |
Collapse
|
47
|
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker JA, Pilon N, Samarut E, Patten SA. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep 2021; 22:e50958. [PMID: 33900016 PMCID: PMC8183419 DOI: 10.15252/embr.202050958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the chromatin remodeller‐coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention‐deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7−/− model. chd7−/− mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype‐based screen in chd7−/− zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.
Collapse
Affiliation(s)
| | - Maximilian Breuer
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Kathrin Schmeisser
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tatiana Cardinal
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Betelhem Kassa
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - J Alex Parker
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Nicolas Pilon
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Eric Samarut
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
48
|
Sato T, Ito T, Handa H. Cereblon-Based Small-Molecule Compounds to Control Neural Stem Cell Proliferation in Regenerative Medicine. Front Cell Dev Biol 2021; 9:629326. [PMID: 33777938 PMCID: PMC7990905 DOI: 10.3389/fcell.2021.629326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Thalidomide, a sedative drug that was once excluded from the market owing to its teratogenic properties, was later found to be effective in treating multiple myeloma. We had previously demonstrated that cereblon (CRBN) is the target of thalidomide embryopathy and acts as a substrate receptor for the E3 ubiquitin ligase complex, Cullin-Ring ligase 4 (CRL4CRBN) in zebrafish and chicks. CRBN was originally identified as a gene responsible for mild intellectual disability in humans. Fetuses exposed to thalidomide in early pregnancy were at risk of neurodevelopmental disorders such as autism, suggesting that CRBN is involved in prenatal brain development. Recently, we found that CRBN controls the proliferation of neural stem cells in the developing zebrafish brain, leading to changes in brain size. Our findings imply that CRBN is involved in neural stem cell growth in humans. Accumulating evidence shows that CRBN is essential not only for the teratogenic effects but also for the therapeutic effects of thalidomide. This review summarizes recent progress in thalidomide and CRBN research, focusing on the teratogenic and therapeutic effects. Investigation of the molecular mechanisms underlying the therapeutic effects of thalidomide and its derivatives, CRBN E3 ligase modulators (CELMoDs), reveals that these modulators provide CRBN the ability to recognize neosubstrates depending on their structure. Understanding the therapeutic effects leads to the development of a novel technology called CRBN-based proteolysis-targeting chimeras (PROTACs) for target protein knockdown. These studies raise the possibility that CRBN-based small-molecule compounds regulating the proliferation of neural stem cells may be developed for application in regenerative medicine.
Collapse
Affiliation(s)
- Tomomi Sato
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, School of Medicine, Saitama Medical University, Saitama, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Saitama Medical University, Saitama, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
49
|
Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021; 10:cells10030566. [PMID: 33807650 PMCID: PMC8002147 DOI: 10.3390/cells10030566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota-gut-brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
| | - Yun-Mi Jeong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-860-4643
| |
Collapse
|
50
|
Davis R, Luchtenburg F, Richardson M, Schaaf M, Tudorache C, Slabbekoorn H. The importance of individual variation for the interpretation of behavioural studies: ethanol effects vary with basal activity level in zebrafish larvae. Psychopharmacology (Berl) 2021; 238:3155-3166. [PMID: 34510233 PMCID: PMC8605963 DOI: 10.1007/s00213-021-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Standardization and reduction of variation is key to behavioural screening of animal models in toxicological and pharmacological studies. However, individual variation in behavioural and physiological phenotypes remains in each laboratory population and can undermine the understanding of toxicological and pharmaceutical effects and their underlying mechanisms. Here, we used zebrafish (ABTL-strain) larvae to explore individual consistency in activity level and emergence time, across subsequent days of early development (6-8 dpf). We also explored the correlation between these two behavioural parameters. We found inter-individual consistency over time in activity level and emergence time, but we did not find a consistent correlation between these parameters. Subsequently, we investigated the impact of variation in activity level on the effect of a 1% ethanol treatment, suitable for our proof-of-concept case study about whether impact from pharmacological treatments might be affected by inter-individual variation in basal locomotion. The inter-individual consistency over time in activity level did not persist in this test. This was due to the velocity change from before to after exposure, which turned out to be a dynamic individual trait related to basal activity level: low-activity individuals raised their swimming velocity, while high-activity individuals slowed down, yielding diametrically opposite response patterns to ethanol exposure. We therefore argue that inter-individual consistency in basal activity level, already from 6 dpf, is an important factor to take into account and provides a practical measure to improve the power of statistical analyses and the scope for data interpretation from behavioural screening studies.
Collapse
Affiliation(s)
- Raissa Davis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | | | - Marcel Schaaf
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|