1
|
Rabinovitch A, Rabinovitch R, Smolik E, Biton Y, Braunstein D. Ephaptic conduction in tonic-clonic seizures. Front Neurol 2024; 15:1477174. [PMID: 39677865 PMCID: PMC11638044 DOI: 10.3389/fneur.2024.1477174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives Electroencephalograms (EEGs) or multi-unit activities (MUAs) of tonic-clonic seizures typically exhibit a distinct structure. After a preliminary phase (DC shift, spikes), the tonic phase is characterized by synchronized activity of numerous neurons, followed by the clonic phase, marked by a periodic sequence of spikes. However, the mechanisms underlying the transition from tonic to clonic phases remain poorly understood. Methods We employ a simple two-dimensional cellular automaton model to simulate seizure activity, specifically focusing on replicating the tonic-clonic transition. This model effectively illustrates the physical processes during the ictal phase and, more importantly, differentiates the roles of neurons' activity, identifying their origin as either synaptic or ephaptic. Results Our model reveals an intriguing interaction between the synaptic and ephaptic modes of action potential wave conduction. By replicating the EEG and multi-unit activity (MUA) structure of a tonic-clonic seizure and comparing it with real MUA data, we validate the model's underlying assumption: the transition from tonic to clonic phases is driven by a shift in dominance from synaptic to ephaptic conduction. During synaptic-mode control, neural conduction occurs through synaptic transmission involving chemical substances, while in the ephaptic mode, information transfer occurs through direct Ohmic conduction. Significance Gaining a deeper understanding of the neuronal electrical conduction transitions during tonic-clonic seizures is crucial for improving the treatment of this debilitating condition.
Collapse
Affiliation(s)
| | | | - Ella Smolik
- Department of Physics, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Yaacov Biton
- Department of Physics, Ben-Gurion University, Beer-Sheva, Israel
| | - Doron Braunstein
- Department of Physics, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
2
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
3
|
Doubovikov ED, Serdyukova NA, Greenberg SB, Gascoigne DA, Minhaj MM, Aksenov DP. Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells 2023; 12:2229. [PMID: 37759452 PMCID: PMC10527339 DOI: 10.3390/cells12182229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Electric fields are now considered a major mechanism of epileptiform activity. However, it is not clear if another electrophysiological phenomenon, burst suppression, utilizes the same mechanism for its bursting phase. Thus, the purpose of this study was to compare the role of ephaptic coupling-the recruitment of neighboring cells via electric fields-in generating bursts in epilepsy and burst suppression. We used local injections of the GABA-antagonist picrotoxin to elicit epileptic activity and a general anesthetic, sevoflurane, to elicit burst suppression in rabbits. Then, we applied an established computational model of pyramidal cells to simulate neuronal activity in a 3-dimensional grid, with an additional parameter to trigger a suppression phase based on extra-cellular calcium dynamics. We discovered that coupling via electric fields was sufficient to produce bursting in scenarios where inhibitory control of excitatory neurons was sufficiently low. Under anesthesia conditions, bursting occurs with lower neuronal recruitment in comparison to seizures. Our model predicts that due to the effect of electric fields, the magnitude of bursts during seizures should be roughly 2-3 times the magnitude of bursts that occur during burst suppression, which is consistent with our in vivo experimental results. The resulting difference in magnitude between bursts during anesthesia and epileptiform bursts reflects the strength of the electric field effect, which suggests that burst suppression and epilepsy share the same ephaptic coupling mechanism.
