1
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Li Q, Ouyang Z, Zhang Y, Li Z, Zhu X, Tang Z. Effect of Early Inhibition of Toll-Like Receptor 4 on Hippocampal Plasticity in a Neonatal Rat Model of Hypoxic-Ischemic Brain Damage. Mol Neurobiol 2024:10.1007/s12035-024-04277-3. [PMID: 38954251 DOI: 10.1007/s12035-024-04277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hippocampal plasticity is closely related to physiological brain functions such as learning and memory. However, the effect of toll-like receptor 4 (TLR4) activation on hippocampal plasticity after neonatal hypoxic-ischaemic brain damage (HIBD) remains unclear. In our study, seven-day-old rat pups were randomly categorised into three groups: control, hypoxic-ischemia (HI), and HI + TAK-242 (TAK-242). The pups were ligated in the left common carotid artery and then subjected to hypoxia to establish the neonatal HIBD model.The expression of the TLR4 in the left hippocampus of the HI group was increased compared to the control group, while TAK-242 reduced the expression level at 3 days after HIBD. Additionally, TAK-242 reversed the increased Zea-Longa score, increased the left/right hippocampal weight ratio, and increased the number of Nissl-positive neurons in the hippocampal CA1 region compared to HI group at 3 days after HIBD. Pre-injection of TAK-242 alleviated the decrease in PSD95, Aggrecan and NR1, BDNF, CREB, and pCREB expression in the hippocampus at 24 h after HIBD. It also alleviated the decrease in PSD95, BDNF, and NR2A/NR1 expression in the hippocampus at 7 days after HIBD. Furthermore, Pre-injection of TAK-242 alleviated the decrease in NR2A/NR1 expression at 21 days after HIBD. Finally,TAK-242 increased the percentage of third-grade dendritic mushroom spines processes in the basal and apical segments of neurons in the hippocampal CA1 region at 21 days after HIBD.Therefore, we conclude that preinhibition of TLR4 prior to neonatal HIBD improved the plasticity of the hippocampus.
Collapse
Affiliation(s)
- Qinghe Li
- Department of Neonatology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China
| | - Zhicui Ouyang
- Department of Neonatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yunqiao Zhang
- Neuropsychological Center, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Zhen Li
- Department of Neonatology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China
| | - Xing Zhu
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhen Tang
- Department of Neonatology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China.
- Department of Neonatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
3
|
Chen L, Xiong S, Zhou X, Fu Q. Aloesin ameliorates hypoxic-ischemic brain damage in neonatal mice by suppressing TLR4-mediated neuroinflammation. Immun Inflamm Dis 2024; 12:e1320. [PMID: 38888378 PMCID: PMC11184644 DOI: 10.1002/iid3.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND At present, neonatal hypoxic-ischemic encephalopathy (HIE), especially moderate to severe HIE, is a challenging disease for neonatologists to treat, and new alternative/complementary treatments are urgently needed. The neuroinflammatory cascade triggered by hypoxia-ischemia (HI) insult is one of the core pathological mechanisms of HIE. Early inhibition of neuroinflammation provides long-term neuroprotection. Plant-derived monomers have impressive anti-inflammatory effects. Aloesin (ALO) has been shown to have significant anti-inflammatory and antioxidant effects in diseases such as ulcerative colitis, but its role in HIE is unclear. To this end, we conducted a series of experiments to explore the potential mechanism of ALO in preventing and treating brain damage caused by HI insult. MATERIALS AND METHODS Hypoxic-ischemic brain damage (HIBD) was induced in 7-day-old Institute of Cancer Research (ICR) mice, which were then treated with 20 mg/kg ALO. The neuroprotective effects of ALO on HIBD and the underlying mechanism were evaluated through neurobehavioral testing, infarct size measurement, apoptosis detection, protein and messenger RNA level determination, immunofluorescence, and molecular docking. RESULTS ALO alleviated the long-term neurobehavioral deficits caused by HI insult; reduced the extent of cerebral infarction; inhibited cell apoptosis; decreased the levels of the inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α; activated microglia and astrocytes; and downregulated the protein expression of members in the TLR4 signaling pathway. In addition, molecular docking showed that ALO can bind stably to TLR4. CONCLUSION ALO ameliorated HIBD in neonatal mice by inhibiting the neuroinflammatory response mediated by TLR4 signaling.
