1
|
De AK, Ponraj P, Bhattacharya D. Depicting "arms race" of Rhipicephalus microplus and its host on a single frame platform. Parasitol Res 2025; 124:18. [PMID: 39903310 PMCID: PMC11794405 DOI: 10.1007/s00436-025-08459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
To improve our knowledge on host-parasite interaction, the study was undertaken on Rhipicephalus microplus infestation in cross breed cattle. This tick, being a voracious blood sucker, remains attached to the skin for prolonged period and inoculates saliva during blood feeding. Biomolecules present in the saliva have detrimental effects on host system. The present study deals with the effects of R. microplus in artificially infected nine months old cattle for a period of 21 days. There was physiological alteration during tick infestation in terms of body temperature, pulse, and respiration rate. There was drop in haemoglobin gram percentage, platelet count, total red and white blood cell count. Thrombocytopenia in infested animals was suggestive of iron deficient anaemia after artificial infestation. R. microplus infestation was found to induce stress in experimental animals. Our study on peripheral blood gene expression was suggestive of Th2 polarization since there was increased IL-4 response. Increased IL-6 response indicated skin damage due to R. microplus infestation and we further correlate eosinophilia with up-regulation of IL-6 and IL-8 responses. Increased IL-10 response and decreased IFN-γ response were suggestive of immunosuppressive and anti-inflammatory properties of tick saliva.
Collapse
Affiliation(s)
- Arun Kumar De
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, South Andaman, Andaman and Nicobar Islands-744101, Port Blair, India
| | - Perumal Ponraj
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, South Andaman, Andaman and Nicobar Islands-744101, Port Blair, India
| | - Debasis Bhattacharya
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, South Andaman, Andaman and Nicobar Islands-744101, Port Blair, India.
| |
Collapse
|
2
|
Motta GA, Neto PSM, Nociti RP, Santana ÁE. Hematological Normality, Serum Biochemistry, and Acute Phase Proteins in Healthy Beef Calves in the Brazilian Savannah. Animals (Basel) 2023; 13:2398. [PMID: 37570207 PMCID: PMC10473239 DOI: 10.3390/ani13152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Brazilian savannah region, characterized by high average temperatures, well-defined rainy and dry seasons, soil with low productive potential, and high pressure for parasitic diseases, is home to the highest percentage of the beef herd, which is the world's largest commercial beef producer. Therefore, breeds that present rusticity combined with productivity are the focus of research in cattle breeding in the region. Considering their geographic particularities and their effects on the animals' blood parameters, the objective was to study the behavior of hematological variables, serum biochemistry, and acute phase proteins in beef calves at weaning age. Jugular blood samples were collected in a single day from 30 weaning calves (about eight months old and 200 kg of body weight) from the following breeds: Nellore, Senepol, Nellore × Aberdeen Angus cross, Nellore × Senepol cross, and Nellore × Aberdeen Angus × Senepol cross. Hematological data were obtained using an automatic cell counter, serum biochemical measurements were obtained using commercial kits, and the electrophoretogram was obtained using the SDS-page technique. In general, the results were consistent with data already published in similar situations regarding health status, age, and level of metabolic activity. However, differences observed between groups can be explained by differences observed in other concurrent variables like temperament. The pure zebu breed was more reactive than pure taurine. While crossbreds showed intermediate values, and parasitic infestation, the pure taurine breed with higher parasite infestation, while the zebu breed had lower values, which produced effects in some laboratory tests, and generated differences between breeds. In conclusion, the reference intervals available for healthy animals can be routinely used without interference from the geographic region for animals produced without nutritional failures as long as changes are recorded in pathological, infectious, metabolic, or nutritional deficiency situations. However, it is suggested that a study covering a larger number of herds may demonstrate a greater geographic effect on the studied variables.
