1
|
Meyer S, Neuhut A, Claraz A. Electrochemical sulfonylation/Truce-Smiles rearrangement of N-allylbenzamides: toward sulfone-containing β-arylethylamines and Saclofen analogues. Org Biomol Chem 2024; 22:8102-8108. [PMID: 39290053 DOI: 10.1039/d4ob01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The β-arylethylamine pharmacophore is commonly found in medications for central nervous system disorders, prompting the need for safe and efficient methods to endow this motif with relevant functional groups for drug discovery. In this context, herein, we have established electrochemical radical sulfonylation reactions of N-allylbenzamides followed by Truce-Smiles rearrangement to produce sulfone- and sulfonate ester-containing β-arylethylamines. Electricity enables this transformation to occur under mild and oxidant-free conditions. Simple sources of sulfonyl radicals and SO2 surrogates were employed to form sulfones and sulfonate esters, respectively. This practical and operationally robust method exhibited a broad substrate scope with good to high yields. The prospective pharmaceutical utility of the process was further demonstrated by removing the N-protecting groups and hydrolysing the sulfonate ester moiety to provide γ-sulfonyl-β-arylamines and Saclofen.
Collapse
Affiliation(s)
- Sébastien Meyer
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Alexandre Neuhut
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
2
|
Voronin MV, Shangin SV, Litvinova SA, Abramova EV, Kurbanov RD, Rybina IV, Vakhitova YV, Seredenin SB. Pharmacological Analysis of GABA A Receptor and Sigma1R Chaperone Interaction: Research Report I-Investigation of the Anxiolytic, Anticonvulsant and Hypnotic Effects of Allosteric GABA A Receptors' Ligands. Int J Mol Sci 2023; 24:9580. [PMID: 37298532 PMCID: PMC10253922 DOI: 10.3390/ijms24119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| |
Collapse
|
3
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
4
|
Piechal A, Jakimiuk A, Pyrzanowska J, Blecharz-Klin K, Joniec-Maciejak I, Wiercińska-Drapało A, Mirowska-Guzel D, Widy-Tyszkiewicz E. Long-term Administration of 3-Di-O-Tolylguanidine Modulates Spatial Learning and Memory in Rats and Causes Transition in the Concentration of Neurotransmitters in the Hippocampus, Prefrontal Cortex and Striatum. Neuroscience 2023; 510:129-146. [PMID: 36493909 DOI: 10.1016/j.neuroscience.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The sigma-1 and sigma-2 (σ1 and σ2) receptors are found in high concentrations in the brain, and their altered expression leads to a variety of neuropsychiatric disorders. 3-di-tolylguanidine (DTG) stimulates the activity of both of these receptors. We assessed the effects of administering DTG to adult male Sprague Dawley rats on learning and memory consolidation processes and on the levels of neurotransmitters in selected brain structures. Spatial learning and memory were evaluated in the water maze test. The DTG was administered orally at daily doses of 3 mg/kg (DTG3), 10 mg/kg (DTG10) or 30 mg/kg (DTG30) for 10 weeks before and during the water-maze test. After completion of the experiment, the concentration of monoamines and their metabolites as well as amino acids in structures involved in cognitive performance - the hippocampus, prefrontal cortex, and striatum - were determined using high performance liquid chromatography (HPLC). The DTG10 group showed an improvement in memory processes related to the "new" platform location, whereas the DTG30 group was worse at finding the "old" platform location. Since the administration of DTG led to differences in dopaminergic transmission, it was assumed to influence memory processes in this way. Changes in histidine, serine, alanine, taurine, and glutamic acid levels in selected structures of the brains of rats with memory impairment were also observed. We conclude that long-term administration of DTG modulates spatial learning and memory in rats and changes the concentrations of neurotransmitters in the hippocampus, prefrontal cortex, and striatum..
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland.