Collapse
Affiliation(s)
- Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Steven B. Greenberg
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Mohammed M. Minhaj
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Hunt T, Jones M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front Psychol 2023; 14:1029715. [PMID: 37546464 PMCID: PMC10400444 DOI: 10.3389/fpsyg.2023.1029715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Where is consciousness? Neurobiological theories of consciousness look primarily to synaptic firing and "spike codes" as the physical substrate of consciousness, although the specific mechanisms of consciousness remain unknown. Synaptic firing results from electrochemical processes in neuron axons and dendrites. All neurons also produce electromagnetic (EM) fields due to various mechanisms, including the electric potential created by transmembrane ion flows, known as "local field potentials," but there are also more meso-scale and macro-scale EM fields present in the brain. The functional role of these EM fields has long been a source of debate. We suggest that these fields, in both their local and global forms, may be the primary seat of consciousness, working as a gestalt with synaptic firing and other aspects of neuroanatomy to produce the marvelous complexity of minds. We call this assertion the "electromagnetic field hypothesis." The neuroanatomy of the brain produces the local and global EM fields but these fields are not identical with the anatomy of the brain. These fields are produced by, but not identical with, the brain, in the same manner that twigs and leaves are produced by a tree's branches and trunk but are not the same as the branches and trunk. As such, the EM fields represent the more granular, both spatially and temporally, aspects of the brain's structure and functioning than the neuroanatomy of the brain. The brain's various EM fields seem to be more sensitive to small changes than the neuroanatomy of the brain. We discuss issues with the spike code approach as well as the various lines of evidence supporting our argument that the brain's EM fields may be the primary seat of consciousness. This evidence (which occupies most of the paper) suggests that oscillating neural EM fields may make firing in neural circuits oscillate, and these oscillating circuits may help unify and guide conscious cognition.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, United States
| | - Mostyn Jones
- Formerly of Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
5
|
Thio BJ, Grill WM. Relative Contributions of Different Neural Sources to the EEG. Neuroimage 2023:120179. [PMID: 37225111 DOI: 10.1016/j.neuroimage.2023.120179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Dogma dictates that the EEG signal is generated by postsynaptic currents (PSCs) because there are an enormous number of synapses in the brain, and PSCs have relatively long durations. However, PSCs are not the only potential source of electric fields in the brain. Action potentials, afterpolarizations, and presynaptic activity can also generate electric fields. Experimentally it is exceedingly difficult to delineate the contributions of different sources because they are casually linked. However, using computational modeling, we can interrogate the relative contributions of different neural elements to the EEG. We used a library of neuron models with morphologically realistic axonal arbors to quantify the relative contributions of PSCs, action potentials, and presynaptic activity to the EEG signal. Consistent with prior assertions, PSCs were the largest contributor to the EEG, but action potentials and afterpolarizations can also make appreciable contributions. For a population of neurons generating simultaneous PSCs and action potentials, we found that the action potentials accounted for up to 20% of the source strength while PSCs accounted for the other 80% and presynaptic activity negligibly contributed. Additionally, L5 PCs generated the largest PSC and action potential signals indicating that they the dominant EEG signal generator. Further, action potentials and afterpolarizations were sufficient to generate physiological oscillations, indicating that they are valid source contributors to the EEG. The EEG emerges from a combination of multiple different source, and, while PSCs are the largest contributor, other sources are non-negligible and should be included in modeling, analysis and interpretation of the EEG.
Collapse
Affiliation(s)
- Brandon J Thio
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708; Duke University, Department of Electrical and Computer Engineering, Durham, NC, USA; Duke University School of Medicine, Department of Neurobiology, Durham, NC, USA; Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA.