Collapse
Affiliation(s)
- Guilherme Augusto Motta
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, São Paulo, Brazil;
- Department of Veterinary Medicine, Araraquara University—UNIARA, Araraquara 14801-340, São Paulo, Brazil
| | - Paulo Sabino Milhomen Neto
- Department of Veterinary Medicine, Federal University of Tocantins, Araguaína 77824-838, Tocantins, Brazil;
| | - Ricardo Perecin Nociti
- Department of Biomedicine Veterinary, Faculty of Veterinary Medicine, Montreal University/Saint Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Laboratory of Molecular Morphophysiology and DevelopmentSchool of Veterinary Medicine and Animal Science, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Áureo Evangelista Santana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, São Paulo, Brazil;
| |
Collapse
|
3
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Jonsson NN, Cox DK, Piper EK, Valdivieso EFM, Constantinoiu C, Jackson LA, Stear MJ, Ross EM, Tabor AE. Allelic Variation in Protein Tyrosine Phosphatase Receptor Type-C in Cattle Influences Erythrocyte, Leukocyte and Humoral Responses to Infestation With the Cattle Tick Rhipicephalus australis. Front Immunol 2021; 12:675979. [PMID: 34305905 PMCID: PMC8300432 DOI: 10.3389/fimmu.2021.675979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase receptor type-C (PTPRC) gene encodes the common leukocyte antigen (CD45) receptor. CD45 affects cell adhesion, migration, cytokine signalling, cell development, and activation state. Four families of the gene have been identified in cattle: a taurine group (Family 1), two indicine groups (Families 2 and 4) and an African “taurindicine” group (Family 3). Host resistance in cattle to infestation with ticks is moderately heritable and primarily manifests as prevention of attachment and feeding by larvae. This study was conducted to describe the effects of PTPRC genotype on immune-response phenotypes in cattle that display a variable immune responsiveness to ticks. Thirty tick-naïve Santa-Gertrudis cattle (a stabilized composite of 5/8 taurine and 3/8 indicine) were artificially infested with ticks weekly for 13 weeks and ranked according to their tick counts. Blood samples were taken from control and tick-challenged cattle immediately before, then at 21 d after infestation and each subsequent week for 9 weeks. Assays included erythrocyte profiles, white blood cell counts, the percentage of cellular subsets comprising the peripheral blood mononuclear cell (PBMC) population, and the ability of PBMC to recognize and proliferate in response to stimulation with tick antigens in vitro. The cattle were PTPRC genotyped using a RFLP assay that differentiated Family 1 and 3 together (220 bp), from Family 2 (462 bp), and from Family 4 (486 bp). The PTPRC allele frequencies were Family 1/3 = 0.34; Family 2 = 0.47; Family 4 = 0.19. There was no significant association between PTPRC genotype and tick count. Each copy of the Family 1/3 allele significantly decreased total leucocyte count (WCC) and CD8+ cells. Increasing dosage of Family 2 alleles significantly increased red blood cell count (RCC), haematocrit (PCV), and haemoglobin (Hb) concentration in blood. Increasing dosage of the Family 4 allele was associated with increased WCC, reduced RCC, reduced PCV and reduced Hb. Homozygote Family 1/3 animals had consistently lower IgG1 in response to tick Ag than homozygote Family 2 animals. The PTPRC genotype influences the bovine immune response to ticks but was not associated with the observed variation in resistance to tick infestation in this study.
Collapse
Affiliation(s)
- Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - David K Cox
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Emily K Piper
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Biomedical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Louise A Jackson
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Michael J Stear
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Garcia GR, Chaves Ribeiro JM, Maruyama SR, Gardinassi LG, Nelson K, Ferreira BR, Andrade TG, de Miranda Santos IKF. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci Rep 2020; 10:12857. [PMID: 32732984 PMCID: PMC7393499 DOI: 10.1038/s41598-020-69793-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
The cattle tick, Rhipicephalus microplus, is a monoxenous tick that co-evolved with indicine cattle on the Indian subcontinent. It causes massive damage to livestock worldwide. Cattle breeds present heritable, contrasting phenotypes of tick loads, taurine breeds carrying higher loads of the parasite than indicine breeds. Thus, a useful model is available to analyze mechanisms that determine outcomes of parasitism. We sought to gain insights on these mechanisms and used RNA sequencing and Multidimensional Protein Identification Technology (MudPIT) to generate a transcriptome from whole larvae and salivary glands from nymphs, males and females feeding on genetically susceptible and resistant bovine hosts and their corresponding proteomes. 931,698 reads were annotated into 11,676 coding sequences (CDS), which were manually curated into 116 different protein families. Male ticks presented the most diverse armamentarium of mediators of parasitism. In addition, levels of expression of many genes encoding mediators of parasitism were significantly associated with the level and stage of host immunity and/or were temporally restricted to developmental stages of the tick. These insights should assist in developing novel, sustainable technologies for tick control.