Collapse
Affiliation(s)
- Liping Chen
- Department of Rehabilitation MedicineJi'an Central People's HospitalJi'anJiangxi ProvinceChina
| | - Siqing Xiong
- Department of Urinary SurgeryJi'an Central People's HospitalJi'anJiangxi ProvinceChina
| | - Xiaofan Zhou
- Department of Respiratory and Critical Care MedicineJi'an Central People's HospitalJi'anJiangxi ProvinceChina
| | - Qiang Fu
- Health Science CenterJinggangshan UniversityJi'anJiangxi ProvinceChina
| |
Collapse
|
4
|
Fan B, Zhang Y, Luo Q, Hao C, Liao W. Physical and social environmental enrichment alleviate ferroptosis and inflammation with inhibition of TLR4/MyD88/p38MAPK pathway in chronic cerebral hypoperfusion rats. Brain Res Bull 2024; 208:110897. [PMID: 38340777 DOI: 10.1016/j.brainresbull.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A typical enriched environment (EE), which combines physical activity and social interaction, has been proven to mitigate cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, it remains unclear how the different components of EE promote cognitive recovery after CCH. This study stripped out the different components of EE into physical environmental enrichment (PE) and social environmental enrichment (SE), and compared the neuroprotective effects of PE, SE and typical EE (PSE) in CCH. The results of novel object recognition and Morris water maze tests showed that PE, SE, and PSE improved cognitive function in CCH rats. Additionally, Nissl and TUNEL staining revealed that three EEs reduced neuronal loss in the hippocampus. PSE exhibited superior neuroprotective and functional improvement effects compared to PE and SE, while there was no significant difference between PE and SE. Furthermore, three EEs reduced lipid peroxidation in the hippocampus with decreasing the levels of MDA and increasing the activities of SOD and GSH. The expression of SLC7A11 and GPX4 was increased, while the level of p53 was reduced in three EEs. This suggested that three EEs inhibited ferroptosis by maintaining the redox homeostasis in the hippocampus. Three EEs reduced the levels of IL-β, TNF-α, and IL-6, thereby inhibiting neuroinflammation. Additionally, Western blotting and immunofluorescence results indicated that three EEs also inhibited the TLR4/MyD88/p38MAPK signaling pathway. These findings collectively demonstrated that the three EEs alleviated hippocampal ferroptosis and neuroinflammation in CCH rats, thereby reducing neuronal loss, which might be associated with the inhibition of the TLR4/MyD88/p38MAPK signaling pathway. Moreover, the study results supported that it is only through the combination of physical exercise and social interaction that the optimal neuroprotective effects can be achieved. These findings provided valuable insights for the prevention and treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chizi Hao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Zhu Z, Tao X, Dai T, Wu J, Han C, Huang P, Gong W. Cognitive-exercise dual-task attenuates chronic cerebral ischemia-induced cognitive impairment by activating cAMP/PKA pathway through inhibiting EphrinA3/EphA4. Exp Neurol 2024; 372:114617. [PMID: 38007209 DOI: 10.1016/j.expneurol.2023.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The prevalence of vascular cognitive impairment induced by chronic cerebral ischemia (CCI) is increasing year by year. Cognitive-exercise dual-task intervention has shown beneficial effects on improving cognitive performance in ischemic patients. It is well known that the tyrosine kinase ligand-receptor (Ephrin-Eph) system plays an important role in synaptic transmission and that the cAMP/PKA pathway is associated with cognitive function. However, it is unclear whether they are responsible for the dual-task improving cognitive impairment in CCI. METHODS Bilateral common carotid artery occlusion (BCCAO) in SD rats was used to establish the CCI model. The effects of dual-task and single-task on cognitive function and the expressions of EphrinA3, EphA4, cAMP, and PKA in rats were detected by the novel object recognition (NOR) test, immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting (WB), respectively. Overexpression or knockdown of EphrinA3 in astrocytes or rats were constructed by lentivirus infection to verify the effects of EphrinA3/EphA4 on the cAMP/PKA pathway. RESULTS After dual-task intervention, the discrimination index of rats increased significantly compared with the rats in the CCI group. The expressions of EphrinA3 and EphA4 were decreased, while the expressions of cAMP and PKA were increased. Furthermore, knockdown of EphrinA3 alleviated the trend of CCI-induced cognitive decline in rats and OGD-stimulated cellular damage. It also increased cAMP/PKA expression in hippocampal neurons. CONCLUSION Cognitive-exercise dual-task can significantly improve the cognitive impairment induced by CCI, and this effect may be better than that of the cognitive or exercise single-task intervention. The improvement may be related to the inhibition of EphrinA3/EphA4, followed by activation of the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tengteng Dai
- The Second Clinical Medical College of Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Jilin Wu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Conglin Han
- Rehabilitation Medicine Academy, Weifang Medical University, Shandong 261053, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| |
Collapse
|
6
|
Zhou R, Wu L, Jin N, Sha S, Ouyang Y. L-F001, a multifunctional fasudil-lipoic acid dimer, antagonizes hypoxic-ischemic brain damage by inhibiting the TLR4/MyD88 signaling pathway. Brain Behav 2023; 13:e3280. [PMID: 37822185 PMCID: PMC10726836 DOI: 10.1002/brb3.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Neonatal hypoxic-ischemic brain damage (HIBD) is a serious inflammatory injury. At present, the standard treatment for this disease is hypothermia therapy, and the effect of drug intervention is still limited. L-F001 is a compound of fasudil and lipoic acid. Previous in vitro experiments have confirmed that L-F001 has anti-inflammatory neuroprotective functions. However, its therapeutic effect on neonates with HIBD remains unknown. This study was aimed at exploring the therapeutic effect of L-F001 on HIBD rats. METHODS The newborn rats were divided into three groups: Sham operation group, HIBD group, and HIBD + L-F001 group. HE staining, Nissil staining, the immunofluorescence of iNOS and COX-2, ELISA (IL-1β, IL-6, TNF-α, and IL-10), and western blotting analyses were performed to determine the therapeutic effect of L-F001. Finally, we evaluated the growth and development of each group by measuring body weight. RESULTS The hippocampal structure of HIBD rats was disordered, and the Nissil body was small and shallow. The expressions of iNOS and COX-2 in HIBD rats were increased, whereas the expressions of IL-1β, IL-6, and TNF-α in plasma were upregulated, and the expression of IL-10 was decreased. L-F001 could improve the tissue structure and reduce the expression of iNOS and COX-2 in HIBD rats. Meanwhile, L-F001 could also reduce the expression of pro-inflammatory cytokines and restore the content of anti-inflammatory cytokines in plasma. We further found that the TLR4 pathway was activated after hypoxic-ischemia in neonatal rats. L-F001 could inhibit the activation of TLR4 pathway. Finally, we found that after L-F001 treatment, the body weight of HIBD rats increased significantly compared with the untreated group. CONCLUSIONS L-F001 antagonizes the inflammatory response after hypoxic-ischemia by inhibiting the activation of the TLR4 signaling pathway, thus playing a neuroprotective role. L-F001 may be a potential therapeutic agent for neonatal HIBD.
