1
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024:S0896-6273(24)00578-6. [PMID: 39241778 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Gonzalez-Rothi EJ, Allen LL, Seven YB, Ciesla MC, Holland AE, Santiago JV, Mitchell GS. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury. Exp Neurol 2024; 378:114808. [PMID: 38750949 DOI: 10.1016/j.expneurol.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Low-dose (< 2 h/day), acute intermittent hypoxia (AIH) elicits multiple forms of serotonin-dependent phrenic motor plasticity and is emerging as a promising therapeutic strategy to restore respiratory and non-respiratory motor function after spinal cord injury (SCI). In contrast, high-dose (> 8 h/day), chronic intermittent hypoxia (CIH) undermines some forms of serotonin-dependent phrenic motor plasticity and elicits pathology. CIH is a hallmark of sleep disordered breathing, which is highly prevalent in individuals with cervical SCI. Interestingly, AIH and CIH preconditioning differentially impact phrenic motor plasticity. Although mechanisms of AIH-induced plasticity in the phrenic motor system are well-described in naïve rats, we know little concerning how these mechanisms are affected by chronic SCI or intermittent hypoxia preconditioning. Thus, in a rat model of chronic, incomplete cervical SCI (lateral spinal hemisection at C2 (C2Hx), we assessed serotonin type 2A, 2B and 7 receptor expression in and near phrenic motor neurons and compared: 1) intact vs. chronically injured rats; and 2) the impact of preconditioning with varied "doses" of intermittent hypoxia (IH). While there were no effects of chronic injury or intermittent hypoxia alone, CIH affected multiple receptors in rats with chronic C2Hx. Specifically, CIH preconditioning (8 h/day; 28 days) increased serotonin 2A and 7 receptor expression exclusively in rats with chronic C2Hx. Understanding the complex, context-specific interactions between chronic SCI and CIH and how this ultimately impacts phrenic motor plasticity is important as we leverage AIH-induced motor plasticity to restore breathing and other non-respiratory motor functions in people with chronic SCI.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Fogarty MJ, Drieberg-Thompson JR, Bellingham MC, Noakes PG. Timeline of hypoglossal motor neuron death and intrinsic tongue muscle denervation in high-copy number SOD1 G93A mice. Front Neurol 2024; 15:1422943. [PMID: 39119557 PMCID: PMC11306148 DOI: 10.3389/fneur.2024.1422943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
In amyotrophic lateral sclerosis (ALS) postmortem tissue and the SOD1 mouse model at mid-disease, death of hypoglossal motor neurons (XII MNs) is evident. These XII MNs innervate the intrinsic and extrinsic tongue muscles, and despite their importance in many oral and lingual motor behaviours that are affected by ALS (e.g., swallowing, speech, and respiratory functions), little is known about the timing and extent of tongue muscle denervation. Here in the well-characterised SOD1G93A (high-copy) mouse model, we evaluated XII MN numbers and intrinsic tongue muscle innervation using standard histopathological approaches, which included stereological evaluation of Nissl-stained brainstem, and the presynaptic and postsynaptic evaluation of neuromuscular junctions (NMJs), using synapsin, neurofilament, and α-bungarotoxin immunolabelling, at presymptomatic, onset, mid-disease, and endstage timepoints. We found that reduction in XII MN size at onset preceded reduced XII MN survival, while the denervation of tongue muscle did not appear until the endstage. Our study suggests that denervation-induced weakness may not be the most pertinent feature of orolingual deficits in ALS. Efforts to preserve oral and respiratory functions of XII MNs are incredibly important if we are to influence patient outcomes.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- School of Biomedical Sciences, St Lucia, QLD, Australia
| | | | | | - Peter G. Noakes
- School of Biomedical Sciences, St Lucia, QLD, Australia
- Queensland Brain Institute, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Li Z, Kang H. Efficacy of non-pharmacological interventions for individuals with amyotrophic lateral sclerosis: systematic review and network meta-analysis of randomized control trials. Sci Rep 2024; 14:11365. [PMID: 38762656 PMCID: PMC11102473 DOI: 10.1038/s41598-024-62213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
This network meta-analysis (NMA) aimed to compare the efficacy of five non-pharmacological interventions, including exercise intervention (EI), nutritional intervention (NI), respiratory intervention (RI), psychological intervention (PSI), and integrated physical intervention (IPI), on functional status, quality of life, muscle strength, pulmonary function, and safety in patients with amyotrophic lateral sclerosis (ALS). We searched nine databases, PubMed, Cochrane, Embase, Scopus, Web of Science, CNKI, CBM, WFPD, and CSTJ, for randomized controlled trials of ALS patients. The primary outcome was the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score. Secondary outcomes were the McGill Quality of Life Questionnaire (McGill-QoL), Medical Research Council (MRC)-sum score, Forced Vital Capacity (FVC), and Fatigue Severity Scale (FSS) score. This NMA was conducted using random-effect models to calculate the standard mean difference (SMD) and 95% confidence interval (CI). All types of supplemental interventions had some benefit for patients with ALS. EI had a beneficial effect on the ALSFRS-R score (SMD: 1.01; 95% CI 0.50-1.51), FVC (SMD: 0.78; 95% CI 0.02-1.55), McGill-QoL (SMD: 0.71 95% CI 0.33-1.08), and MRC (SMD: 1.11; 95% CI 0.08-2.14). RI had a beneficial effect on the ALSFRS-R score (SMD: 0.83 95% CI 0.12-1.55). IPI had a beneficial effect on the ALSFRS-R score (SMD: 0.65 95% CI 0.06-1.24). NI had a beneficial effect on the McGill-QoL (SMD: 0.63 95% CI 0.02-1.23). The current study findings support a multimodal intervention strategy with an emphasis on EI for slowing disease progression in patients with ALS.