| |
Collapse
|
6
|
Rinaldi A, Marins Martins MC, De Almeida Martins Oliveira AC, Rinaldi S, Fontani V. Improving Functional Abilities in Children and Adolescents with Autism Spectrum Disorder Using Non-Invasive REAC Neuro Psycho Physical Optimization Treatments: A PEDI-CAT Study. J Pers Med 2023; 13:jpm13050792. [PMID: 37240963 DOI: 10.3390/jpm13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects communication, social interaction, and behavior. Non-invasive neuromodulation techniques, such as radioelectric asymmetric conveyer (REAC) technology, have gained attention for their potential to improve the endogenous bioelectric activity (EBA) and neurobiological processes underlying ASD. Neuro Postural Optimization (NPO) and Neuro Psycho Physical Optimization (NPPO) treatments are non-invasive and painless neuromodulation treatments that utilize REAC technology and have shown promising results in improving the symptoms of ASD. This study aimed to evaluate the effects of NPO and NPPO treatments on functional abilities in children and adolescents with ASD using the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT). The study consisted of 27 children and adolescents with ASD who underwent a single session of NPO followed by 18 sessions of NPPO treatment over a period of one week. The results showed significant improvements in the children's and adolescents' functional abilities across all domains of the PEDI-CAT. These findings suggest that NPO and NPPO may be effective treatments for improving functional abilities in children and adolescents with ASD.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Márcia C Marins Martins
- International Scientific Society of Neuro Psycho Physical Optimization with REAC Technology, Brazilian Branch, Sao Paulo 01000-000, Brazil
| | - Ana C De Almeida Martins Oliveira
- International Scientific Society of Neuro Psycho Physical Optimization with REAC Technology, Brazilian Branch, Sao Paulo 01000-000, Brazil
| | - Salvatore Rinaldi
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Vania Fontani
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| |
Collapse
|
7
|
Bond E. The contribution of coherence field theory to a model of consciousness: electric currents, EM fields, and EM radiation in the brain. Front Hum Neurosci 2023; 16:1020105. [PMID: 36760225 PMCID: PMC9903675 DOI: 10.3389/fnhum.2022.1020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
A paradigm in neuroscience is developing which views resonance as the phenomenon responsible for consciousness. Much progress is being made in the investigation of how resonance as oscillating flows within the brain's electric field might result in production of mind from matter. But it's mostly unknown how vibrations among features of matter such as nanoscale atomic structures and photonic waves may participate in forming the basic substance of first-person consciousness, meaning percepts such as colors, textures, sounds, thoughts, feelings et cetera. Initial evidence at the leading edge of quantum biology suggests that light and atoms combine to form synchronously resonating structures of contiguous energy which I have termed coherence fields. My hypothesis is that coherence fields as atomic nodes within expanses of integrating photonic waves are the fundamental unit of first-person percepts insofar as they arise from electromagnetic matter. A concept of quantum coherence is formulated based on a new phenomenology of matter's nanoscale properties, and this is shown to tie what we have thus far discovered of neural anatomy into a comprehensive model of how electrical impulses travel through neurons as electron currents driven by coherence at the quantum scale. Transmembrane electric fields generated by ionic currents, synaptic phase regulation, and perhaps further mechanisms have been hypothesized as responsible for local field potentials (LFP) oscillations. Some insights into how emergent, macroscopic waves in the brain's electric field may reciprocally impact LFP propagation to control arousal, attention, and volition are briefly discussed. Activation of neural tissue is closely linked to temperature variation, and it is hypothesized that this is not merely a waste byproduct but constitutes a signature of coherence field modulation, with photonic waves of a primarily infrared spectral range functioning as an interstitial medium of the basic percept field. A variety of possible routes to coherence field modulation are outlined that derive from the mechanisms of electric currents, EM fields, EM radiation, and entanglement. If future experimental designs continue to validate coherence field theory, this could set science on course to resolve the mind/body problem.
Collapse
|
8
|
Chiang CC, Durand DM. Subthreshold Oscillating Waves in Neural Tissue Propagate by Volume Conduction and Generate Interference. Brain Sci 2022; 13:74. [PMID: 36672054 PMCID: PMC9856930 DOI: 10.3390/brainsci13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Subthreshold neural oscillations have been observed in several brain regions and can influence the timing of neural spikes. However, the spatial extent and function of these spontaneous oscillations remain unclear. To study the mechanisms underlying these oscillations, we use optogenetic stimulation to generate oscillating waves in the longitudinal hippocampal slice expressing optopatch proteins. We found that optogenetic stimulation can generate two types of neural activity: suprathreshold neural spikes and subthreshold oscillating waves. Both waves could propagate bidirectionally at similar speeds and go through a transection of the tissue. The propagating speed is independent of the oscillating frequency but increases with increasing amplitudes of the waves. The endogenous electric fields generated by oscillating waves are about 0.6 mV/mm along the dendrites and about 0.3 mV/mm along the cell layer. We also observed that these oscillating waves could interfere with each other. Optical stimulation applied simultaneously at each slice end generated a larger wave in the middle of the tissue (constructive interference) or destructive interference with laser signals in opposite phase. However, the suprathreshold neural spikes were annihilated when they collided. Finally, the waves were not affected by the NMDA blocker (APV) and still propagated in the presence of tetrodotoxin (TTX) but at a significantly lower amplitude. The role of these subthreshold waves in neural function is unknown, but the results show that at low amplitude, the subthreshold propagating waves lack a refractory period allowing a novel analog form of preprocessing of neural activity by interference independent of synaptic transmission.