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Wolska 37, 01-201 Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Plantainoside D Reduces Depolarization-Evoked Glutamate Release from Rat Cerebral Cortical Synaptosomes. Molecules 2023; 28:molecules28031313. [PMID: 36770979 PMCID: PMC9919923 DOI: 10.3390/molecules28031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Inhibiting the excessive release of glutamate in the brain is emerging as a promising therapeutic option and is efficient for treating neurodegenerative disorders. The aim of this study is to investigate the effect and mechanism of plantainoside D (PD), a phenylenthanoid glycoside isolated from Plantago asiatica L., on glutamate release in rat cerebral cortical nerve terminals (synaptosomes). We observed that PD inhibited the potassium channel blocker 4-aminopyridine (4-AP)-evoked release of glutamate and elevated concentration of cytosolic Ca2+. Using bafilomycin A1 to block glutamate uptake into synaptic vesicles and EDTA to chelate extracellular Ca2+, the inhibitory effect of PD on 4-AP-evoked glutamate release was prevented. In contrast, the action of PD on the 4-AP-evoked release of glutamate in the presence of dl-TBOA, a potent nontransportable inhibitor of glutamate transporters, was unaffected. PD does not alter the 4-AP-mediated depolarization of the synaptosomal membrane potential, suggesting that the inhibitory effect of PD on glutamate release is associated with voltage-dependent Ca2+ channels (VDCCs) but not the modulation of plasma membrane potential. Pretreatment with the Ca2+ channel blocker (N-type) ω-conotoxin GVIA abolished the inhibitory effect of PD on the evoked glutamate release, as did pretreatment with the protein kinase C inhibitor GF109203x. However, the PD-mediated inhibition of glutamate release was eliminated by applying the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 or dantrolene, which inhibits Ca2+ release through ryanodine receptor channels. These data suggest that PD mediates the inhibition of evoked glutamate release from synaptosomes primarily by reducing the influx of Ca2+ through N-type Ca2+ channels, subsequently reducing the protein kinase C cascade.
Collapse
|
6
|
Wang YM, Xia CY, Jia HM, He J, Lian WW, Yan Y, Wang WP, Zhang WK, Xu JK. Sigma-1 receptor: A potential target for the development of antidepressants. Neurochem Int 2022; 159:105390. [PMID: 35810915 DOI: 10.1016/j.neuint.2022.105390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Though a great many of studies on the development of antidepressants for the therapy of major depression disorder (MDD) and the development of antidepressants have been carried out, there still lacks an efficient approach in clinical practice. The involvement of Sigma-1 receptor in the pathological process of MDD has been verified. In this review, recent research focusing on the role of Sigma-1 receptor in the etiology of MDD were summarized. Preclinical studies and clinical trials have found that stress induce the variation of Sigma-1 receptor in the blood, brain and heart. Dysfunction and absence of Sigma-1 receptor result in depressive-like behaviors in rodent animals. Agonists of Sigma-1 receptor show not only antidepressant-like activities but also therapeutical effects in complications of depression. The mechanisms underlying antidepressant-like effects of Sigma-1 receptor may include suppressing neuroinflammation, regulating neurotransmitters, ameliorating brain-derived neurotrophic factor and N-Methyl-D-Aspartate receptor, and alleviating the endoplasmic reticulum stress and mitochondria damage during stress. Therefore, Sigma-1 receptor represents a potential target for antidepressants development.