Collapse
Affiliation(s)
- Zhao Li
- College of Sport Science, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, Republic of Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Moreno-Jiménez L, Benito-Martín MS, Sanclemente-Alamán I, Matías-Guiu JA, Sancho-Bielsa F, Canales-Aguirre A, Mateos-Díaz JC, Matías-Guiu J, Aguilar J, Gómez-Pinedo U. Murine experimental models of amyotrophic lateral sclerosis: an update. Neurologia 2024; 39:282-291. [PMID: 37116688 DOI: 10.1016/j.nrleng.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 04/30/2023] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose aetiology is unknown. It is characterised by upper and lower motor neuron degeneration. Approximately 90% of cases of ALS are sporadic, whereas the other 10% are familial. Regardless of whether the case is familial o sporadic, patients will develop progressive weakness, muscle atrophy with spasticity, and muscle contractures. Life expectancy of these patients is generally 2 to 5 years after diagnosis. DEVELOPMENT In vivo models have helped to clarify the aetiology and pathogenesis of ALS, as well as the mechanisms of the disease. However, as these mechanisms are not yet fully understood, experimental models are essential to the continued study of the pathogenesis of ALS, as well as in the search for possible therapeutic targets. Although 90% of cases are sporadic, most of the models used to study ALS pathogenesis are based on genetic mutations associated with the familial form of the disease; the pathogenesis of sporadic ALS remains unknown. Therefore, it would be critical to establish models based on the sporadic form. CONCLUSIONS This article reviews the main genetic and sporadic experimental models used in the study of this disease, focusing on those that have been developed using rodents.
Collapse
Affiliation(s)
- L Moreno-Jiménez
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - M S Benito-Martín
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - I Sanclemente-Alamán
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Departamento de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - F Sancho-Bielsa
- Departamento de Fisiología, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | - J C Mateos-Díaz
- Departamento de Biotecnología Industrial, CIATEJ-CONACyT, Zapopan, Mexico
| | - J Matías-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Departamento de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Aguilar
- Laboratorio de Neurofisiología Experimental y Circuitos Neuronales del Hospital Nacional de Parapléjicos, Toledo, Spain
| | - U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Fogarty MJ, Zhan WZ, Mantilla CB, Sieck GC. Cervical spinal cord hemisection impacts sigh and the respiratory reset in male rats. Physiol Rep 2024; 12:e15973. [PMID: 38467570 DOI: 10.14814/phy2.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Cervical spinal cord injury impacts ventilatory and non-ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh-which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post-sigh "apnea" (i.e., the post-sigh inter-breath interval). This post-sigh inter-breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2 ) spinal cord hemisection (C2 SH) on the transdiaphragmatic pressure (Pdi ) generated during sighs and the post-sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2 SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post-sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2 SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Thiry L, Sirois J, Durcan TM, Stifani S. Generation of human iPSC-derived phrenic-like motor neurons to model respiratory motor neuron degeneration in ALS. Commun Biol 2024; 7:238. [PMID: 38418587 PMCID: PMC10901792 DOI: 10.1038/s42003-024-05925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
The fatal motor neuron (MN) disease Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive MN degeneration. Phrenic MNs (phMNs) controlling the activity of the diaphragm are prone to degeneration in ALS, leading to death by respiratory failure. Understanding of the mechanisms of phMN degeneration in ALS is limited, mainly because human experimental models to study phMNs are lacking. Here we describe a method enabling the derivation of phrenic-like MNs from human iPSCs (hiPSC-phMNs) within 30 days. This protocol uses an optimized combination of small molecules followed by cell-sorting based on a cell-surface protein enriched in hiPSC-phMNs, and is highly reproducible using several hiPSC lines. We show further that hiPSC-phMNs harbouring ALS-associated amplification of the C9orf72 gene progressively lose their electrophysiological activity and undergo increased death compared to isogenic controls. These studies establish a previously unavailable protocol to generate human phMNs offering a disease-relevant system to study mechanisms of respiratory MN dysfunction.