Collapse
Affiliation(s)
- Gustavo R Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Superintendence of the São Paulo State Technical and Scientific Police, Ribeirão Preto, SP, Brazil
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kristina Nelson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Beatriz R Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Thales Galdino Andrade
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Isabel K Ferreira de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
6
|
Couper LI, Yang Y, Yang XF, Swei A. Comparative vector competence of North American Lyme disease vectors. Parasit Vectors 2020; 13:29. [PMID: 31937369 PMCID: PMC6961398 DOI: 10.1186/s13071-020-3893-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the drivers of Lyme disease incidence at broad spatial scales is critical for predicting and mitigating human disease risk. Previous studies have identified vector phenology and behavior, host community composition, and landscape features as drivers of variable Lyme disease risk. However, while the Lyme disease transmission cycles in the eastern and western USA involve different vector species (Ixodes scapularis and Ixodes pacificus, respectively), the role of vector-specific differences in transmission efficiency has not been directly examined. By comparing the performance of traits involved in vector competence between these two species, this study aims to identify how vector competence contributes to variable Lyme disease risk. METHODS We used a suite of laboratory experiments to compare the performance of traits related to vector competence for the two USA Lyme disease vectors. For each species, we measured the rate of attachment to a common rodent host, the engorgement weight, and the efficiency of pathogen acquisition (host to tick) and pathogen transmission (tick to host) from laboratory mice. In measuring pathogen acquisition and transmission, we used two different pathogen strains, one sympatric with I. scapularis and one sympatric with I. pacificus, to assess the importance of vector-pathogen coevolutionary history in transmission dynamics. RESULTS We found I. pacificus had significantly higher host attachment success and engorgement weights, but significantly lower pathogen transmission efficiency relative to I. scapularis. Molting success and pathogen acquisition did not differ between these two species. However, pathogen acquisition efficiency was significantly higher for both sympatric vector and pathogen strains than the allopatric pairings. CONCLUSIONS This study identified species-specific vector traits as a potential driver of broad scale variation in Lyme disease risk in the USA. In particular, the exceedingly low rates of pathogen transmission from tick to host observed for I. pacificus may limit Lyme disease transmission efficiency in the western USA. Further, observed variation in pathogen acquisition between sympatric and allopatric vector-pathogen strains indicate that vector-pathogen coevolutionary history may play a key role in transmission dynamics. These findings underscore the need to consider vector traits and vector-pathogen coevolution as important factors governing regional Lyme disease risk.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaofeng Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
7
|
Abanda B, Paguem A, Abdoulmoumini M, Kingsley MT, Renz A, Eisenbarth A. Molecular identification and prevalence of tick-borne pathogens in zebu and taurine cattle in North Cameroon. Parasit Vectors 2019; 12:448. [PMID: 31511038 PMCID: PMC6737592 DOI: 10.1186/s13071-019-3699-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/03/2019] [Indexed: 02/03/2023] Open
Abstract
Background Public interest for tick-borne pathogens in cattle livestock is rising due to their veterinary and zoonotic importance. Consequently, correct identification of these potential pathogens is crucial to estimate the level of exposition, the risk and the detrimental impact on livestock and the human population. Results Conventional PCR with generic primers was used to identify groups of tick-borne pathogens in cattle breeds from northern Cameroon. The overall prevalence in 1260 blood samples was 89.1%, with 993 (78.8%) positive for Theileria/Babesia spp., 959 (76.1%) for Anaplasma/Ehrlichia spp., 225 (17.9%) for Borrelia spp., and 180 (14.3%) for Rickettsia spp. Sanger sequencing of a subset of positively-tested samples revealed the presence of Theileria mutans (92.2%, 130/141), T. velifera (16.3%, 23/141), Anaplasma centrale (10.9%, 15/137), A. marginale (30.7%, 42/137), A. platys (51.1%, 70/137), Anaplasma sp. ‘Hadesa’ (10.9%, 15/137), Ehrlichia ruminantium (0.7%, 1/137), E. canis (0.7%, 1/137), Borrelia theileri (91.3%, 42/46), Rickettsia africae (59.4%, 19/32) and R. felis (12.5%, 4/32). A high level of both intra- and inter-generic co-infections (76.0%) was observed. To the best of our knowledge, B. theileri, T. mutans, T. velifera, A. platys, Anaplasma sp. ‘Hadesa’, R. felis and E. canis are reported for the first time in cattle from Cameroon, and for R. felis it is the first discovery in the cattle host. Babesia spp. were not detected by sequencing. The highest number of still identifiable species co-infections was up to four pathogens per genus group. Multifactorial analyses revealed a significant association of infection with Borrelia theileri and anemia. Whereas animals of older age had a higher risk of infection, the Gudali cattle had a lower risk compared to the other local breeds. Conclusion Co-infections of tick-borne pathogens with an overall high prevalence were found in all five study sites, and were more likely to occur than single infections. Fulani, Namchi and Kapsiki were the most infected breed in general; however, with regions as significant risk factor. A better-adapted approach for tick-borne pathogen identification in co-infected samples is a requirement for epidemiological investigations and tailored control measures.
Collapse
Affiliation(s)
- Babette Abanda
- Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,Programme Onchocercoses field station of the University of Tübingen, P.O. Box 65, Ngaoundéré, Cameroon. .,Department of Biological Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Archile Paguem
- Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Programme Onchocercoses field station of the University of Tübingen, P.O. Box 65, Ngaoundéré, Cameroon
| | - Mamoudou Abdoulmoumini
- School of Veterinary Medicine and Sciences, Department of Parasitology and Parasitological Diseases, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Manchang Tanyi Kingsley
- Institute of Agricultural Research for Development (IRAD), Wakwa Regional Centre, P.O. Box 65, Ngaoundéré, Cameroon
| | - Alfons Renz
- Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Albert Eisenbarth
- Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Blecha IMZ, Csordas BG, Aguirre ADAR, Cunha RC, Garcia MV, Andreotti R. Analysis of Bm86 conserved epitopes: is a global vaccine against Cattle Tick Rhipicephalus microplus possible? ACTA ACUST UNITED AC 2018; 27:267-279. [PMID: 30133596 DOI: 10.1590/s1984-296120180056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The cattle tick Rhipicephalus microplus causes significant economic losses in agribusiness. Control of this tick is achieved mainly through the application of chemical acaricides, often resulting in contamination of animal food products and of the environment. Another major concern associated with acaricide use is the increasing reports of resistance of this tick vector against the active ingredients of many commercial products. An alternative control method is vaccination. However, the commercially available vaccine based on a protein homologous to Bm86 exhibits variations in efficacy relative to the different geographical locations. This study aimed to identify antigenic determinants of the sequences of proteins homologous to Bm86. Phylogenetic analyses were performed to determine the extent of divergence between different populations of R. microplus to identify the sequence that could be used as a universal vaccine against the multiple geographically distinct populations of R. microplus and related tick species. Considering the extensive sequence and functional polymorphism observed among strains of R. microplus from different geographical regions, we can conclude that it may be possible to achieve effective vaccination against these cattle ticks using a single universal Bm86-based antigen.