Collapse
Affiliation(s)
| | - Dominique M. Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Gentiletti D, de Curtis M, Gnatkovsky V, Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes. eLife 2022; 11:68541. [PMID: 35916367 PMCID: PMC9377802 DOI: 10.7554/elife.68541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients. Our biophysically realistic computational model closely replicates the electrographic pattern of a typical human focal seizure characterized by low voltage fast activity onset, tonic phase, clonic phase and postictal suppression. Our study demonstrates, for the first time in silico, the potential mechanism of seizure initiation by inhibitory interneurons via the initial build-up of extracellular K+ due to intense interneuronal spiking. The model also identifies ionic mechanisms that may underlie a key feature in seizure dynamics, i.e., progressive slowing down of ictal discharges towards the end of seizure. Our model prediction of specific scaling of inter-burst intervals is confirmed by seizure data recorded in the whole guinea pig brain in vitro and in humans, suggesting that the observed termination pattern may hold across different species. Our results emphasize ionic dynamics as elementary processes behind seizure generation and indicate targets for new therapeutic strategies.
Collapse
|
11
|
Subramanian M, Chiang CC, Couturier NH, Durand DM. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp Neurol 2022; 354:114109. [PMID: 35551899 PMCID: PMC10214533 DOI: 10.1016/j.expneurol.2022.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Ding YQ, Qi JG. Sensory root demyelination: Transforming touch into pain. Glia 2021; 70:397-413. [PMID: 34549463 DOI: 10.1002/glia.24097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022]
Abstract
The normal feeling of touch is vital for nearly every aspect of our daily life. However, touching is not always felt as touch, but also abnormally as pain under numerous diseased conditions. For either mechanistic understanding of the faithful feeling of touch or clinical management of chronic pain, there is an essential need to thoroughly dissect the neuropathological changes that lead to painful touch or tactile allodynia and their corresponding cellular and molecular underpinnings. In recent years, we have seen remarkable progress in our understanding of the neural circuits for painful touch, with an increasing emphasis on the upstream roles of non-neuronal cells. As a highly specialized form of axon ensheathment by glial cells in jawed vertebrates, myelin sheaths not only mediate their outstanding neural functions via saltatory impulse propagation of temporal and spatial precision, but also support long-term neuronal/axonal integrity via metabolic and neurotrophic coupling. Therefore, myelinopathies have been implicated in diverse neuropsychiatric diseases, which are traditionally recognized as a result of the dysfunctions of neural circuits. However, whether myelinopathies can transform touch into pain remains a long-standing question. By summarizing and reframing the fragmentary but accumulating evidence so far, the present review indicates that sensory root demyelination represents a hitherto underappreciated neuropathological change for most neuropathic conditions of painful touch and offers an insightful window into faithful tactile sensation as well as a potential therapeutic target for intractable painful touch.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Yang F, Li J, Song Y, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Ma H, Schwartz TH. Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Front Neurosci 2021; 15:704834. [PMID: 34366781 PMCID: PMC8343016 DOI: 10.3389/fnins.2021.704834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the “epileptic dip” in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Yan Song
- School of Nursing, Beihua University, Jilin City, China
| | - Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - James E Niemeyer
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| |
Collapse
|
14