Collapse
Affiliation(s)
- Ruiyu Zhou
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- The Affiliated Kashi HospitalSun Yat‐sen UniversityKashiChina
| | - Liqiang Wu
- Guangdong Provincial Emergency HospitalGuangzhouChina
| | - Ni Jin
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sha Sha
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ying Ouyang
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Zhu K, Zhu X, Yu J, Chen L, Liu S, Yan M, Yang W, Sun Y, Zhang Z, Li J, Shen T, Hei M. Effects of HMGB1/RAGE/cathespin B inhibitors on alleviating hippocampal injury by regulating microglial pyroptosis and caspase activation in neonatal hypoxic-ischemic brain damage. J Neurochem 2023; 167:410-426. [PMID: 37753942 DOI: 10.1111/jnc.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Microglia play a crucial role in regulating neuroinflammation in the pathogenesis of neonatal hypoxic-ischemic brain damage (HIBD). Pyroptosis, an inflammatory form of programmed cell death, has been implicated in HIBD; however, its underlying mechanism remains unclear. We previously demonstrated that high-mobility group box 1 protein (HMGB1) mediates neuroinflammation and microglial damage in HIBD. In this study, we aimed to investigate the association between HMGB1 and microglial pyroptosis and elucidate the mechanism involved in rats with HIBD (both sexes were included) and in BV2 microglia subjected to oxygen-glucose deprivation. Our results showed that HMGB1 inhibition by glycyrrhizin (20 mg/kg) reduced the expression of microglial pyroptosis-related proteins, including caspase-1, the N-terminus fragment of gasdermin D (N-GSDMD), and pyroptosis-related inflammatory factors, such as interleukin (IL) -1β and IL-18. Moreover, HMGB1 inhibition resulted in reduced neuronal damage in the hippocampus 72 h after HIBD and ultimately improved neurobehavior during adulthood, as evidenced by reduced escape latency and path length, as well as increased time and distance spent in the target quadrant during the Morris water maze test. These results revealed that HIBD-induced pyroptosis is mediated by HMGB1/receptor for advanced glycation end products (RAGE) signaling (inhibition by FPS-ZM1, 1 mg/kg) and the activation of cathespin B (cat B). Notably, cat B inhibition by CA074-Me (5 mg/kg) also reduced hippocampal neuronal damage by suppressing microglial pyroptosis, thereby ameliorating learning and memory impairments caused by HIBD. Lastly, we demonstrated that microglial pyroptosis may contribute to neuronal damage through the HMGB1/RAGE/cat B signaling pathway in vitro. In conclusion, these results suggest that HMGB1/RAGE/cat B inhibitors can alleviate hippocampal injury by regulating microglial pyroptosis and caspase activation in HIBD, thereby reducing the release of proinflammatory mediators that destroy hippocampal neurons and induce spatial memory impairments.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xing Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Yu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lu Chen
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shiqi Liu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mingjing Yan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanyan Sun
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhe Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 2023; 38:2339-2354. [PMID: 37402080 DOI: 10.1007/s11011-023-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Shubham Ghuge
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
9
|
Milbocker KA, Smith IF, Brengel EK, LeBlanc GL, Roth TL, Klintsova AY. Exercise in Adolescence Enhances Callosal White Matter Refinement in the Female Brain in a Rat Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:cells12070975. [PMID: 37048047 PMCID: PMC10092997 DOI: 10.3390/cells12070975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
A total of 1 in 20 infants born annually are exposed to alcohol prenatally, which disrupts neurodevelopment and results in several disorders categorized under the umbrella term Fetal Alcohol Spectrum Disorders (FASD). Children and adolescents affected by FASD exhibit delayed maturation of cerebral white matter, which contributes to deficits in executive function, visuospatial processing, sensory integration, and interhemispheric communication. Research using animal models of FASD have uncovered that oligoglia proliferation, differentiation, and survival are vulnerable to alcohol teratogenesis in the male brain due in part to the activation of the neuroimmune system during gestation and infancy. A comprehensive investigation of prenatal alcohol exposure on white matter development in the female brain is limited. This study demonstrated that the number of mature oligodendrocytes and the production of myelin basic protein were reduced first in the female corpus callosum following alcohol exposure in a rat model of FASD. Analysis of myelin-related genes confirmed that myelination occurs earlier in the female corpus callosum compared to their counterparts, irrespective of postnatal treatment. Moreover, dysregulated oligodendrocyte number and myelin basic protein production was observed in the male and female FASD brain in adolescence. Targeted interventions that support white matter development in FASD-affected youth are nonexistent. The capacity for an adolescent exercise intervention to upregulate corpus callosum myelination was evaluated: we discovered that volunteer exercise increases the number of mature oligodendrocytes in alcohol-exposed female rats. This study provides critical evidence that oligoglia differentiation is difficult but not impossible to induce in the female FASD brain in adolescence following a behavioral intervention.
Collapse
Affiliation(s)
- Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ian F Smith
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eric K Brengel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Gillian L LeBlanc
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
10
|
Shi X, Zhong X, Deng L, Wu X, Zhang P, Zhang X, Wang G. Mesenchymal stem cell-derived extracellular vesicle-enclosed miR-93 prevents hypoxic-ischemic brain damage in rats. Neuroscience 2022; 500:12-25. [PMID: 35803492 DOI: 10.1016/j.neuroscience.2022.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) usually induces chronic neurological disorder and even acute death, but effective neuroprotective strategy is still limited. Herein, we performed this study to clarify the mechanism of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) containing microRNA-93 (miR-93) in influencing this damage via regulation of the histone deacetylase 4 (HDAC4)/B-cell lymphoma-2 (Bcl-2) axis. Initially, differentially expressed Bcl-2 was identified in middle cerebral artery occlusion (MCAO), and the upstream regulatory miR-93 and its potential target HDAC4 were also predicted through bioinformatics analysis. HIBD was modeled in vitro by exposing hippocampal neurons to oxygen-glucose deprivation (OGD) and in vivo by MCAO in rats. EVs were isolated from the bone marrow MSCs of well-grown rats. Our experimental data validated that HDAC4 was highly expressed while miR-93 and Bcl-2 were poorly expressed in MCAO rats. Furthermore, HDAC4 overexpression, through inhibiting Bcl-2 via deacetylation, promoted the infarct volume and pathological changes in hippocampal tissues and neuron apoptosis, and impaired neurobehavioral ability of MCAO rats. Of note, miR-93 was found to target HDAC4. Importantly, MSC-derived EVs overexpressing miR-93 suppressed HDAC4 expression and subsequently impeded the apoptosis of OGD-exposed hippocampal neurons in vitro, and also ameliorated HIBD in vivo. Taken together, miR-93 delivered by MSC-derived EVs can ameliorate HIBD by suppressing hippocampal neuron apoptosis through targeting the HDAC4/Bcl-2 axis, a finding which may be of great significance in the treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xuelai Zhong
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lin Deng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, P. R. China.