Collapse
Affiliation(s)
- Isabella Maiumi Zaidan Blecha
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Pós-graduacão em Ciência Animal, Faculdade de Medicina Veterinária e Zootecnia - FAMEZ, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Bárbara Guimarães Csordas
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Pós-graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | | | - Rodrigo Casquero Cunha
- Programa de Pós-graduação em Biotecnologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico - CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Marcos Valério Garcia
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Desenvolvimento Científico Regional - DCR, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia - FUNDECT, Governo do Estado de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Renato Andreotti
- Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil
| |
Collapse
|
9
|
Robbertse L, Richards SA, Clift SJ, Barnard AC, Leisewitz A, Crafford JE, Maritz-Olivier C. Comparison of the differential regulation of T and B-lymphocyte subsets in the skin and lymph nodes amongst three cattle breeds as potential mediators of immune-resistance to Rhipicephalus microplus. Ticks Tick Borne Dis 2018; 9:976-987. [PMID: 29622516 DOI: 10.1016/j.ttbdis.2018.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Although varying natural resistance to ticks between highly resistant Brahman (Bos taurus indicus), resistant Bonsmara (5/8 B. t. indicus x 3/8 B. t. taurus) and susceptible Holstein-Friesian (B. t. taurus) breeds is documented in skin and blood, little information is available describing draining lymph nodes. To elucidate the cellular dynamics during Rhipicephalus microplus induced immune responses, this study analysed immune factors from these cattle breeds using histology, immunohistochemistry and flow cytometry. Following the collection of skin and lymph node samples before artificial tick infestation, cattle were infested with R. microplus larvae. Subsequent sampling coincided with the tick larvae and adult developmental stages. A significant influx of CD20+ B-lymphocytes in the dermis all cattle breeds was observed while CD3+ T-lymphocytes were significantly increased for more tick resistant breeds. Eosinophil infiltration in germinal centres of lymph nodes was significant for all cattle breeds while tingible body macrophages were significantly increased for adult infested Brahman animals. A negligible fluctuation in CD20+ and CD79α+ B-lymphocyte numbers was present in the lymph node of more resistant cattle breeds, while susceptible animals showed a decrease in B-lymphocytes after infestation, followed by an increase between larvae to adult infested time points. Increased variability of γd T-lymphocyte populations in lymph nodes was correlated with tick susceptibility. In addition, a more stable T helper lymphocyte population was identified in the lymph nodes for the Brahman cattle breed. Results suggest the association of tick susceptibility with differential B-lymphocyte regulation in lymph node tissues, increased variability of WC1+ γδ T-lymphocyte populations in the lymph node as well as a decrease in T helper lymphocytes in the lymph node.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine Annette Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sarah Jane Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Annette-Christi Barnard
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan Ernst Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
10
|
Constantinoiu CC, Lew-Tabor A, Jackson LA, Jorgensen WK, Piper EK, Mayer DG, Johnson L, Venus B, Jonsson NN. Local immune response to larvae of Rhipicephalus microplus in Santa Gertrudis cattle. Parasite Immunol 2018; 40:e12515. [PMID: 29314141 DOI: 10.1111/pim.12515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/13/2017] [Indexed: 01/17/2023]
Abstract
This study investigated the local immune response at larval attachment sites in Santa Gertrudis cattle with low and high levels of tick resistance. Skin samples with tick larvae attached were collected from Santa Gertrudis cattle at the end of a period of 25 weekly infestations, when the animals manifested highly divergent tick-resistant phenotypes. There was a tendency for more CD3+ , CD4+ , CD8+ , CD25+ , γδ T cells and neutrophils to concentrate at larval tick attachment site in susceptible cattle than in resistant cattle but the differences were significant only for γδ T cells and CD4+ cells. Most of the cattle developed intra-epidermal vesicles at the larval attachment site but the predominant cell within or around the vesicles was the neutrophil in susceptible animals and eosinophil in the resistant animals. The monoclonal antibodies (mAbs) specific for CD45 and CD45 RO antigens reacted with skin leucocytes from a higher number of susceptible cattle than resistant cattle. Our data suggest that some of the cellular responses mounted at larval attachment site are not involved in tick protection. The mAbs specific for CD45 and CD45 RO directly, or a test for CD45 genotype might be developed as markers of tick susceptibility or resistance.
