1
|
Al Darwish FM, Coolen BF, van Kammen CM, Alles LK, de Vos J, Schiffelers RM, Lely TA, Strijkers GJ, Terstappen F. Assessment of feto-placental oxygenation and perfusion in a rat model of placental insufficiency using T2* mapping and 3D dynamic contrast-enhanced MRI. Placenta 2024; 151:19-25. [PMID: 38657321 DOI: 10.1016/j.placenta.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Placental insufficiency may lead to preeclampsia and fetal growth restriction. There is no cure for placental insufficiency, emphasizing the need for monitoring fetal and placenta health. Current monitoring methods are limited, underscoring the necessity for imaging techniques to evaluate fetal-placental perfusion and oxygenation. This study aims to use MRI to evaluate placental oxygenation and perfusion in the reduced uterine perfusion pressure (RUPP) model of placental insufficiency. METHODS Pregnant rats were randomized to RUPP (n = 11) or sham surgery (n = 8) on gestational day 14. On gestational day 19, rats imaged using a 7T MRI scanner to assess oxygenation and perfusion using T2* mapping and 3D-DCE MRI sequences, respectively. The effect of the RUPP on the feto-placental units were analyzed from the MRI images. RESULTS RUPP surgery led to reduced oxygenation in the labyrinth (24.7 ± 1.8 ms vs. 28.0 ± 2.1 ms, P = 0.002) and junctional zone (7.0 ± 0.9 ms vs. 8.1 ± 1.1 ms, P = 0.04) of the placenta, as indicated by decreased T2* values. However, here were no significant differences in fetal organ oxygenation or placental perfusion between RUPP and sham animals. DISCUSSION The reduced placental oxygenation without a corresponding decrease in perfusion suggests an adaptive response to placental ischemia. While acute reduction in placental perfusion may cause placental hypoxia, persistence of this condition could indicate chronic placental insufficiency after ischemic reperfusion injury. Thus, placental oxygenation may be a more reliable biomarker for assessing fetal condition than perfusion in hypertensive disorders of pregnancies including preeclampsia and FGR.
Collapse
Affiliation(s)
- Fatimah M Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Caren M van Kammen
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands; Department of CDL Research, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Lindy K Alles
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Raymond M Schiffelers
- Department of CDL Research, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Titia A Lely
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| |
Collapse
|
2
|
Stock SJ, Aiken CE. Barriers to progress in pregnancy research: How can we break through? Science 2023; 380:150-153. [PMID: 37053324 DOI: 10.1126/science.adf9347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 04/15/2023]
Abstract
Healthy pregnancies are fundamental to healthy populations, but very few therapies to improve pregnancy outcomes are available. Fundamental concepts-for example, placentation or the mechanisms that control the onset of labor-remain understudied and incompletely understood. A key issue is that research efforts must capture the complexity of the tripartite maternal-placental-fetal system, the dynamics of which change throughout gestation. Studying pregnancy disorders is complicated by the difficulty of creating maternal-placental-fetal interfaces in vitro and the uncertain relevance of animal models to human pregnancy. However, newer approaches include trophoblast organoids to model the developing placenta and integrated data-science approaches to study longer-term outcomes. These approaches provide insights into the physiology of healthy pregnancy, which is the first step to identifying therapeutic targets in pregnancy disorders.
Collapse
Affiliation(s)
- Sarah J Stock
- University of Edinburgh Usher Institute, Edinburgh EH16 4UX, UK
- University of Edinburgh MRC Centre for Reproductive Health, Edinburgh EH16 4TJ, UK
- Wellcome Leap In Utero Program, Wellcome Leap Inc., Culver City, CA 90232, USA
| | - Catherine E Aiken
- The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
- Centre for Trophoblast Research, Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
3
|
Affiliation(s)
- Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Neurosciences Intensive Care Nursery, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Kennedy Krieger Institute, Baltimore, MD, United States of America
| |
Collapse
|
4
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
5
|
De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:480-490. [PMID: 34848383 DOI: 10.1016/j.bpsc.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Converging evidence from clinical and preclinical studies suggests that fetal vulnerability to adverse prenatal exposures increases the risk for neuropsychiatric diseases such as autism spectrum disorder, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging have allowed us to characterize typical fetal brain growth trajectories in vivo and to interrogate structural and functional alterations associated with intrauterine exposures, such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms for how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from magnetic resonance imaging research in fetuses, highlight recent discoveries in normative fetal development using quantitative magnetic resonance imaging techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC; Department of Neonatology, Children's National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC.
| |
Collapse
|
6
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Volpe JJ. Fetal origin of brain dysmaturation in congenital heart disease - challenges and opportunities for interventions. J Neonatal Perinatal Med 2022; 15:489-494. [PMID: 35034913 PMCID: PMC9484114 DOI: 10.3233/npm-210942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|