| |
Collapse
|
11
|
Deschamps C, Uyttersprot F, Debris M, Marié C, Fouquet G, Marcq I, Vilpoux C, Naassila M, Pierrefiche O. Anti-inflammatory drugs prevent memory and hippocampal plasticity deficits following initial binge-like alcohol exposure in adolescent male rats. Psychopharmacology (Berl) 2022; 239:2245-2262. [PMID: 35314896 DOI: 10.1007/s00213-022-06112-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Binge drinking during adolescence impairs learning and memory on the long term, and many studies suggest a role of neuroinflammation. However, whether neuroinflammation occurs after the very first exposures to alcohol remains unclear, while initial alcohol exposure impairs learning for several days in male rats. OBJECTIVES To investigate the role of neuroinflammation in the effects of only two binge-like episodes on learning and on neuronal plasticity in adolescent male rat hippocampus. METHODS Animals received two ethanol i.p. injections (3 g/kg) 9 h apart. Forty-eight hours later, we recorded long-term depression (LTD) and potentiation (LTP) in CA1 area of hippocampus slices. In isolated CA1, we measured immunolabelings for microglial activation and Toll-like receptor 4 (TLR4) and mRNA levels for several cytokines. RESULTS Forty-eight hours after the two binges, rats performed worse than control rats in novel object recognition, LTD was reduced, LTP was increased, and excitatory neurotransmission was more sensitive to an antagonist of the GluN2B subunit of the NMDA receptor. Exposure to ethanol with minocycline or indomethacin, two anti-inflammatory drugs, or with a TLR4 antagonist, prevented all effects of ethanol. Immunolabelings at 48 h showed a reduction of neuronal TLR4 that was prevented by minocycline pretreatment, while microglial reactivity was undetected and inflammatory cytokines mRNA levels were unchanged. CONCLUSION Two binge-like ethanol exposures during adolescence in rat involved neuroinflammation leading to changes in TLR4 expression and in GluN2B functioning inducing disturbances in synaptic plasticity and cognitive deficits. Anti-inflammatory drugs are good candidates to prevent brain function and memory deficits induced by few binge-drinking episodes.
Collapse
Affiliation(s)
- Chloé Deschamps
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Floriane Uyttersprot
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Margot Debris
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Constance Marié
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Grégory Fouquet
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Ingrid Marcq
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France.
| |
Collapse
|
12
|
Glycyrrhizin Attenuates Hypoxic-Ischemic Brain Damage by Inhibiting Ferroptosis and Neuroinflammation in Neonatal Rats via the HMGB1/GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8438528. [PMID: 35432719 PMCID: PMC9010207 DOI: 10.1155/2022/8438528] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
With unknown etiology and limited treatment options, neonatal hypoxic-ischemic brain damage (HIBD) remains a major cause of mortality in newborns. Ferroptosis, a recently discovered type of cell death triggered by lipid peroxidation, is closely associated with HIBD. High-mobility group box 1 (HMGB1), a molecule associated with inflammation damage, can induce neuronal death in HIBD. However, it remains unknown whether HMGB1 contributes to neuronal ferroptosis in patients with HIBD. Herein, glycyrrhizin (GL), an HMGB1 inhibitor, was used to investigate the relationship between ferroptosis and HMGB1. RAS-selective lethal 3(RSL3), a ferroptosis agonist, was administered to further confirm the changes in the signaling pathway between HMGB1 and ferroptosis. Western blot analysis revealed that GL markedly suppressed the expression of HMGB1 and increased the level of GPX4 in the context of HIBD. We observed changes in neuronal ultrastructure via transmission electron microscopy to further confirm the occurrence of ferroptosis. Real-time PCR indicated that GL inhibited the expression of ferroptosis-related genes and inflammatory factors. Immunofluorescence and immunohistochemistry staining confirmed GL inhibition of neuronal damage and ferroptosis in HIBD associated with GPX4 and ROS. GL not only inhibited ferroptosis induced by RSL3 and oxygen-glucose deprivation in vitro but also inhibited ferroptosis induced by HIBD in vivo. More importantly, GL may improve oxidative stress imbalance and mitochondrial damage, alleviate the downstream production of inflammatory factors, and ultimately reduce ferroptosis and damage to cortical neurons following HIBD via the HMGB1/GPX4 pathway. In conclusion, we showed for the first time that GL could suppress the occurrence of neuronal ferroptosis and reduce neuronal loss in HIBD via the HMGB1/GPX4 pathway. These findings highlight the potential of HMGB1 signaling antagonists to treat neuronal damage by suppressing ferroptosis, provide new and unique insights into GL as a neuroprotective agent, and suggest new prevention and treatment strategies for HIBD.
Collapse
|
13
|
Yan G, Tao Z, Xing X, Zhou Z, Wang X, Li X, Li F. Down-Regulated microRNA-192-5p Protects Against Hypoxic-Ischemic Brain Damage via Regulation of YAP1-Mediated Hippo Signaling Pathway. Neurochem Res 2022; 47:1243-1254. [PMID: 35084661 DOI: 10.1007/s11064-021-03518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a familiar neurological disorder. Emerging reports manifest that microRNAs (miRs) are related to the progression of HIBD. The goal of this study is to explore the mechanism of miR-192-5p in HIBD via regulation of Yes-associated protein 1 (YAP1)-mediated Hippo signaling pathway. The miR-192-5p, YAP1, and Hippo pathway-related factors Phospho (p)-Triaminoguanidinium azide (TAZ) in hippocampal tissues and neurons were detected. The regulatory relationship between miR-192-5p and YAP1 was verified. Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. The neurobehavioral impairment, neuronal damage and vascular endothelial growth factor (VEGF) expression of neonatal rats in each group were detected. The viability, apoptosis and VEGF expression of hippocampal neurons in each group were also examined. MiR-192-5p expression was elevated while YAP1 expression was reduced in hippocampal tissues of HIBD rats in vivo and OGD neurons in vitro. MiR-192-5p had a targeting relation with YAP1. Suppressed miR-192-5p or overexpressed YAP1 in HIBD rats alleviated neurobehavioral impairment and neuronal damage, and decreased the expression levels of p-TAZ and VEGF expression in vivo. Reduced miR-192-5p or augmented YAP1 decelerated the neuron apoptosis, decreased the p-TAZ level and VEGF level and promoted cell viability of OGD hippocampal neurons in vitro. The study highlights that inhibited miR-192-5p protects against HIBD via regulation of YAP1 and Hippo signaling pathway, which is beneficial for HIBD treatment.