Collapse
Affiliation(s)
- C C Constantinoiu
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - A Lew-Tabor
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - L A Jackson
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia
| | - W K Jorgensen
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - E K Piper
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - D G Mayer
- Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia
| | - L Johnson
- College of Public Health, Biomedical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - B Venus
- Department of Primary Industries and Fisheries, Queensland Primary Industries and Fisheries, Brisbane, Qld, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - N N Jonsson
- Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW, Australia.,Institute of Biodiversity, Animal Health and Comparative Medicine, The University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
11
|
Robbertse L, Richards SA, Maritz-Olivier C. Bovine Immune Factors Underlying Tick Resistance: Integration and Future Directions. Front Cell Infect Microbiol 2017; 7:522. [PMID: 29312898 PMCID: PMC5742187 DOI: 10.3389/fcimb.2017.00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The mechanisms underlying tick resistance within and between cattle breeds have been studied for decades. Several previous papers on bovine immune parameters contributing to tick resistance discussed findings across DNA, RNA, protein, cellular, and tissue levels. However, the differences between bovine host species, tick species and the experimental layouts were not always taken into account. This review aims to (a) give a comprehensive summary of studies investigating immune marker differences between cattle breeds with varying degrees of tick resistance, and (b) to integrate key findings and suggest hypotheses on likely immune-regulated pathways driving resistance. Experimental issues, which may have skewed conclusions, are highlighted. In future, improved experimental strategies will enable more focused studies to identify and integrate immune markers and/or pathways. Most conclusive thus far is the involvement of histamine, granulocytes and their associated pathways in the tick-resistance mechanism. Interestingly, different immune markers might be involved in the mechanisms within a single host breed in contrast to between breeds. Also, differences are evident at each tick life stage, limiting the level to which datasets can be compared. Future studies to further elucidate immune molecule dynamics across the entire tick life cycle and in-depth investigation of promising markers and pathways on both molecular and cellular level are in dire need to obtain a scientifically sound hypothesis on the drivers of tick resistance.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front Cell Infect Microbiol 2017; 7:506. [PMID: 29322033 PMCID: PMC5732177 DOI: 10.3389/fcimb.2017.00506] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control.
Collapse
Affiliation(s)
- Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan.,Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gustavo Rocha Garcia
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Malardo
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholas N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, The University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Piper EK, Jonsson NN, Gondro C, Vance ME, Lew-Tabor A, Jackson LA. Peripheral cellular and humoral responses to infestation with the cattle tick Rhipicephalus microplus in Santa Gertrudis cattle. Parasite Immunol 2017; 39. [PMID: 27862028 DOI: 10.1111/pim.12402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022]
Abstract
Resistance to cattle tick infestation in single-host ticks is primarily manifested against the larval stage and results in the immature tick failing to attach successfully and obtain a meal. This study was conducted to identify immune responses that characterize the tick-resistant phenotype in cattle. Thirty-five tick-naïve Santa Gertrudis heifers were used in this study, thirty of which were artificially infested for thirteen weeks with tick larvae while five animals remained at a tick-free quarantine property to serve as a control group. Following thirteen weeks of tick infestation, the animals in this trial exhibited highly divergent tick-resistant phenotypes. Blood samples collected throughout the trial were used to measure peripheral immune parameters: haematology, the percentage of cellular subsets comprising the peripheral blood mononuclear cell (PBMC) population, tick-specific IgG1 and IgG2 antibody titres, IgG1 avidity for tick antigens and the ability of PBMC to recognize and proliferate in response to stimulation with tick antigens in vitro. The tick-susceptible cattle developed significantly higher tick-specific IgG1 antibody titres compared to the tick-resistant animals. These results suggest that the heightened antibody response either does not play a role in resistance or might contribute to increased susceptibility to infestation.