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Volkova AA, Onufriev MV, Moiseeva JV, Novikova MR, Gulyaeva NV. Neuroinflammation and Neuronal Loss in the Hippocampus Are Associated with Immediate Posttraumatic Seizures and Corticosterone Elevation in Rats. Int J Mol Sci 2021; 22:5883. [PMID: 34070933 PMCID: PMC8198836 DOI: 10.3390/ijms22115883] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hippocampal damage after traumatic brain injury (TBI) is associated with late posttraumatic conditions, such as depression, cognitive decline and epilepsy. Mechanisms of selective hippocampal damage after TBI are not well understood. In this study, using rat TBI model (lateral fluid percussion cortical injury), we assessed potential association of immediate posttraumatic seizures and changes in corticosterone (CS) levels with neuroinflammation and neuronal cell loss in the hippocampus. Indices of distant hippocampal damage (neurodegeneration and neuroinflammation) were assessed using histological analysis (Nissl staining, Iba-1 immunohistochemical staining) and ELISA (IL-1β and CS) 1, 3, 7 and 14 days after TBI or sham operation in male Wistar rats (n = 146). IL-1β was elevated only in the ipsilateral hippocampus on day 1 after trauma. CS peak was detected on day 3 in blood, the ipsilateral and contralateral hippocampus. Neuronal cell loss in the hippocampus was demonstrated bilaterally; in the ipsilateral hippocampus it started earlier than in the contralateral. Microglial activation was evident in the hippocampus bilaterally on day 7 after TBI. The duration of immediate seizures correlated with CS elevation, levels of IL-1β and neuronal loss in the hippocampus. The data suggest potential association of immediate post-traumatic seizures with CS-dependent neuroinflammation-mediated distant hippocampal damage.
Collapse
Affiliation(s)
- Ilia G. Komoltsev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Stepan O. Frankevich
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Natalia I. Shirobokova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Aleksandra A. Volkova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Julia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (I.G.K.); (S.O.F.); (N.I.S.); (A.A.V.); (M.V.O.); (J.V.M.); (M.R.N.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|
15
|
Shivacharan RS, Chiang CC, Wei X, Subramanian M, Couturier NH, Pakalapati N, Durand DM. Neural recruitment by ephaptic coupling in epilepsy. Epilepsia 2021; 62:1505-1517. [PMID: 33979453 DOI: 10.1111/epi.16903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE One of the challenges in treating patients with drug-resistant epilepsy is that the mechanisms of seizures are unknown. Most current interventions are based on the assumption that epileptic activity recruits neurons and progresses by synaptic transmission. However, several experimental studies have shown that neural activity in rodent hippocampi can propagate independently of synaptic transmission. Recent studies suggest these waves are self-propagating by electric field (ephaptic) coupling. In this study, we tested the hypothesis that neural recruitment during seizures can occur by electric field coupling. METHODS 4-Aminopyridine was used in both in vivo and in vitro preparation to trigger seizures or epileptiform activity. A transection was made in the in vivo hippocampus and in vitro hippocampal and cortical slices to study whether the induced seizure activity can recruit neurons across the gap. A computational model was built to test whether ephaptic coupling alone can account for neural recruitment across the transection. The model prediction was further validated by in vitro experiments. RESULTS Experimental results show that electric fields generated by seizure-like activity in the hippocampus both in vitro and in vivo can recruit neurons locally and through a transection of the tissue. The computational model suggests that the neural recruitment across the transection is mediated by electric field coupling. With in vitro experiments, we show that a dielectric material can block the recruitment of epileptiform activity across a transection, and that the electric fields measured within the gap are similar to those predicted by model simulations. Furthermore, this nonsynaptic neural recruitment is also observed in cortical slices, suggesting that this effect is robust in brain tissue. SIGNIFICANCE These results indicate that ephaptic coupling, a nonsynaptic mechanism, can underlie neural recruitment by a small electric field generated by seizure activity and could explain the low success rate of surgical transections in epilepsy patients.