Collapse
Affiliation(s)
- Gangli Yan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Zhiwei Tao
- Department of Neurology, Wuhan Asia General Hospital, Wuhan, 430090, Hubei, China
| | - Xiaobing Xing
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Ziying Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Xinghua Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Xing Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Fengguang Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China.
| |
Collapse
|
14
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
15
|
Dong X, Luo S, Hu D, Cao R, Wang Q, Meng Z, Feng Z, Zhou W, Song W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front Pediatr 2022; 10:973256. [PMID: 36619526 PMCID: PMC9813953 DOI: 10.3389/fped.2022.973256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation is a leading cause of secondary neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may be beneficial for treatment of HIE and its secondary complications. Gallic acid (GA) has been shown to have anti-inflammatory and antioxidant effects. In this report we found that oxygen-glucose deprivation and/reoxygenation (OGD/R)-induced cell death, and the generation of excessive reactive oxygen species (ROS) and inflammatory cytokines by microglia were inhibited by GA treatment. Furthermore, GA treatment reduced neuroinflammation and neuronal loss, and alleviated motor and cognitive impairments in rats with hypoxic-ischemic brain damage (HIBD). Together, our results reveal that GA is an effective regulator of neuroinflammation and has potential as a pharmaceutical intervention for HIE therapy.
Collapse
Affiliation(s)
- Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Cao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
16
|
Niu X, Jiao Z, Wang Z, Jiang A, Zhang X, Zhang H, Xue F. MiR-17-5p protects neonatal mice from hypoxic-ischemic brain damage by targeting Casp2. Neurosci Lett 2022; 772:136475. [DOI: 10.1016/j.neulet.2022.136475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
17
|
Xing Z, Zhen T, Jie F, Jie Y, Shiqi L, Kaiyi Z, Zhicui O, Mingyan H. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. Int J Med Sci 2022; 19:142-151. [PMID: 34975308 PMCID: PMC8692118 DOI: 10.7150/ijms.66494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is implicated in neonatal hypoxic-ischemic brain damage (HIBD), but the underlying mechanism is unclear. Hypothesis: We hypothesized that TLR4 mediates brain damage after hypoxic ischemia (HI) by inducing abnormal neuroimmune responses, including activation of immune cells and expression disorder of immune factors, while early inhibition of TLR4 can alleviate the neuroimmune dysfunction. Method: Postnatal day 7 rats were randomized into control, HI, and HI+TAK-242 (TAK-242) groups. The HIBD model was developed using the Rice-Vannucci method (the left side was the ipsilateral side of HI). TAK-242 (0.5 mg/kg) was given to rat pups in the TAK-242 group at 30 min before modeling. Immunofluorescence, immunohistochemistry, and western blotting were used to determine the TLR4 expression; the number of Iba-1+, GFAP+, CD161+, MPO+, and CD3+ cells; ICAM-1 and C3a expression; and interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-10 expression in the hippocampal CA1 region. Result: Significantly increased TLR4 expression was observed in the left hippocampus, and was alleviated by TAK-242. The significant increases in Iba-1+, MPO+, and CD161+ cells at 24 h and 7 days after HI and in GFAP+ and CD3+ T cells at 7 days after HI were also counteracted by TAK-242, but no significant differences were observed among groups at 24 h after HI. ICAM-1 expression increased 24 h after HI, while C3a expression decreased; TAK-242 also alleviated these changes. TNF-α and IL-1β expression increased, while IL-10 expression decreased at 24 h and 7 days after HI; TAK-242 counteracted the increased TNF-α and IL-1β expression at 24 h and the changes in IL-1β and IL-10 at 7 days, but induced no significant differences in IL-10 expression at 24 h and TNF-α expression at 7 days. Conclusion: Early TLR4 inhibition can alleviate hippocampal immune dysfunction after neonatal HIBD.
Collapse
Affiliation(s)
- Zhu Xing
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Tang Zhen
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China.,Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Fan Jie
- Department of Neonatology, East Hospital of Shaoyang Central Hospital, Shaoyang, Hunan, 422000 China
| | - Yu Jie
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Liu Shiqi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Zhu Kaiyi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - OuYang Zhicui
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China
| | - Hei Mingyan
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| |
Collapse
|
18
|
Zaniani NR, Roohbakhsh A, Moghimi A, Mehri S. Protective effect of Toll-like receptor 4 antagonist on inflammation, EEG, and memory changes following febrile seizure in Wistar rats. Behav Brain Res 2021; 420:113723. [PMID: 34923024 DOI: 10.1016/j.bbr.2021.113723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation and fever are the main triggers in febrile seizures (FS). Focusing on inflammatory pathways and anti-inflammatory drugs could compensate for the limitations of existing medications. The aim of this study is to evaluate the neuroprotective effect of specific antagonizing Toll-like receptor 4 (TLR4), as a prominent inflammatory axis, on the consequences of FS and adulthood using animal models. Complex FS was induced on 9-11 day old male rat pups using a heated chamber. TAK-242, as a specific TLR4 inhibitor, was injected intraperitoneally before seizure induction. Seizure threshold, duration, and spike number were measured by electrocorticography. The levels of inflammatory cytokines, TLR4 protein expression, and oxidative stress markers were detected by enzyme-linked immunosorbent assay, western blotting, malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) assessments in the cortex and hippocampus. Also, spatial and non-spatial memory were evaluated using the novel object recognition test (NORT) and double Y-maze test during adulthood. The results revealed that provoked inflammatory responses in neonate rats, after FS, were associated with the increase of the tumor necrosis factor alpha, interleukin-1β, and enhanced TLR4 protein expression. Meanwhile, based on performed behavioral tests, the inflammatory process was also involved in adulthood memory deficit. Pretreatment with TAK-242 reduced the inflammatory cytokines and TLR4 protein expression in the cortex and hippocampus of neonate rats and improvement in memory deficit in NORT and double Y-maze tasks. Also, pretreatment with TAK-242 elevated seizure threshold, SOD, and CAT activities, and decreased seizure duration and MDA level with no significant change in spike number. TAK-242 possibly controlled FS via inhibiting inflammation.