Collapse
Affiliation(s)
- E K Piper
- The University of Queensland, School of Veterinary Science, Gatton, Qld, Australia
| | - N N Jonsson
- The University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK
| | - C Gondro
- The University of New England, The Centre for Genetic Analysis and Applications, Armidale, NSW, Australia
| | - M E Vance
- Department of Agriculture and Fisheries, Biosecurity Science Laboratories, Brisbane, Qld, Australia
| | - A Lew-Tabor
- Department of Agriculture and Fisheries, Biosecurity Science Laboratories, Brisbane, Qld, Australia
| | - L A Jackson
- Department of Agriculture and Fisheries, Biosecurity Science Laboratories, Brisbane, Qld, Australia
| |
Collapse
|
14
|
Garcia GR, Maruyama SR, Nelson KT, Ribeiro JMC, Gardinassi LG, Maia AAM, Ferreira BR, Kooyman FNJ, de Miranda Santos IKF. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host. Parasit Vectors 2017; 10:144. [PMID: 28288696 PMCID: PMC5348738 DOI: 10.1186/s13071-017-2077-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads with cattle ticks are heritable: some breeds carry high loads of reproductively successful ticks, in others, few ticks feed and they reproduce inefficiently. Different patterns of humoral immunity against tick salivary proteins may explain these phenotypes. Methods We describe the profiles of humoral responses against tick salivary proteins elicited during repeated artificial infestations of bovines of a tick-resistant (Nelore) and a tick-susceptible (Holstein) breed. We measured serum levels of total IgG1, IgG2 and IgE immunoglobulins and of IgG1 and IgG2 antibodies specific for tick salivary proteins. With liquid chromatography followed by mass spectrometry we identified tick salivary proteins that were differentially recognized by serum antibodies from tick-resistant and tick-susceptible bovines in immunoblots of tick salivary proteins separated by two-dimensional electrophoresis. Results Baseline levels of total IgG1 and IgG2 were significantly higher in tick-susceptible Holsteins compared with resistant Nelores. Significant increases in levels of total IgG1, but not of IgG2 accompanied successive infestations in both breeds. Resistant Nelores presented with significantly higher levels of salivary-specific antibodies before and at the first challenge with tick larvae; however, by the third challenge, tick-susceptible Holsteins presented with significantly higher levels of IgG1 and IgG2 tick salivary protein-specific antibodies. Importantly, sera from tick-resistant Nelores reacted with 39 tick salivary proteins in immunoblots of salivary proteins separated in two dimensions by electrophoresis versus only 21 spots reacting with sera from tick-susceptible Holsteins. Conclusions Levels of tick saliva-specific antibodies were not directly correlated with infestation phenotypes. However, in spite of receiving apparently lower amounts of tick saliva, tick-resistant bovines recognized more tick salivary proteins. These reactive salivary proteins are putatively involved in several functions of parasitism and blood-feeding. Our results indicate that neutralization by host antibodies of tick salivary proteins involved in parasitism is essential to control tick infestations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Rocha Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kristina T Nelson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Augusto Mendes Maia
- Department of Basic Sciences, School of Animal Science and Food Technology, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Beatriz Rossetti Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Frans N J Kooyman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Isabel K F de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
15
|
Franzin AM, Maruyama SR, Garcia GR, Oliveira RP, Ribeiro JMC, Bishop R, Maia AAM, Moré DD, Ferreira BR, Santos IKFDM. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasit Vectors 2017; 10:51. [PMID: 28143523 PMCID: PMC5282843 DOI: 10.1186/s13071-016-1945-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Background Ticks attach to and penetrate their hosts’ skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. Methods In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Results Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Conclusions Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1945-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Mara Franzin
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sandra Regina Maruyama
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Gustavo Rocha Garcia
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane Pereira Oliveira
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Integrative Medicine Program, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Bishop
- International Livestock Research Institute, Nairobi, Kenya.,Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Antônio Augusto Mendes Maia
- Department of Basic Sciences, School of Animal Science and Food Technology, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Daniela Dantas Moré
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | | |
Collapse
|
16
|
Becker M, Felsberger A, Frenzel A, Shattuck WMC, Dyer M, Kügler J, Zantow J, Mather TN, Hust M. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 2015; 15:43. [PMID: 26024663 PMCID: PMC4449557 DOI: 10.1186/s12896-015-0167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. Results The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. Conclusion An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Collapse
Affiliation(s)
- Martin Becker
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA. .,Present Address: Max-Planck-Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| | - André Felsberger
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,Present Address: YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Wendy M C Shattuck
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Megan Dyer
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Jonas Kügler
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Thomas N Mather
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
17
|
Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks Tick Borne Dis 2015; 6:228-33. [PMID: 25616714 DOI: 10.1016/j.ttbdis.2014.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022]
Abstract
Rhipicephalus microplus is considered the most economically important ectoparasite of cattle worldwide. It is known that zebuine breeds of cattle are less susceptible to tick infestation than taurine breeds. Contact chemoreceptors in the cheliceral pit sensilla of ticks respond selectively to phagostimulant compounds, however their role in blood feeding relative to host susceptibility to infestation remains to be fully understood. We addressed this topic by conducting taste electrophysiology experiments with cheliceral pit sensilla preparations of R. microplus females. Solutions of five known ixodid tick phagostimulants were tested at different concentrations: sodium (NaCl), and potassium chloride (KCl) (10(-3)-10(-1)M); glucose (10(-4)-10(-1)M); adenosine triphosphate (ATP) (10(-6)-10(-2)M); and reduced l-glutathione (GSH) (10(-6)-10(-2)M). Serum samples from six susceptible animals of the Girolando breed (5/8 Bos indicus×3/8 B. taurus) and six resistant Nelore bovines (pure B. indicus) were also tested. A dose-dependent response of gustatory neurons associated with the chelicerae sensillum to NaCl, glucose, GSH, and ATP were observed. Responses by the cheliceral inner digit pit sensilla of R. microplus to KCl and glucose were also observed and they are reported here for the first time. In addition to an electrophysiological response to known phagostimulants, chemoreceptors in the chelicera of R. microplus responded differently to serum from cattle susceptible and resistant to infestation. The cheliceral pit neurons were more responsive to serum of R. microplus resistant bovines with a higher mean spike frequency (53.5±2spikess(-1)) than to serum samples from susceptible cattle (40.3±2spikess(-1)). The implications of chemosensation during tick blood feeding are discussed.