Collapse
Affiliation(s)
- Rajat S Shivacharan
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chia-Chu Chiang
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Muthumeenakshi Subramanian
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicholas H Couturier
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nrupen Pakalapati
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dominique M Durand
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
17
|
Hope J, RaviChandran N, Vanholsbeeck F, McDaid A. Augmentation of neural activity in peripheral nerve of sheep using 6 kHz subthreshold currents. Physiol Meas 2020; 41:10NT01. [PMID: 33045694 DOI: 10.1088/1361-6579/abc01f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine how increased excitability from subthreshold currents would alter neural activity as it propagates through the subthreshold currents. APPROACH Experiments were performed on two Romney cross-breed sheep in vivo, by applying subthreshold currents either at the stimulus site or between the stimulus and recording sites. Neural recordings were obtained from nerve cuff implanted on the peroneal or sciatic nerve branches, while stimulus was applied to either the peroneal nerve or pins placed through the lower hindshank. MAIN RESULTS Showed that subthreshold currents applied to the same site as stimulus increased excitation of underlying nerve fibres (p < 0.005). With stimulus and subthreshold currents applied to different sites on the peroneal nerve, the primary compound action potential (CAP) in the sciatic displayed a temporal shift of -2.5 to -3 µs which agreed with changes observed in the CAP waveform (p > 0.05). SIGNIFICANCE These findings contribute to the understanding of mechanisms in myelinated fibres of subthreshold current neuromodulation therapies.
Collapse
Affiliation(s)
- James Hope
- The Department of Mechanical Engineering, The University of Auckland, Auckland 1010, New Zealand. The Dodd Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
| | | | | | | |
Collapse
|
18
|
Galinsky VL, Frank LR. Brain Waves: Emergence of Localized, Persistent, Weakly Evanescent Cortical Loops. J Cogn Neurosci 2020; 32:2178-2202. [PMID: 32692294 PMCID: PMC7541648 DOI: 10.1162/jocn_a_01611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An inhomogeneous anisotropic physical model of the brain cortex is presented that predicts the emergence of nonevanescent (weakly damped) wave-like modes propagating in the thin cortex layers transverse to both the mean neural fiber direction and the cortex spatial gradient. Although the amplitude of these modes stays below the typically observed axon spiking potential, the lifetime of these modes may significantly exceed the spiking potential inverse decay constant. Full-brain numerical simulations based on parameters extracted from diffusion and structural MRI confirm the existence and extended duration of these wave modes. Contrary to the commonly agreed paradigm that the neural fibers determine the pathways for signal propagation in the brain, the signal propagation because of the cortex wave modes in the highly folded areas will exhibit no apparent correlation with the fiber directions. Nonlinear coupling of those linear weakly evanescent wave modes then provides a universal mechanism for the emergence of synchronized brain wave field activity. The resonant and nonresonant terms of nonlinear coupling between multiple modes produce both synchronous spiking-like high-frequency wave activity as well as low-frequency wave rhythms. Numerical simulation of forced multiple-mode dynamics shows that, as forcing increases, there is a transition from damped to oscillatory regime that can then transition quickly to a nonoscillatory state when a critical excitation threshold is reached. The resonant nonlinear coupling results in the emergence of low-frequency rhythms with frequencies that are several orders of magnitude below the linear frequencies of modes taking part in the coupling. The localization and persistence of these weakly evanescent cortical wave modes have significant implications in particular for neuroimaging methods that detect electromagnetic physiological activity, such as EEG and magnetoencephalography, and for the understanding of brain activity in general, including mechanisms of memory.