Collapse
Affiliation(s)
- Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Hong-Mei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Ping Wang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
7
|
Qin Y, Xu W, Li K, Luo Q, Chen X, Wang Y, Chen L, Sha S. Repeated inhibition of sigma-1 receptor suppresses GABAA receptor expression and long-term depression in the nucleus accumbens leading to depressive-like behaviors. Front Mol Neurosci 2022; 15:959224. [PMID: 36245919 PMCID: PMC9563353 DOI: 10.3389/fnmol.2022.959224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-1 receptor (σ1R) downregulation in male mice is known to cause a depressive-like phenotype. The nucleus accumbens (NAc), a region associated with affective regulation, has high levels of σ1R. Here, we investigated the effect of repeated inhibition of σ1R in the NAc on depressive-like behaviors and synaptic plasticity by microinjecting σ1R antagonist NE-100 into NAc nuclei in mice (NE-100 mice); this was followed by behavioral tests and field potentials recordings. We first examined the effect of NE-100 administration on σ1R expression and found that cell surface levels of σ1R were significantly reduced in the NAc of NE-100 mice. Compared to control mice, NE-100 mice exhibited significantly prolonged immobility in forced swim test (FST) and tail suspension test (TST), impaired long-term depression (LTD) as well as multi-spike waveform field excitatory postsynaptic potential (fEPSP) with an extended duration and an increased paired-pulse ratio (PPR). Reduced levels of GABAA receptor (GABAAR)-α1, -α2, -β2, and -β3 subunits, membrane D2R, and PKC phosphorylation in the NAc were observed in NE-100 mice. Activation of GABAAR by muscimol corrected the extended fEPSP duration and increased PPR, restored LTD maintenance as well as alleviated depressive-like behaviors in NE-100 mice. The decline of PKC phosphorylation in the NAc of NE-100 mice was corrected by injecting NAc with quinpirole, a D2R agonist. Injections of quinpirole or PMA (a PKC activator) into NAc of NE-100 mice rescued the expression levels of GABAAR, and alleviated the increase in PPR and impairment in LTD; these effects were sensitive to GF109203X, a PKC inhibitor. Furthermore, injecting NAc with quinpirole or PMA relieved depressive-like behaviors in NE-100 mice. Collectively, these results indicate that repeated inhibition of σ1R in the NAc reduces D2R-mediated PKC phosphorylation and suppresses GABAAR expression, thus impairing LTD maintenance and leading to depressive-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Chen
- *Correspondence: Sha Sha Lei Chen
| | - Sha Sha
- *Correspondence: Sha Sha Lei Chen
| |
Collapse
|
8
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Shatursky O, Gnatyuk O, Afonina U, Pyrshev K, Dovbeshko G, Yesylevskyy S, Borisova T. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183945. [PMID: 35461828 PMCID: PMC9023372 DOI: 10.1016/j.bbamem.2022.183945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/05/2022]
Abstract
Remdesivir is a novel antiviral drug, which is active against the SARS-CoV-2 virus. Remdesivir is known to accumulate in the brain but it is not clear whether it influences the neurotransmission. Here we report diverse and pronounced effects of remdesivir on transportation and release of excitatory and inhibitory neurotransmitters in rat cortex nerve terminals (synaptosomes) in vitro. Direct incorporation of remdesivir molecules into the cellular membranes was shown by FTIR spectroscopy, planar phospholipid bilayer membranes and computational techniques. Remdesivir decreases depolarization-induced exocytotic release of L-[14C] glutamate and [3H] GABA, and also [3H] GABA uptake and extracellular level in synaptosomes in a dose-dependent manner. Fluorimetric studies confirmed remdesivir-induced impairment of exocytosis in nerve terminals and revealed a decrease in synaptic vesicle acidification. Our data suggest that remdesivir dosing during antiviral therapy should be precisely controlled to prevent possible neuromodulatory action at the presynaptic level. Further studies of neurotropic and membranotropic effects of remdesivir are necessary.