Collapse
Affiliation(s)
- Louise Thiry
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
8
|
DeRuisseau LR, Receno CN, Cunningham C, Bates ML, Goodell M, Liang C, Eassa B, Pascolla J, DeRuisseau KC. Breathing and Oxygen Carrying Capacity in Ts65Dn and Down Syndrome. FUNCTION 2023; 4:zqad058. [PMID: 37954975 PMCID: PMC10634617 DOI: 10.1093/function/zqad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Individuals with Down syndrome (Ds) are at increased risk of respiratory infection, aspiration pneumonia, and apnea. The Ts65Dn mouse is a commonly used model of Ds, but there have been no formal investigations of awake breathing and respiratory muscle function in these mice. We hypothesized that breathing would be impaired in Ts65Dn vs. wild-type (WT), and would be mediated by both neural and muscular inputs. Baseline minute ventilation was not different at 3, 6, or 12 mo of age. However, VT/Ti, a marker of the neural drive to breathe, was lower in Ts65Dn vs. WT and central apneas were more prevalent. The response to breathing hypoxia was not different, but the response to hypercapnia was attenuated, revealing a difference in carbon dioxide sensing, and/or motor output in Ts65Dn. Oxygen desaturations were present in room air, demonstrating that ventilation may not be sufficient to maintain adequate oxygen saturation in Ts65Dn. We observed no differences in arterial PO2 or PCO2, but Ts65Dn had lower hemoglobin and hematocrit. A retrospective medical record review of 52,346 Ds and 52,346 controls confirmed an elevated relative risk of anemia in Ds. We also performed eupneic in-vivo electromyography and in-vitro muscle function and histological fiber typing of the diaphragm, and found no difference between strains. Overall, conscious respiration is impaired in Ts65Dn, is mediated by neural mechanisms, and results in reduced hemoglobin saturation. Oxygen carrying capacity is reduced in Ts65Dn vs. WT, and we demonstrate that individuals with Ds are also at increased risk of anemia.