Collapse
|
19
|
Wu YJ, Chien ME, Huang CH, Chiang CC, Lin CC, Huang CW, Durand DM, Hsu KS. Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats. Exp Neurol 2020; 328:113264. [DOI: 10.1016/j.expneurol.2020.113264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
|
20
|
Galinsky VL, Frank LR. Universal theory of brain waves: from linear loops to nonlinear synchronized spiking and collective brain rhythms. PHYSICAL REVIEW RESEARCH 2020; 2:023061. [PMID: 33718881 PMCID: PMC7951957 DOI: 10.1103/physrevresearch.2.023061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An inhomogeneous anisotropic physical model of the brain cortex is presented that predicts the emergence of non-evanescent (weakly damped) wave-like modes propagating in the thin cortex layers transverse to both the mean neural fiber direction and to the cortex spatial gradient. Although the amplitude of these modes stays below the typically observed axon spiking potential, the lifetime of these modes may significantly exceed the spiking potential inverse decay constant. Full brain numerical simulations based on parameters extracted from diffusion and structural MRI confirm the existence and extended duration of these wave modes. Contrary to the standard paradigm that the neural fibers determine the pathways for signal propagation in the brain, the signal propagation due to the cortex wave modes in highly folded areas will exhibit no apparent correlation with the fiber directions. The results are consistent with numerous recent experimental animal and human brain studies demonstrating the existence of electrostatic field activity in the form of traveling waves (including studies where neuronal connections were severed) and with wave loop induced peaks observed in EEG spectra. In addition, we demonstrate that the resonant and non-resonant terms of the nonlinear coupling between multiple modes produce both synchronous spiking-like high frequency wave activity as well as low frequency wave rhythms as a result of their unique dispersion properties. Numerical simulation of forced multiple mode dynamics shows that as forcing increases there is a transition from damped to oscillatory regime that subsequently decays away as over-excitation is reached. The resonant nonlinear coupling results in the emergence of low frequency rhythms with frequencies that are several orders of magnitude below the linear frequencies of modes taking part in the coupling. The localization and persistence of these cortical wave modes, and this new mechanism for understanding the nature of spiking behavior, have significant implications in particular for neuroimaging methods that detect electromagnetic physiological activity, such as EEG and MEG, and in general for the understanding of brain activity, including mechanisms of memory.
Collapse
|
21
|
Rich S, Chameh HM, Rafiee M, Ferguson K, Skinner FK, Valiante TA. Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Front Neural Circuits 2020; 13:81. [PMID: 32009908 PMCID: PMC6972503 DOI: 10.3389/fncir.2019.00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Recent experimental literature has revealed that GABAergic interneurons exhibit increased activity prior to seizure onset, alongside additional evidence that such activity is synchronous and may arise abruptly. These findings have led some to hypothesize that this interneuronal activity may serve a causal role in driving the sudden change in brain activity that heralds seizure onset. However, the mechanisms predisposing an inhibitory network toward increased activity, specifically prior to ictogenesis, without a permanent change to inputs to the system remain unknown. We address this question by comparing simulated inhibitory networks containing control interneurons and networks containing hyperexcitable interneurons modeled to mimic treatment with 4-Aminopyridine (4-AP), an agent commonly used to model seizures in vivo and in vitro. Our in silico study demonstrates that model inhibitory networks with 4-AP interneurons are more prone than their control counterparts to exist in a bistable state in which asynchronously firing networks can abruptly transition into synchrony driven by a brief perturbation. This transition into synchrony brings about a corresponding increase in overall firing rate. We further show that perturbations driving this transition could arise in vivo from background excitatory synaptic activity in the cortex. Thus, we propose that bistability explains the increase in interneuron activity observed experimentally prior to seizure via a transition from incoherent to coherent dynamics. Moreover, bistability explains why inhibitory networks containing hyperexcitable interneurons are more vulnerable to this change in dynamics, and how such networks can undergo a transition without a permanent change in the drive. We note that while our comparisons are between networks of control and ictogenic neurons, the conclusions drawn specifically relate to the unusual dynamics that arise prior to seizure, and not seizure onset itself. However, providing a mechanistic explanation for this phenomenon specifically in a pro-ictogenic setting generates experimentally testable hypotheses regarding the role of inhibitory neurons in pre-ictal neural dynamics, and motivates further computational research into mechanisms underlying a newly hypothesized multi-step pathway to seizure initiated by inhibition.