Collapse
Affiliation(s)
- Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Oleg Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Olena Gnatyuk
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Uliana Afonina
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Kyrylo Pyrshev
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Galina Dovbeshko
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Semen Yesylevskyy
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| |
Collapse
|
9
|
Ren P, Wang J, Li N, Li G, Ma H, Zhao Y, Li Y. Sigma-1 Receptors in Depression: Mechanism and Therapeutic Development. Front Pharmacol 2022; 13:925879. [PMID: 35784746 PMCID: PMC9243434 DOI: 10.3389/fphar.2022.925879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Depression is the most common type of neuropsychiatric illness and has increasingly become a major cause of disability. Unfortunately, the recent global pandemic of COVID-19 has dramatically increased the incidence of depression and has significantly increased the burden of mental health care worldwide. Since full remission of the clinical symptoms of depression has not been achieved with current treatments, there is a constant need to discover new compounds that meet the major clinical needs. Recently, the roles of sigma receptors, especially the sigma-1 receptor subtype, have attracted increasing attention as potential new targets and target-specific drugs due to their translocation property that produces a broad spectrum of biological functions. Even clinical first-line antidepressants with or without affinity for sigma-1 receptors have different pharmacological profiles. Thus, the regulatory role of sigma-1 receptors might be useful in treating these central nervous system (CNS) diseases. In addition, long-term mental stress disrupts the homeostasis in the CNS. In this review, we discuss the topical literature concerning sigma-1 receptor antidepressant mechanism of action in the regulation of intracellular proteostasis, calcium homeostasis and especially the dynamic Excitatory/Inhibitory (E/I) balance in the brain. Furthermore, based on these discoveries, we discuss sigma-1 receptor ligands with respect to their promise as targets for fast-onset action drugs in treating depression.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Nanxi Li
- Department of Pharmaceutical Sciences, Beijng Institute of Radiation Medicine, Beijing, China
| | - Guangxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| |
Collapse
|
10
|
Sałaciak K, Pytka K. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci Biobehav Rev 2022; 132:1114-1136. [PMID: 34736882 PMCID: PMC8559442 DOI: 10.1016/j.neubiorev.2021.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Depression and cognitive disorders are diseases with complex and not-fully understood etiology. Unfortunately, the COVID-19 pandemic dramatically increased the prevalence of both conditions. Since the current treatments are inadequate in many patients, there is a constant need for discovering new compounds, which will be more effective in ameliorating depressive symptoms and treating cognitive decline. Proteins attracting much attention as potential targets for drugs treating these conditions are sigma-1 receptors. Sigma-1 receptors are multi-functional proteins localized in endoplasmic reticulum membranes, which play a crucial role in cellular signal transduction by interacting with receptors, ion channels, lipids, and kinases. Changes in their functions and expression may lead to various diseases, including depression or memory impairments. Thus, sigma-1 receptor modulation might be useful in treating these central nervous system diseases. Importantly, two sigma-1 receptor ligands entered clinical trials, showing that this compound group possesses therapeutic potential. Therefore, based on preclinical studies, this review discusses whether the sigma-1 receptor could be a promising target for drugs treating affective and cognitive disorders.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
11
|
Martin P, Reeder T, Sourbron J, de Witte PAM, Gammaitoni AR, Galer BS. An Emerging Role for Sigma-1 Receptors in the Treatment of Developmental and Epileptic Encephalopathies. Int J Mol Sci 2021; 22:8416. [PMID: 34445144 PMCID: PMC8395113 DOI: 10.3390/ijms22168416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are complex conditions characterized primarily by seizures associated with neurodevelopmental and motor deficits. Recent evidence supports sigma-1 receptor modulation in both neuroprotection and antiseizure activity, suggesting that sigma-1 receptors may play a role in the pathogenesis of DEEs, and that targeting this receptor has the potential to positively impact both seizures and non-seizure outcomes in these disorders. Recent studies have demonstrated that the antiseizure medication fenfluramine, a serotonin-releasing drug that also acts as a positive modulator of sigma-1 receptors, reduces seizures and improves everyday executive functions (behavior, emotions, cognition) in patients with Dravet syndrome and Lennox-Gastaut syndrome. Here, we review the evidence for sigma-1 activity in reducing seizure frequency and promoting neuroprotection in the context of DEE pathophysiology and clinical presentation, using fenfluramine as a case example. Challenges and opportunities for future research include developing appropriate models for evaluating sigma-1 receptors in these syndromic epileptic conditions with multisystem involvement and complex clinical presentation.