Collapse
Affiliation(s)
- Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY 14850, USA
| | - Caitlin Cunningham
- Department of Statistics, Mathematics and Computer Science, Le Moyne College, Syracuse, NY 13214, USA
| | - Melissa L Bates
- Departments of Health and Human Physiology, Internal Medicine, and the Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Morgan Goodell
- Lake Erie College of Osteopathic Medicine, Elmira, NY 14901, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Brianna Eassa
- Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Jessica Pascolla
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
McGregor JN, Farris CA, Ensley S, Schneider A, Wang C, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Tauopathy severely disrupts homeostatic set-points in emergent neural dynamics but not in the activity of individual neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555947. [PMID: 37732214 PMCID: PMC10508737 DOI: 10.1101/2023.09.01.555947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The homeostatic regulation of neuronal activity is essential for robust computation; key set-points, such as firing rate, are actively stabilized to compensate for perturbations. From this perspective, the disruption of brain function central to neurodegenerative disease should reflect impairments of computationally essential set-points. Despite connecting neurodegeneration to functional outcomes, the impact of disease on set-points in neuronal activity is unknown. Here we present a comprehensive, theory-driven investigation of the effects of tau-mediated neurodegeneration on homeostatic set-points in neuronal activity. In a mouse model of tauopathy, we examine 27,000 hours of hippocampal recordings during free behavior throughout disease progression. Contrary to our initial hypothesis that tauopathy would impact set-points in spike rate and variance, we found that cell-level set-points are resilient to even the latest stages of disease. Instead, we find that tauopathy disrupts neuronal activity at the network-level, which we quantify using both pairwise measures of neuron interactions as well as measurement of the network's nearness to criticality, an ideal computational regime that is known to be a homeostatic set-point. We find that shifts in network criticality 1) track with symptoms, 2) predict underlying anatomical and molecular pathology, 3) occur in a sleep/wake dependent manner, and 4) can be used to reliably classify an animal's genotype. Our data suggest that the critical set-point is intact, but that homeostatic machinery is progressively incapable of stabilizing hippocampal networks, particularly during waking. This work illustrates how neurodegenerative processes can impact the computational capacity of neurobiological systems, and suggest an important connection between molecular pathology, circuit function, and animal behavior.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
- Institute for Brain Science and Disease, Chongqing Medical University, 400016, Chongqing, China
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Rodrigues VR, Olsen WL, Sajjadi E, Smith BK, Napoli NJ. Exploring inspiratory occlusion metrics to assess respiratory drive in patients under acute intermittent hypoxia. Respir Physiol Neurobiol 2022; 304:103922. [PMID: 35680039 PMCID: PMC9749200 DOI: 10.1016/j.resp.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
Abstract
Patients living with Amyotrophic Lateral Sclerosis (ALS) experience respiratory weakness and, eventually, failure due to inspiratory motor neuron degeneration. Routine pulmonary function tests (e.g., maximum inspiratory pressure (MIP)) are used to assess disease progression and ventilatory compromise. However, these tests are poor discriminators between respiratory drive and voluntary respiratory function at rest. To better understand ALS disease progression, we can look into compensatory strategies and how patients consciously react to the occlusion and the effort produced to meet the ventilatory challenge of the occlusion. This ventilatory challenge, especially beyond the P0.1 (200 ms and 300 ms), provides information regarding the patient's ability to recruit additional respiratory muscles as a compensatory strategy. Utilizing a standard P0.1 protocol to assess respiratory drive, we extend the occlusion time analysis to 200 ms and 300 ms (Detected Occlusion Response (DOR)) in order to capture compensatory respiratory mechanics. Furthermore, we followed an Acute Intermittent Hypoxia (AIH) protocol known to increase phrenic nerve discharge to evaluate the compensatory strategies. Inspiratory pressure, the rate of change in pressure, and pressure generation normalized to MIP were measured at 100 ms, 200 ms, and 300 ms after an occlusion. Airway occlusions were performed three times during the experiment (i.e., baseline, 30 and 60 minutes post-AIH). Results indicated that while AIH did not elicit change in the P0.1 or MIP, the DOR increased for ALS patients. These results support the expected therapeutic role of AIH and indicate the potential of the DOR as a metric to detect compensatory changes.
Collapse
Affiliation(s)
- Victoria R Rodrigues
- University of Florida, Department of Electrical and Computer Engineering, US; University of Florida, Human Informatics and Predictive Performance Optimization (HIPPO) Lab, US.
| | - Wendy L Olsen
- University of Florida, Human Informatics and Predictive Performance Optimization (HIPPO) Lab, US; University of Florida, Breathing Research and Therapeutics Center, Department of Physiological Sciences, US.
| | - Elaheh Sajjadi
- University of Florida, Department of Physical Therapy, US.
| | - Barbara K Smith
- University of Florida, Department of Physical Therapy, US; University of Florida, Breathing Research and Therapeutics Center, Department of Physiological Sciences, US.
| | - Nicholas J Napoli
- University of Florida, Department of Electrical and Computer Engineering, US; University of Florida, Human Informatics and Predictive Performance Optimization (HIPPO) Lab, US; University of Florida, Breathing Research and Therapeutics Center, Department of Physiological Sciences, US.