Collapse
|
18
|
Jonsson NN, Piper EK, Constantinoiu CC. Host resistance in cattle to infestation with the cattle tick Rhipicephalus microplus. Parasite Immunol 2015; 36:553-9. [PMID: 25313455 DOI: 10.1111/pim.12140] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023]
Abstract
Resistance to Rhipicephalus microplus infestation in cattle has many effector mechanisms, each of which is likely to be modulated by complex, interacting factors. Some of the mechanisms of host resistance and their modulating factors have been identified and quantified, although much remains to be explained. The variation in resistance to tick infestation is most marked between Bos taurus and Bos indicus cattle, taurine cattle given the same exposure carrying between five and 10 times as many ticks as indicine cattle. Tick resistance is mostly manifest against attaching larvae, which attempt to feed often and without success, death occurring mostly within 24 h of finding a host. There is evidence of innate and adaptive immune response to tick infestation, and it appears that the relative importance of each differs between indicine and taurine cattle. There is conflicting information regarding the role of humoral immunity in tick resistance, and recent studies indicate that strong IgG responses to tick antigens are not protective. A strong T-cell-mediated response directed against larval stages, as mounted by indicine cattle, seems to be protective. Variation in the extracellular matrix of skin (epidermal growth factors, collagens and other matrix components such as lumican) also contributes to variation in host resistance.
Collapse
Affiliation(s)
- N N Jonsson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
19
|
Cabezas-Cruz A, Valdés J, de la Fuente J. Cancer research meets tick vectors for infectious diseases. THE LANCET. INFECTIOUS DISEASES 2014; 14:916-7. [DOI: 10.1016/s1473-3099(14)70902-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
INTRODUCTION As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. RESULTS Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. CONCLUSIONS Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real 13005, Spain
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 37005, Czech Republic
| |
Collapse
|
21
|
Dorňáková V, Salazar-Sanchez R, Borrini-Mayori K, Carrion-Navarro O, Levy MZ, Schaub GA, Schwarz A. Characterization of guinea pig antibody responses to salivary proteins of Triatoma infestans for the development of a triatomine exposure marker. PLoS Negl Trop Dis 2014; 8:e2783. [PMID: 24699441 PMCID: PMC3974673 DOI: 10.1371/journal.pntd.0002783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and currently affects approximately 8 million people in Latin American countries. Although vector control campaigns against the most effective Chagas disease vector, Triatoma infestans, have been highly successful, T. infestans is re-establishing in once-endemic regions. To monitor re-establishing triatomines, new epidemiological tools are needed. Antibody responses of hosts to triatomine salivary proteins represent a promising tool to detect biting bugs, and highly immunogenic salivary antigens may be used as markers of triatomine exposure. Therefore, we analyzed the antibody response of guinea pigs, common peridomestic hosts of T. infestans, to salivary proteins of nymphs and adults of four different T. infestans strains from Argentina, Bolivia, Chile and Peru. Developmental stage- and strain-specific proteins in the saliva of T. infestans influenced the antibody response of guinea pigs, and different salivary antigens were recognized by guinea pig sera. Despite the variations of immunogenic salivary antigens, a 35 kDa antigen was recognized by almost all guinea pig sera and this antigen may be a useful marker of T. infestans exposure.
Collapse
Affiliation(s)
- Veronika Dorňáková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia, Sede de Arequipa, Arequipa, Peru
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Günter A. Schaub
- Zoology/Parasitology Group, Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Schwarz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
22
|
Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Vet Parasitol 2013; 197:168-75. [DOI: 10.1016/j.vetpar.2013.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/05/2013] [Accepted: 06/29/2013] [Indexed: 11/21/2022]
|
23
|
Seixas A, Oliveira P, Termignoni C, Logullo C, Masuda A, da Silva Vaz I. Rhipicephalus (Boophilus) microplus embryo proteins as target for tick vaccine. Vet Immunol Immunopathol 2012; 148:149-56. [DOI: 10.1016/j.vetimm.2011.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/24/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|
24
|
Ibelli A, Ribeiro A, Giglioti R, Regitano L, Alencar M, Chagas A, Paço A, Oliveira H, Duarte J, Oliveira M. Resistance of cattle of various genetic groups to the tick Rhipicephalus microplus and the relationship with coat traits. Vet Parasitol 2012; 186:425-30. [DOI: 10.1016/j.vetpar.2011.11.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
|
25
|
Brake DK, Pérez de León AA. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus. Parasit Vectors 2012; 5:38. [PMID: 22333193 PMCID: PMC3320552 DOI: 10.1186/1756-3305-5-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
Background Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult R. microplus. Methods Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. Results Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. Conclusions Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.