Collapse
Affiliation(s)
- Nosaibeh Riahi Zaniani
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Gu Z, Li Y, Zhang L, Chen X, Xu H. Foxp3 attenuates cerebral ischemia/reperfusion injury through microRNA-150-5p-modified NCS1. Exp Cell Res 2021:112942. [PMID: 34822811 DOI: 10.1016/j.yexcr.2021.112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cerebral ischemia/reperfusion injury (CI/RI) is a pathological process involving complicated molecular mechanisms. We investigated forkhead box P3 (Foxp3)-related mechanism in CI/RI with particular focus on microRNA (miR)-150-5p/nucleobase cation symporter-1 (NCS1) axis. METHODS A mouse model was constructed by middle cerebral artery occlusion (MCAO) method. Levels of Foxp3, miR-150-5p and NCS1 were assessed in brain tissues of MCAO mice. By determining the neurological behavior function, neurological deficits, brain tissue pathological characteristics, neuronal apoptosis, inflammatory factors, and oxidative stress-related factors, the functional role of Foxp3, miR-150-5p and NCS1 were evaluated in MCAO mice. The feedback loop was analyzed among Foxp3, miR-150-5p and NCS1. RESULTS The level of Foxp3 and NCS1 were reduced and that of miR-150-5p was augmented in MCAO mice. Foxp3 bound to miR-150-5p to target NCS1. Up-regulating Foxp3 or NCS1 or suppressing miR-150-5p improved neurological behavior function and neurological deficits, and reduced brain tissue pathological damage, neuronal apoptosis, inflammatory and oxidative stress reactions in MCAO mice. Silencing miR-150-5p or elevating NCS1 decreased Foxp3 silencing-mediated ischemic injury in MCAO mice. CONCLUSION Foxp3 is neuroprotective in CI/RI through binding to miR-150-5p to promote NCS1 expression.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Neurosurgery, The Affiliated Hospital of Yunnan University, Kunming, 650011, Yunnan, China.
| | - Yajie Li
- Department of Neurosurgery, The Affiliated Hospital of Yunnan University, Kunming, 650011, Yunnan, China
| | - Liang Zhang
- Central Laboratory, The Affiliated Hospital of Yunnan University, Kunming, 650011, Yunnan, China
| | - Xu Chen
- Department of Neurosurgery, The Affiliated Hospital of Yunnan University, Kunming, 650011, Yunnan, China
| | - Hongling Xu
- Department of Neurosurgery, The Affiliated Hospital of Yunnan University, Kunming, 650011, Yunnan, China
| |
Collapse
|
20
|
El-Shamarka ME, Eliwa HA, Ahmed MAE. Inhibition of boldenone-induced aggression in rats by curcumin: Targeting TLR4/MyD88/TRAF-6/NF-κB pathway. J Biochem Mol Toxicol 2021; 36:e22936. [PMID: 34719837 DOI: 10.1002/jbt.22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
The illicit abuse of anabolic steroids is associated with brutal aggression, which represents a serious health hazard and social threat. Boldenone is commonly used for doping by athletes and adolescents for esthetic purposes and to enhance performance and endurance during competitions. However, the mechanistic pathways underlying boldenone-induced behavioral deviations and neuronal toxicity have not yet been elucidated. On the other hand, the natural polyphenol curcumin is appreciated for its relative safety, potent antioxidant activity, and anti-inflammatory properties. Therefore, the present study was initiated to explore the signaling pathways underlying boldenone-induced anxiety and aggression in rats, and the protective effects of curcumin. To achieve this aim, male Wistar albino rats were randomly distributed into control, curcumin (100 mg/kg in sesame oil, p.o., once daily), boldenone (5 mg/kg, intramuscular, once weekly), and combination groups. Rats were challenged across the open field, irritability, defensive aggression, and resident-intruder tests. The prefrontal cortex was used to assess serotonin level, oxidative stress markers, and mRNA expression of myeloid differentiation primary response gene (MyD88), TNFR-associated factor 6 (TRAF-6), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), protein expression of toll-like receptor 4 (TLR4), and phosphorylated nuclear factor-κB transcription factor (NF-κB p65). Unprecedented, the current results showed that boldenone elicited aggression in rats accompanied by depleted serotonin, enhanced oxidative stress, and exaggerated inflammatory response via upregulation of TLR4/MyD88/TRAF-6/NF-κB pathway. Interestingly, curcumin mitigated boldenone-induced neurobehavioral disturbances in rats, normalized the oxidant/antioxidant balance, and suppressed TLR4/MyD88/TRAF-6/NF-κB pathway and its downstream proinflammatory signaling molecules TNF-α and IL-1β.