| |
Collapse
|
11
|
Khurram OU, Gransee HM, Sieck GC, Mantilla CB. Automated evaluation of respiratory signals to provide insight into respiratory drive. Respir Physiol Neurobiol 2022; 300:103872. [PMID: 35218924 PMCID: PMC9157394 DOI: 10.1016/j.resp.2022.103872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 01/17/2023]
Abstract
The diaphragm muscle (DIAm) is the primary inspiratory muscle in mammals and is highly active throughout life displaying rhythmic activity. The repetitive activation of the DIAm (and of other muscles driven by central pattern generator activity) presents an opportunity to analyze these physiological data on a per-event basis rather than pooled on a per-subject basis. The present study highlights the development and implementation of a graphical user interface-based algorithm using an analysis of critical points to detect the onsets and offsets of individual respiratory events across a range of motor behaviors, thus facilitating analyses of within-subject variability. The algorithm is designed to be robust regardless of the signal type (e.g., EMG or transdiaphragmatic pressure). Our findings suggest that this approach may be particularly beneficial in reducing animal numbers in certain types of studies, for assessments of perturbation studies where the effects are relatively small but potentially physiologically meaningful, and for analyses of respiratory variability.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Mhandire DZ, Burns DP, Roger AL, O'Halloran KD, ElMallah MK. Breathing in Duchenne muscular dystrophy: Translation to therapy. J Physiol 2022; 600:3465-3482. [PMID: 35620971 PMCID: PMC9357048 DOI: 10.1113/jp281671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a deficiency in dystrophin - a structural protein which stabilizes muscle during contraction. Dystrophin deficiency adversely affects the respiratory system leading to sleep-disordered breathing, hypoventilation, and weakness of the expiratory and inspiratory musculature, which culminate in severe respiratory dysfunction. Muscle degeneration associated respiratory impairment in neuromuscular disease is a result of disruptions at multiple sites of the respiratory control network, including sensory and motor pathways. As a result of this pathology, respiratory failure is a leading cause of premature death in DMD patients. Currently available treatments for DMD respiratory insufficiency attenuate respiratory symptoms without completely reversing the underlying pathophysiology. This underscores the need to develop curative therapies to improve quality of life and longevity of DMD patients. This review summarises research findings on the pathophysiology of respiratory insufficiencies in DMD disease in humans and animal models, the clinical interventions available to ameliorate symptoms, and gene-based therapeutic strategies uncovered by preclinical animal studies. Abstract figure legend: Summary of the therapeutic strategies for respiratory insufficiency in DMD (Duchenne muscular dystrophy). Treatment options currently in clinical use only attenuate respiratory symptoms without reversing the underlying pathology of DMD-associated respiratory insufficiencies. Ongoing preclinical and clinical research is aimed at developing curative therapies that both improve quality of life and longevity of DMD patients. AAV - adeno-associated virus, PPMO - Peptide-conjugated phosphorodiamidate morpholino oligomer This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
13
|
Smith CE, Lorson MA, Ricardez Hernandez SM, Al Rawi Z, Mao J, Marquez J, Villalón E, Keilholz AN, Smith CL, Garro-Kacher MO, Morcos T, Davis DJ, Bryda EC, Nichols NL, Lorson CL. The Ighmbp2D564N mouse model is the first SMARD1 model to demonstrate respiratory defects. Hum Mol Genet 2022; 31:1293-1307. [PMID: 34726235 PMCID: PMC9029233 DOI: 10.1093/hmg/ddab317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.
Collapse
Affiliation(s)
- Caley E Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sara M Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jiude Mao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jose Marquez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Amy N Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mona O Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Toni Morcos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Iguchi N, Mano T, Iwasa N, Ozaki M, Yamada N, Kikutsuji N, Kido A, Sugie K. Thoracic Excursion Is a Biomarker for Evaluating Respiratory Function in Amyotrophic Lateral Sclerosis. Front Neurol 2022; 13:853469. [PMID: 35401409 PMCID: PMC8984343 DOI: 10.3389/fneur.2022.853469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo evaluate the usefulness of thoracic excursion as a biomarker in patients with amyotrophic lateral sclerosis (ALS).MethodsWe measured the forced the vital capacity (FVC), thoracic excursion, baseline-to-peak diaphragmatic compound muscle action potential (DCMAP) amplitude, diaphragm thickness at full inspiration (DTfi), Medical Research Council (MRC) sum score for muscle strength, and arterial partial pressures of oxygen and carbon dioxide and administered the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) and modified Medical Research Council (mMRC) Dyspnea Scale. The test–retest reliability of thoracic excursion was determined.Results and ConclusionsThirty-four patients with ALS and 26 age- and sex-matched healthy participants were enrolled. Thoracic excursion measurement had excellent test–retest reliability (intraclass coefficient: 0.974). Thoracic excursion was more strongly correlated with FVC (r = 0.678, p < 0.001) than DCMAP amplitude (r = 0.501, p = 0.003) and DTfi (r = 0.597, p < 0.001). It was also correlated with ALSFRS-R score (r = 0.610, p < 0.001), MRC sum score (r = 0.470, p = 0.005), and mMRC Dyspnea Scale score (r = −0.446, p = 0.008) and was the most sensitive parameter for assessing dyspnea and FVC. Thoracic excursion decreased as FVC declined in the early and late stages, there were no differences in DCMAP amplitude and DTfi between the early and late stages, and ALSFRS-R score and MRC sum score decreased only in the late stage. Thoracic excursion was well correlated with respiratory function and is useful for predicting respiratory and general dysfunction in patients with ALS regardless of stage.