Collapse
Affiliation(s)
- Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marjan Rafiee
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Katie Ferguson
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Frances K Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Klorig DC, Alberto GE, Smith T, Godwin DW. Optogenetically-Induced Population Discharge Threshold as a Sensitive Measure of Network Excitability. eNeuro 2019; 6:ENEURO.0229-18.2019. [PMID: 31619450 PMCID: PMC6838688 DOI: 10.1523/eneuro.0229-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Network excitability is governed by synaptic efficacy, intrinsic excitability, and the circuitry in which these factors are expressed. The complex interplay between these factors determines how circuits function and, at the extreme, their susceptibility to seizure. We have developed a sensitive, quantitative estimate of network excitability in freely behaving mice using a novel optogenetic intensity-response procedure. Synchronous activation of deep sublayer CA1 pyramidal cells produces abnormal network-wide epileptiform population discharges (PDs) that are nearly indistinguishable from spontaneously-occurring interictal spikes (IISs). By systematically varying light intensity, and therefore the magnitude of the optogenetically-mediated current, we generated intensity-response curves using the probability of PD as the dependent variable. Manipulations known to increase excitability, such as sub-convulsive doses (20 mg/kg) of the chemoconvulsant pentylenetetrazol (PTZ), produced a leftward shift in the curve compared to baseline. The anti-epileptic drug levetiracetam (LEV; 40 mk/kg), in combination with PTZ, produced a rightward shift. Optogenetically-induced PD threshold (oPDT) baselines were stable over time, suggesting the metric is appropriate for within-subject experimental designs with multiple pharmacological manipulations.
Collapse
Affiliation(s)
- D C Klorig
- Department of Neurobiology and Anatomy
- Neuroscience Program
| | - G E Alberto
- Department of Neurobiology and Anatomy
- Neuroscience Program
| | - T Smith
- Department of Neurobiology and Anatomy
| | - D W Godwin
- Department of Neurobiology and Anatomy
- Neuroscience Program
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC
| |
Collapse
|
23
|
Müller M, Caporro M, Gast H, Pollo C, Wiest R, Schindler K, Rummel C. Linear and nonlinear interrelations show fundamentally distinct network structure in preictal intracranial EEG of epilepsy patients. Hum Brain Mapp 2019; 41:467-483. [PMID: 31625670 PMCID: PMC7268049 DOI: 10.1002/hbm.24816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Resection of the seizure generating tissue can be highly beneficial in patients with drug-resistant epilepsy. However, only about half of all patients undergoing surgery get permanently and completely seizure free. Investigating the dependences between intracranial EEG signals adds a multivariate perspective largely unavailable to visual EEG analysis, which is the current clinical practice. We examined linear and nonlinear interrelations between intracranial EEG signals regarding their spatial distribution and network characteristics. The analyzed signals were recorded immediately before clinical seizure onset in epilepsy patients who received a standardized electrode implantation targeting the mesiotemporal structures. The linear interrelation networks were predominantly locally connected and highly reproducible between patients. In contrast, the nonlinear networks had a clearly centralized structure, which was specific for the individual pathology. The nonlinear interrelations were overrepresented in the focal hemisphere and in patients with no or only rare seizures after surgery specifically in the resected tissue. Connections to the outside were predominantly nonlinear. In all patients without worthwhile improvement after resective treatment, tissue producing strong nonlinear interrelations was left untouched by surgery. Our findings indicate that linear and nonlinear interrelations play fundamentally different roles in preictal intracranial EEG. Moreover, they suggest nonlinear signal interrelations to be a marker of epileptogenic tissue and not a characteristic of the mesiotemporal structures. Our results corroborate the network-based nature of epilepsy and suggest the application of network analysis to support the planning of resective epilepsy surgery.
Collapse
Affiliation(s)
- Michael Müller
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Matteo Caporro
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Heidemarie Gast
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| |
Collapse
|
24
|
González OC, Krishnan GP, Timofeev I, Bazhenov M. Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis 2019; 130:104485. [PMID: 31150792 DOI: 10.1016/j.nbd.2019.104485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
The biophysical mechanisms underlying epileptogenesis and the generation of seizures remain to be better understood. Among many factors triggering epileptogenesis are traumatic brain injury breaking normal synaptic homeostasis and genetic mutations disrupting ionic concentration homeostasis. Impairments in these mechanisms, as seen in various brain diseases, may push the brain network to a pathological state characterized by increased susceptibility to unprovoked seizures. Here, we review recent computational studies exploring the roles of ionic concentration dynamics in the generation, maintenance, and termination of seizures. We further discuss how ionic and synaptic homeostatic mechanisms may give rise to conditions which prime brain networks to exhibit recurrent spontaneous seizures and epilepsy.
Collapse
Affiliation(s)
- Oscar C González
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601 de la Canardière, Québec, QC, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Maxim Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America.
| |
Collapse
|