1
|
Li HP, Cheng HL, Ding K, Zhang Y, Gao F, Zhu G, Zhang Z. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur J Neurosci 2024; 60:4661-4683. [PMID: 39044332 DOI: 10.1111/ejn.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Collapse
Affiliation(s)
- Hai-Peng Li
- Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Liang Cheng
- The Affiliated Hospital of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Keke Ding
- Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Fang Gao
- Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
2
|
Liu Q, Ding X, Wang Y, Chu H, Guan Y, Li M, Sun K. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress. Front Pharmacol 2024; 15:1303123. [PMID: 38379899 PMCID: PMC10876839 DOI: 10.3389/fphar.2024.1303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Huang G, Iqbal J, Shen D, Xue YX, Yang M, Jia X. MicroRNA expression profiles of stress susceptibility and resilience in the prelimbic and infralimbic cortex of rats after single prolonged stress. Front Psychiatry 2023; 14:1247714. [PMID: 37692297 PMCID: PMC10488707 DOI: 10.3389/fpsyt.2023.1247714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The experience of traumatic stress can engender lasting memories associated with the trauma, often resulting in post-traumatic stress disorder (PTSD). However, only a minority of individuals develop PTSD symptoms upon exposure. The neurobiological mechanisms underlying the pathology of PTSD are poorly understood. Utilizing a rat model of PTSD, the Single Prolonged Stress (SPS) paradigm, we were able to differentiate between resilient and susceptible individuals. Fourteen days after the SPS exposure, we conducted the behavioral analyses using Elevated Plus Maze (EPM) and Open Field (OF) tests to identify male rats as trauma resilient or susceptible. We focused on the microRNA (miRNA) profiles of the infralimbic (IL) and prelimbic (PL) cortical regions, known to be crucial in regulating the stress response. Our investigation of stressed rats exposed to the SPS procedure yielded divergent response, and differential expression microRNAs (DEmiRs) analysis indicated significant differences in the IL and PL transcriptional response. In the IL cortex, the GO analysis revealed enriched GO terms in the resilient versus control comparison, specifically related to mitogen-activated protein kinase and MAP kinase signaling pathways for their molecular functions as well as cytosol and nucleoplasm for the biological process. In the susceptible versus resilient comparison, the changes in molecular functions were only manifested in the functions of regulation of transcription involved in the G1/S transition of the mitotic cell cycle and skeletal muscle satellite cell activation. However, no enriched GO terms were found in the susceptible versus control comparison. In the PL cortex, results indicated that the DEmiRs were enriched exclusively in the cellular component level of the endoplasmic reticulum lumen in the comparison between resilient and control rats. Overall, our study utilized an animal model of PTSD to investigate the potential correlation between stress-induced behavioral dysfunction and variations in miRNA expression. The aforementioned discoveries have the potential to pave the way for novel therapeutic approaches for PTSD, which could involve the targeted regulation of transcriptome expression.
Collapse
Affiliation(s)
- Gengdi Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Javed Iqbal
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yan-xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
- School of Mental Health, Jining Medical University, Jining, China
- School of Mental Health, Anhui Medical University, Hefei, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Cohen T, Shomron N. Can RNA Affect Memory Modulation? Implications for PTSD Understanding and Treatment. Int J Mol Sci 2023; 24:12908. [PMID: 37629089 PMCID: PMC10454422 DOI: 10.3390/ijms241612908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Memories are a central aspect of our lives, but the mechanisms underlying their formation, consolidation, retrieval, and extinction remain poorly understood. In this review, we explore the molecular mechanisms of memory modulation and investigate the effects of RNA on these processes. Specifically, we examine the effects of time and location on gene expression alterations. We then discuss the potential for harnessing these alterations to modulate memories, particularly fear memories, to alleviate post-traumatic stress disorder (PTSD) symptoms. The current state of research suggests that transcriptional changes play a major role in memory modulation and targeting them through microRNAs may hold promise as a novel approach for treating memory-related disorders such as PTSD.
Collapse
Affiliation(s)
- Tehila Cohen
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Innovation Labs (TILabs), Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Marazziti D, Carmassi C, Cappellato G, Chiarantini I, Massoni L, Mucci F, Arone A, Violi M, Palermo S, De Iorio G, Dell’Osso L. Novel Pharmacological Targets of Post-Traumatic Stress Disorders. Life (Basel) 2023; 13:1731. [PMID: 37629588 PMCID: PMC10455314 DOI: 10.3390/life13081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological condition with a heterogeneous clinical picture that is complex and challenging to treat. Its multifaceted pathophysiology still remains an unresolved question and certainly contributes to this issue. The pharmacological treatment of PTSD is mainly empirical and centered on the serotonergic system. Since the therapeutic response to prescribed drugs targeting single symptoms is generally inconsistent, there is an urgent need for novel pathogenetic hypotheses, including different mediators and pathways. This paper was conceived as a narrative review with the aim of debating the current pharmacological treatment of PTSD and further highlighting prospective targets for future drugs. The authors accessed some of the main databases of scientific literature available and selected all the papers that fulfilled the purpose of the present work. The results showed that most of the current pharmacological treatments for PTSD are symptom-based and show only partial benefits; this largely reflects the limited knowledge of its neurobiology. Growing, albeit limited, data suggests that the hypothalamic-pituitary-adrenal axis, opioids, glutamate, cannabinoids, oxytocin, neuropeptide Y, and microRNA may play a role in the development of PTSD and could be targeted for novel treatments. Indeed, recent research indicates that examining different pathways might result in the development of novel and more efficient drugs.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Gabriele Cappellato
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Federico Mucci
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Miriam Violi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Giovanni De Iorio
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| |
Collapse
|
7
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Gong W, Li X, Feng Y, Ji M, Zhang D, Chen B, Wang S, Wu X, Cui L, Li B, Xia M. Novel pathogenesis of post-traumatic stress disorder studied in transgenic mice. J Psychiatr Res 2023; 161:188-198. [PMID: 36933445 DOI: 10.1016/j.jpsychires.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is very common after exposure to trauma, mental stress or violence. Because objective biological markers for PTSD are lacking, exactly diagnosing PTSD is a challenge for clinical psychologists. In-depth research on the pathogenesis of PTSD is a key for solving this problem. In this work, we used male Thy1-YFP transgenic mice, in which neurons are fluorescently labeled, to research the effects of PTSD on neurons in vivo. We initially discovered that pathological stress associated with PTSD increased the activation of glycogen synthesis kinase-beta (GSK-3β) in neurons and induced the translocation of the transcription factor forkhead box-class O3a (FoxO3a) from the cytoplasm to the nucleus, which decreased the expression of uncoupling protein 2 (UCP2) and increased mitochondrial production of reactive oxygen species (ROS) to trigger neuronal apoptosis in the prefrontal cortex (PFC). Furthermore, the PTSD model mice showed increased freezing and anxiety-like behaviors and more severe decrease of memory and exploratory behavior. Additionally, leptin attenuated neuronal apoptosis by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which further elevated the expression of UCP2 and inhibited the mitochondrial production of ROS induced by PTSD, thus reducing neuronal apoptosis and ameliorating PTSD-related behaviors. Our study is expected to promote the exploration of PTSD-related pathogenesis in neural cells and the clinical effectiveness of leptin for PTSD.
Collapse
Affiliation(s)
- Wenliang Gong
- Department of Orthopaedics, The First Hospital of China Medical University, PR China; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Ming Ji
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Binjie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, PR China; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China.
| |
Collapse
|