Collapse
Affiliation(s)
- Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Tomoo Mano
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Rehabilitation Medicine, Nara Medical University, Kashihara, Japan
- *Correspondence: Tomoo Mano
| | - Naoki Iwasa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Maki Ozaki
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Nanami Yamada
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naoya Kikutsuji
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Akira Kido
- Department of Rehabilitation Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
15
|
Sajjadi E, Seven YB, Ehrbar JG, Wymer JP, Mitchell GS, Smith BK. Acute intermittent hypoxia and respiratory muscle recruitment in people with amyotrophic lateral sclerosis: A preliminary study. Exp Neurol 2022; 347:113890. [PMID: 34624328 PMCID: PMC9488543 DOI: 10.1016/j.expneurol.2021.113890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Respiratory failure is the main cause of death in amyotrophic lateral sclerosis (ALS). Since no effective treatments to preserve independent breathing are available, there is a critical need for new therapies to preserve or restore breathing ability. Since acute intermittent hypoxia (AIH) elicits spinal respiratory motor plasticity in rodent ALS models, and may restore breathing ability in people with ALS, we performed a proof-of-principle study to investigate this possibility in ALS patients. Quiet breathing, sniff nasal inspiratory pressure (SNIP) and maximal inspiratory pressure (MIP) were tested in 13 persons with ALS and 10 age-matched controls, before and 60 min post-AIH (15, 1 min episodes of 10% O2, 2 min normoxic intervals) or sham AIH (continuous normoxia). The root mean square (RMS) of the right and left diaphragm, 2nd parasternal, scalene and sternocleidomastoid muscles were monitored. A vector analysis was used to calculate summated vector magnitude (Mag) and similarity index (SI) of collective EMG activity during quiet breathing, SNIP and MIP maneuvers. AIH facilitated tidal volume and minute ventilation (treatment main effects: p < 0.05), and Mag (ie. collective respiratory muscle activity; p < 0.001) during quiet breathing in ALS and control subjects, but there was no effect on SI during quiet breathing. SNIP SI decreased in both groups post-AIH (p < 0.005), whereas Mag was unchanged (p = 0.09). No differences were observed in SNIP or MIP post AIH in either group. Discomfort was not reported during AIH by any subject, nor were adverse events observed. Thus, AIH may be a safe way to increase collective inspiratory muscle activity during quiet breathing in ALS patients, although a single AIH presentation was not sufficient to significantly increase peak inspiratory pressure generation. These preliminary results provide evidence that AIH may improve breathing function in people with ALS, and that future studies of prolonged, repetitive AIH protocols are warranted.