Collapse
Affiliation(s)
- Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Center, Dokki, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
21
|
Peng X, Wang J, Peng J, Jiang H, Le K. Resveratrol Improves Synaptic Plasticity in Hypoxic-Ischemic Brain Injury in Neonatal Mice via Alleviating SIRT1/NF-κB Signaling-Mediated Neuroinflammation. J Mol Neurosci 2021; 72:113-125. [PMID: 34549339 DOI: 10.1007/s12031-021-01908-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an obstinate disease that troubles neonatologists. At present, cognitive impairment after HIE has received increasing attention. Synaptic plasticity determines the development of cognitive function, so it is urgent to develop new drugs that can improve HIE-induced cognitive impairment. Hypoxia-ischemia (HI)-induced neuroinflammation affects synaptic plasticity. As a SIRT1 agonist, resveratrol has a powerful anti-inflammatory effect, but whether it has an effect on impaired synaptic plasticity in HIE and the potential mechanism remain unclear. In the present study, resveratrol was used to intervene in hypoxic-ischemic brain injury (HIBI) mice, and the effects on hippocampal synaptic plasticity and further mechanisms were explored through performing neurobehavioral, morphological observations, Golgi sliver staining, western blotting, and quantitative real-time polymerase chain reaction experiments. We first found that resveratrol improves HI-induced long-term cognitive and memory deficits, and then we found that resveratrol reduces hippocampal neuronal damage and increases dendritic spine density and the expression of synaptic proteins. Finally, we found that this effect may be exerted by regulating the neuroinflammatory response mediated by the SIRT1/NF-κB axis. This study provides a new theoretical basis for resveratrol to prevent long-term neurological dysfunction following HIBI.
Collapse
Affiliation(s)
- Xin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.,Department of Otolaryngology, Jiangxi Province Children's Hospital, No.122 Yangming Road, Nanchang, Jiangxi Province, 330006, China
| | - Jun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Juan Peng
- Department of Rehabilitation Medicine, PingXiang No.2 People's Hospital, No. 89 Pingan South Avenue, Danjiang Street, PingXiang, Jiangxi Province, 337000, China
| | - Hongqun Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
22
|
Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 2021; 210:173273. [PMID: 34536480 DOI: 10.1016/j.pbb.2021.173273] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Ana Paula Toniazzo
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front Cell Neurosci 2021; 15:727899. [PMID: 34421544 PMCID: PMC8374071 DOI: 10.3389/fncel.2021.727899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide with significant long-term sequelae. However, there is no highly effective treatment to enhance post-stroke recovery despite extensive efforts in exploring rehabilitative therapies. Neurorehabilitation is recognized as the cornerstone of functional restoration therapy in stroke, where treatments are focused on neuroplastic regulation to reverse neural structural disruption and improve neurofunctional networks. Post-stroke neuroplasticity changes begin within hours of symptom onset and reaches a plateau by 3 to 4 weeks within the global brain in animal studies. It plays a determining role in spontaneous stroke recovery. Microglia are immediately activated following cerebral ischemia, which has been found both proximal to the primary ischemic injury and at the remote brain regions which have functional connections to the primary injury area. Microglia exhibit different activation profiles based on the microenvironment and adaptively switch their phenotypes in a spatiotemporal manner in response to brain injuries. Microglial activation coincides with neuroplasticity after stroke, which provides the fundamental base for the microglia-mediated inflammatory responses involved in the entire neural network rewiring and brain repair. Microglial activation exerts important effects on spontaneous recovery after stroke, including structural and functional reestablishment of neurovascular networks, neurogenesis, axonal remodeling, and blood vessel regeneration. In this review, we focus on the crosstalk between microglial activation and endogenous neuroplasticity, with a special focus on the plastic alterations in the whole brain network and their implications for structural and functional restoration after stroke. We then summarize recent advances in the impacts of microglial phenotype polarization on brain plasticity, trying to discuss the potential efficacy of microglia-based extrinsic restorative interventions in promoting post-stroke recovery.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Anesthesiology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Da Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Guiqin Tian
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Zhu K, Zhu X, Sun S, Yang W, Liu S, Tang Z, Zhang R, Li J, Shen T, Hei M. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 2021; 345:113828. [PMID: 34343528 DOI: 10.1016/j.expneurol.2021.113828] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
Inflammation and cell death play important roles in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Toll-like receptor 4 (TLR4) triggers the activation of the inflammatory pathway. Ferroptosis, a newly identified type of regulated cell death, is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in HIBD has not been elucidated. The objectives of this study were to explore the function and mechanism of TLR4 in neuronal ferroptosis in the context of HIBD. A neonatal rat model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation (OGD) were employed. TAK-242, a TLR4-specific antagonist, was used to evaluate the effect of TLR4 on neuronal ferroptosis in vivo. A TAK-242 inhibitor and a p38 inhibitor (SB203580) were administered to HT22 hippocampal neurons to explore the association between TLR4 in inflammation and ferroptosis in vitro. The effects of TLR4 on ferroptosis were assessed by the Western blot, real-time PCR, immunofluorescence staining, cell viability and transmission electron microscopy (TEM) assays. HI insult significantly upregulated the TLR4, increased the p53 level, reduced the SLC7A11 and GPX4 levels, and caused mitochondrial damage, thereby inducing neuronal ferroptosis in the hippocampus. Inhibition of TLR4 inhibited the expression of ferroptosis-related proteins, decreased the expression of ferroptosis-related genes and the proinflammatory milieu, attenuated oxidative stress and mitochondrial injury and, finally, ameliorated the activation of hippocampal neuronal ferroptosis following HIBD. Consistent with the results of these in vivo experiments, TLR4 inhibition also attenuated OGD-induced ferroptosis by suppressing oxidative stress and p38MAPK signaling, ultimately increasing neuronal cell viability. Finally, the in vitro and in vivo results demonstrated that TAK-242 exerted neuroprotective and antiferroptotic effects by suppressing TLR4-p38 MAPK signaling. TLR4 activation induced neuronal ferroptosis following both HIBD and OGD. Inhibition of TLR4 attenuated oxidative stress-induced damage, decreased the activation of ferroptosis, and attenuated neuroinflammation following HIBD. In this study, we demonstrated that the inhibition of TLR4-p38 MAPK signaling modulates HIBD- or OGD-induced ferroptosis in neuronal cells and may play a novel role in brain homeostasis.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xing Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Shenghui Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Shiqi Liu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Zhen Tang
- Department of Neonatology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Rong Zhang
- Department of Pediatric Intensive Care Unit, Shanxi Children's Hospital, Taiyuan 030000, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
25
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
26
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
27
|
Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020; 181:108336. [DOI: 10.1016/j.neuropharm.2020.108336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
|
28
|
Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm Res 2020; 69:1201-1213. [PMID: 32944799 DOI: 10.1007/s00011-020-01402-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Microglia stimulated by oxygen glucose deprivation (OGD) were treated with quercetin to investigate the effect on oxidative stress and the inflammatory response and to explore whether toll-like receptor 4 (TLR4) signaling was involved. In addition, the effect of quercetin on the neurological functions of neonatal mice with hypoxic-ischemic brain injury (HIBI) was examined. MATERIALS AND SUBJECTS Mouse BV2 microglial cells and postnatal day 7 neonatal mice were used. TREATMENT A predetermined concentration of quercetin was used in cell experiments. Quercetin was injected i.p. (50 mg/kg) at three time points after HI insult: 0, 24, and 48 h. METHODS Cell viability assay, Western blotting, qRT-RCR, ELISA, HIBI model construction and behavioral tests. RESULTS This study first showed that quercetin protected BV2 cells from OGD-induced damage and reversed the changes in microglial oxidative stress-related molecules. Second, quercetin inhibited OGD-induced expression of inflammatory factors in BV2 cells and suppressed TLR4/MyD88/NF-κB signaling. Finally, quercetin was disclosed to be effective in mitigating cerebral infarct volume and cognitive and motor function deficits in HIBI mice. CONCLUSION These results suggest that the neuroprotective effect of quercetin in HIBI mice is partially due to the inhibition of oxidative stress and TLR4-mediated inflammatory responses in activated microglia.