Collapse
Affiliation(s)
- Parthena Martin
- Zogenix, Inc., Emeryville, CA 94608, USA; (P.M.); (T.R.); (A.R.G.)
| | - Thadd Reeder
- Zogenix, Inc., Emeryville, CA 94608, USA; (P.M.); (T.R.); (A.R.G.)
| | - Jo Sourbron
- University Hospital KU Leuven, 3000 Leuven, Belgium;
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences at KU Leuven, 3000 Leuven, Belgium;
| | | | - Bradley S. Galer
- Zogenix, Inc., Emeryville, CA 94608, USA; (P.M.); (T.R.); (A.R.G.)
| |
Collapse
|
12
|
Borisova T, Pozdnyakova N, Dudarenko M, Krisanova N, Andronati S. GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site. Eur Neuropsychopharmacol 2021; 45:39-51. [PMID: 33820715 DOI: 10.1016/j.euroneuro.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cinazepam C19H14BrClN2O5, ("LevanaⓇ ІC") a partial GABAA receptor agonist, and its active metabolite 3-hydroxyphenazepam C15H10BrClN2O2 were comparatively assessed in vitro using nerve terminals isolated from rat cortex (synaptosomes). At the presynaptic site, cinazepam (100 and 200 µM) facilitated synaptosomal transporter-mediated [3H]GABA uptake by enhancing both the initial rate and accumulation, and decreased the ambient level and transporter-mediated release of [3H]GABA. Whereas, 3-hydroxyphenazepam decreased the uptake and did not change the ambient synaptosomal level and transporter-mediated release of [3H]GABA. To exclude GABA transporter influence, NO-711, the transporter blocker, was applied and it was found that exocytotic release of [3H]GABA decreased, whereas tonic release of [3H]GABA was not changed in the presence of both cinazepam or 3-hydroxyphenazepam after treatment of synaptosomes with NO-711. In fluorimetric studies using potential- and pH-sensitive dyes rhodamine 6G and acridine orange, respectively, it was found that cinazepam hyperpolarized the synaptosomal plasma membrane, and increased synaptic vesicle acidification, whereas, 3-hydroxyphenazepam demonstrated opposite effects on these parameters. Therefore, action of cinazepam and its active metabolite 3-hydroxyphenazepam on GABAergic neurotransmission was different. Therapeutic effects of cinazepam can be associated with its ability to hyperpolarize the plasma membrane, to increase synaptic vesicle acidification and capacity of its active metabolite 3-hydroxyphenazepam to inhibit GABA transporter functioning.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Sergey Andronati
- The Department of Medicinal Chemistry, A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa, Ukraine.
| |
Collapse
|
13
|
Vavers E, Zvejniece B, Stelfa G, Svalbe B, Vilks K, Kupats E, Mezapuke R, Lauberte L, Dambrova M, Zvejniece L. Genetic inactivation of the sigma-1 chaperone protein results in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Neurobiol Dis 2021; 150:105244. [PMID: 33385516 DOI: 10.1016/j.nbd.2020.105244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 02/02/2023] Open
Abstract
There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R-/-) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R-/- mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R-/- mice. Our results demonstrated that Sig1R-/- mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R-/- animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R-/- animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia.
| | - Baiba Zvejniece
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; University of Latvia, Riga LV-1586, Latvia
| | - Gundega Stelfa
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; Latvia University of Life Sciences and Technologies, Jelgava LV-3001, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; University of Latvia, Riga LV-1586, Latvia
| | - Einars Kupats
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; Riga Stradins University, Riga LV-1007, Latvia
| | | | - Lasma Lauberte
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; Riga Stradins University, Riga LV-1007, Latvia
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| |
Collapse
|