Collapse
Affiliation(s)
- Elaheh Sajjadi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Yasin B. Seven
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Jessica G Ehrbar
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - James P. Wymer
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Neurology, University of Florida, Gainesville, FL, USA, 32610
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Barbara K. Smith
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610,Pediatrics, University of Florida, Gainesville, FL, USA, 32610
| |
Collapse
|
16
|
Fuller DD, Rana S, Smuder AJ, Dale EA. The phrenic neuromuscular system. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:393-408. [PMID: 35965035 PMCID: PMC11135908 DOI: 10.1016/b978-0-323-91534-2.00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The phrenic neuromuscular system consists of the phrenic motor nucleus in the mid-cervical spinal cord, the phrenic nerve, and the diaphragm muscle. This motor system helps sustain breathing throughout life, while also contributing to posture, coughing, swallowing, and speaking. The phrenic nerve contains primarily efferent phrenic axons and afferent axons from diaphragm sensory receptors but is also a conduit for autonomic fibers. On a breath-by-breath basis, rhythmic (inspiratory) depolarization of phrenic motoneurons occurs due to excitatory bulbospinal synaptic pathways. Further, a complex propriospinal network innervates phrenic motoneurons and may serve to coordinate postural, locomotor, and respiratory movements. The phrenic neuromuscular system is impacted in a wide range of neuromuscular diseases and injuries. Contemporary research is focused on understanding how neuromuscular plasticity occurs in the phrenic neuromuscular system and using this information to optimize treatments and rehabilitation strategies to improve breathing and related behaviors.
Collapse
Affiliation(s)
- David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States; McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States.
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States; McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Erica A Dale
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States; Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Moreno-Jiménez L, Benito-Martín M, Sanclemente-Alamán I, Matías-Guiu J, Sancho-Bielsa F, Canales-Aguirre A, Mateos-Díaz J, Matías-Guiu J, Aguilar J, Gómez-Pinedo U. Modelos experimentales murinos en la esclerosis lateral amiotrófica. Puesta al día. Neurologia 2021. [DOI: 10.1016/j.nrl.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Seven ES, Seven YB, Zhou Y, Poudel-Sharma S, Diaz-Rucco JJ, Kirbas Cilingir E, Mitchell GS, Van Dyken JD, Leblanc RM. Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. NANOSCALE ADVANCES 2021; 3:3942-3953. [PMID: 34263140 PMCID: PMC8243484 DOI: 10.1039/d1na00145k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 06/10/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the central nervous system (CNS) such that most therapeutics lack efficacy against brain tumors or neurological disorders due to their inability to cross the BBB. Therefore, developing new drug delivery platforms to facilitate drug transport to the CNS and understanding their mechanism of transport are crucial for the efficacy of therapeutics. Here, we report (i) carbon dots prepared from glucose and conjugated to fluorescein (GluCD-F) cross the BBB in zebrafish and rats without the need of an additional targeting ligand and (ii) uptake mechanism of GluCDs is glucose transporter-dependent in budding yeast. Glucose transporter-negative strain of yeast showed undetectable GluCD accumulation unlike the glucose transporter-positive yeast, suggesting glucose-transporter-dependent GluCD uptake. We tested GluCDs' ability to cross the BBB using both zebrafish and rat models. Following the injection to the heart, wild-type zebrafish showed GluCD-F accumulation in the central canal consistent with the transport of GluCD-F across the BBB. In rats, following intravenous administration, GluCD-F was observed in the CNS. GluCD-F was localized in the gray matter (e.g. ventral horn, dorsal horn, and middle grey) of the cervical spinal cord consistent with neuronal accumulation. Therefore, neuron targeting GluCDs hold tremendous potential as a drug delivery platform in neurodegenerative disease, traumatic injury, and malignancies of the CNS.
Collapse
Affiliation(s)
- Elif S Seven
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Yasin B Seven
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Sijan Poudel-Sharma
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Juan J Diaz-Rucco
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - J David Van Dyken
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| |
Collapse
|
20
|
Seven YB, Simon AK, Sajjadi E, Zwick A, Satriotomo I, Mitchell GS. Adenosine 2A receptor inhibition protects phrenic motor neurons from cell death induced by protein synthesis inhibition. Exp Neurol 2019; 323:113067. [PMID: 31629857 DOI: 10.1016/j.expneurol.2019.113067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/31/2023]
Abstract
Respiratory motor neuron survival is critical for maintenance of adequate ventilation and airway clearance, preventing dependence to mechanical ventilation and respiratory tract infections. Phrenic motor neurons are highly vulnerable in rodent models of motor neuron disease versus accessory inspiratory motor pools (e.g. intercostals, scalenus). Thus, strategies that promote phrenic motor neuron survival when faced with disease and/or toxic insults are needed to help preserve breathing ability, airway defense and ventilator independence. Adenosine 2A receptors (A2A) are emerging as a potential target to promote neuroprotection, although their activation can have both beneficial and pathogenic effects. Since the role of A2A receptors in the phrenic motor neuron survival/death is not known, we tested the hypothesis that A2A receptor antagonism promotes phrenic motor neuron survival and preserves diaphragm function when faced with toxic, neurodegenerative insults that lead to phrenic motor neuron death. We utilized a novel neurotoxic model of respiratory motor neuron death recently developed in our laboratory: intrapleural injections of cholera toxin B subunit (CtB) conjugated to the ribosomal toxin, saporin (CtB-Saporin). We demonstrate that intrapleural CtB-Saporin causes: 1) profound phrenic motor neuron death (~5% survival); 2) ~7-fold increase in phrenic motor neuron A2A receptor expression prior to cell death; and 3) diaphragm muscle paralysis (inactive in most rats; ~7% residual diaphragm EMG amplitude during room air breathing). The A2A receptor antagonist istradefylline given after CtB-Saporin: 1) reduced phrenic motor neuron death (~20% survival) and 2) preserved diaphragm EMG activity (~46%). Thus, A2A receptors contribute to neurotoxic phrenic motor neuron death, an effect mitigated by A2A receptor antagonism.