Collapse
|
29
|
Wang L, Yang JW, Lin LT, Huang J, Wang XR, Su XT, Cao Y, Fisher M, Liu CZ. Acupuncture Attenuates Inflammation in Microglia of Vascular Dementia Rats by Inhibiting miR-93-Mediated TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8253904. [PMID: 32850002 PMCID: PMC7441436 DOI: 10.1155/2020/8253904] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is widely accepted that inflammation may contribute to cognitive impairment in patients with vascular dementia (VD). Our prior clinical researches have reported that acupuncture can alleviate cognitive function in VD, but the underlying mechanisms are still unclear. The purpose of this research was to explore whether acupuncture alleviates cognitive impairment by suppressing the microRNA-93- (miR-93-) mediated Toll-like receptor (TLR) signaling pathway, which triggers inflammatory responses in the central nervous system. METHODS VD was established by permanent bilateral common carotid artery occlusion in male Wistar rats. Three days after operation, the rats began daily treatment with acupuncture for two weeks. The levels of miR-93, Toll-like receptors (TLR2 and TLR4), intracellular signaling molecules (myeloid differentiation factor 88 (MyD88) and nuclear factor-kappa B (NF-κB)), and inflammatory cytokines were subsequently detected. TLR4 colocalized with neurons, microglia, and astrocytes in the hippocampus was evaluated. Neuroinflammation and cognitive function were determined after intracerebroventricular injection of TLR4 antagonist TAK-242 or agonist lipopolysaccharide (LPS) with or without acupuncture. RESULTS We found that acupuncture notably repressed the expression of inflammatory cytokines in the hippocampus and plasma of VD rats. The expression of TLR4, but not TLR2, was markedly downregulated by acupuncture, accompanied by a decrease in miR-93 and MyD88/NF-κB signaling pathway activation. The overexpression of TLR4 in microglia, but not in astrocytes and neurons, was reversed by acupuncture. Furthermore, intracerebroventricular injection of TAK-242 had similar effects to acupuncture on inflammation and cognitive function, while LPS injection abolished the beneficial effects of acupuncture. CONCLUSIONS Taken together, these findings provide evidence that acupuncture attenuates cognitive impairment associated with inflammation through inhibition of the miR-93-mediated TLR4/MyD88/NF-κB signaling pathway in experimental VD. Acupuncture serves as a promising alternative therapy and may be an underlying TLR4 inhibitor for the treatment of VD.
Collapse
Affiliation(s)
- Lu Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Ting Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jin Huang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
| | - Xin-Tong Su
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Cao
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 02115 MA, USA
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
30
|
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 Plays a Detrimental Role in Hippocampal Dysfunction Caused by Hypoxia-Ischemia Insult in Neonatal Mice: Evidence from the Application of the HMGB1 Inhibitor Glycyrrhizin. ACS Chem Neurosci 2020; 11:979-993. [PMID: 32073822 DOI: 10.1021/acschemneuro.0c00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippocampal dysfunction related to cognitive impairment and emotional disorders in young children and adolescents caused by neonatal hypoxic-ischemic brain injury (HIBI) has attracted increasing attention in recent years. Crosstalk between the nervous and immune systems organized by hypoxia-ischemia (HI) insult may contribute to hippocampal dysfunction after HIBI. Extracellular HMGB1 functions as a damage-associated molecular pattern to instigate and amplify inflammatory responses, but whether this molecule is correlated with hippocampal dysfunction after HIBI is largely unknown. Therefore, this study examined hippocampal function after HMGB1 inhibition in an experimental HIBI model to verify the hypothesis that HMGB1 is a key mediator of hippocampal neuropathology in neonatal HIBI. By administering different doses of the HMGB1-specific inhibitor glycyrrhizin (GLY), we first found that GLY reversed the HI insult-induced loss of neurons and myelin in the hippocampal region and neurobehavioral impairments, partially in a dose-dependent manner, and based on this, we determined the optimal drug concentration to be 50 mg/kg. Subsequent analysis found that this neuroprotective effect was achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1, a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the inhibition of hippocampal cell apoptosis. Collectively, our discoveries contribute to the rising appreciation of the role of HMGB1 in the neuropathology of hippocampal dysfunction and related behavioral outcomes following HIBI.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|