Collapse
Affiliation(s)
- Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Alec K Simon
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elaheh Sajjadi
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Amanda Zwick
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Irawan Satriotomo
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Seven YB, Mitchell GS. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respir Physiol Neurobiol 2019; 265:32-39. [PMID: 30625378 DOI: 10.1016/j.resp.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Respiratory motor neuron death arises from multiple neurodegenerative and traumatic neuromuscular disorders. Despite motor neuron death, compensatory mechanisms minimize its functional impact by harnessing intrinsic mechanisms of compensatory respiratory plasticity. However, the capacity for compensation eventually reaches limits and pathology ensues. Initially, challenges to the system such as increased metabolic demand reveal sub-clinical pathology. With greater motor neuron loss, the eventual result is de-compensation, ventilatory failure, ventilator dependence and then death. In this brief review, we discuss recent advances in our understanding of mechanisms giving rise to compensatory respiratory plasticity in response to respiratory motor neuron death including: 1) increased central respiratory drive, 2) plasticity in synapses on spared phrenic motor neurons, 3) enhanced neuromuscular transmission and 4) shifts in respiratory muscle utilization from more affected to less affected motor pools. Some of these compensatory mechanisms may prolong breathing function, but hasten the demise of surviving motor neurons. Improved understanding of these mechanisms and their impact on survival of spared motor neurons will guide future efforts to develop therapeutic interventions that preserve respiratory function with neuromuscular injury/disease.
Collapse
Affiliation(s)
- Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
22
|
Fusco AF, McCall AL, Dhindsa JS, Pucci LA, Strickland LM, Kahn AF, ElMallah MK. The Respiratory Phenotype of Rodent Models of Amyotrophic Lateral Sclerosis and Spinocerebellar Ataxia. JOURNAL OF NEUROINFLAMMATION AND NEURODEGENERATIVE DISEASES 2019; 3:100011. [PMID: 31893284 PMCID: PMC6938301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are neurodegenerative disorders that result in progressive motor dysfunction and ultimately lead to respiratory failure. Rodent models of neurodegenerative disorders provide a means to study the respiratory motor unit pathology that results in respiratory failure. In addition, they are important for pre-clinical studies of novel therapies that improve breathing, quality of life, and survival. The goal of this review is to compare the respiratory phenotype of two neurodegenerative disorders that have different pathological origins, but similar physiological outcomes. Manuscripts reviewed were identified using specific search terms and exclusion criteria. We excluded manuscripts that investigated novel therapeutics and only included those manuscripts that describe the respiratory pathology. The ALS manuscripts describe pathology in respiratory physiology, the phrenic and hypoglossal motor units, respiratory neural control centers, and accessory respiratory muscles. The SCA rodent model manuscripts characterized pathology in overall respiratory function, phrenic motor units and hypoglossal motor neurons. Overall, a combination of pathology in the respiratory motor units and control centers contribute to devastating respiratory dysfunction.
Collapse
Affiliation(s)
- Anna F. Fusco
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Angela L. McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Justin S. Dhindsa
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Logan A. Pucci
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | | | - Amanda F. Kahn
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Mai K. ElMallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC,Corresponding author: Mai K. ElMallah, Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, NC 27710, USA, Tel: 919-684-3577;
| |
Collapse
|