Collapse
Affiliation(s)
- Danett K Brake
- USDA-ARS Knipling, Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| | | |
Collapse
|
26
|
Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle. Immunogenetics 2011; 63:319-24. [PMID: 21301827 PMCID: PMC3068256 DOI: 10.1007/s00251-011-0515-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/23/2011] [Indexed: 01/21/2023]
Abstract
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.
Collapse
|
27
|
Oliveira CJF, Sá-Nunes A, Francischetti IMB, Carregaro V, Anatriello E, Silva JS, Santos IKFDM, Ribeiro JMC, Ferreira BR. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 2011; 286:10960-9. [PMID: 21270122 DOI: 10.1074/jbc.m110.205047] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ∼110 pmol/μl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ∼100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Collapse
Affiliation(s)
- Carlo José F Oliveira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brake DK, Wikel SK, Tidwell JP, Pérez de León AA. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages. Parasit Vectors 2010; 3:103. [PMID: 21054882 PMCID: PMC2993695 DOI: 10.1186/1756-3305-3-103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/05/2010] [Indexed: 01/01/2023] Open
Abstract
Background Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression. Results We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation. Conclusions Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization of the immune response.
Collapse
Affiliation(s)
- Danett K Brake
- USDA-ARS Knipling-Bushland U,S, Livestock Insects Research Laboratory, 2700 Fredericksberg Rd, Kerrville, TX 78028, USA.
| | | | | | | |
Collapse
|
29
|
Harrington D, Robinson K, Guy J, Sparagano O. Characterization of the immunological response to Dermanyssus gallinae infestation in domestic fowl. Transbound Emerg Dis 2010; 57:107-10. [PMID: 20537120 DOI: 10.1111/j.1865-1682.2010.01109.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dermanyssus gallinae is a haematophagous ectoparasite of birds, which adversely affects both production and welfare of commercial poultry. Poultry in commercial production systems chronically exposed to D. gallinae do not appear to develop immunity to the mite. The objective of the current study was to determine the initial immune response of domestic fowl following exposure to D. gallinae. Two groups of birds (11 birds/group) had mite chambers secured to their backs. Controls received no mites, while infested birds received 200 unfed female D. gallinae on day 0 which were then removed on day 1 or 2. Spleen samples were collected on days -1, 1, 2 and 5. The expression of Th1 (IFNgamma, CXCLi2, IL6 and IL18), Th2 (IL4, IL10 and IL13) cytokines/chemokines normalized against a reference gene, GAPDH, were determined by semi-quantitative RT-PCR. Although there were no significant differences between treatments, numerical trends were observed. Th2 cytokine expression was not detected in any birds on any day. IL6, CXCLi2, IFNgamma and IL18 expression was increased on day 1 in the infested group, while on day 2 CXCLi2 and IFNgamma were lower and IL6 and IL18 levels were similar between treatments. The IL18 expression was similar between treatments on day 5, while IL6 and IFNgamma levels were increased and CXCLi2 expression was decreased in the infested group. Data suggest that D. gallinae feeding stimulates Th1 and pro-inflammatory cytokines/chemokines initially (day 1) followed by their subsequent down regulation. This study is the first report of the characterization of the immunological response of the domestic fowl to controlled numbers of D. gallinae.
Collapse
Affiliation(s)
- D Harrington
- School of Agriculture, Food and Rural Development, Newcastle University, UK
| | | | | | | |
Collapse
|
30
|
Kongsuwan K, Josh P, Colgrave ML, Bagnall NH, Gough J, Burns B, Pearson R. Activation of several key components of the epidermal differentiation pathway in cattle following infestation with the cattle tick, Rhipicephalus (Boophilus) microplus. Int J Parasitol 2010; 40:499-507. [DOI: 10.1016/j.ijpara.2009.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/04/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022]
|
31
|
Constantinoiu CC, Jackson LA, Jorgensen WK, Lew-Tabor AE, Piper EK, Mayer DG, Venus B, Jonsson NN. Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus and Bos taurus taurus cattle. Int J Parasitol 2010; 40:865-75. [PMID: 20109460 DOI: 10.1016/j.ijpara.2010.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 02/05/2023]
Abstract
Bos taurus indicus cattle are less susceptible to infestation with Rhipicephalus (Boophilus) microplus than Bos taurus taurus cattle but the immunological basis of this difference is not understood. We compared the dynamics of leukocyte infiltrations (T cell subsets, B cells, major histocompatibility complex (MHC) class II-expressing cells, granulocytes) in the skin near the mouthparts of larvae of R. microplus in B. t. indicus and B. t. taurus cattle. Previously naïve cattle were infested with 50,000 larvae (B. t. indicus) or 10,000 larvae (B. t. taurus) weekly for 6 weeks. One week after the last infestation all of the animals were infested with 20,000 larvae of R. microplus. Skin punch biopsies were taken from all animals on the day before the primary infestation and from sites of larval attachment on the day after the first, second, fourth and final infestations. Infiltrations with CD3(+), CD4(+), CD8(+) and gammadelta T cells followed the same pattern in both breeds, showing relatively little change during the first four weekly infestations, followed by substantial increases at 7 weeks post-primary infestation. There was a tendency for more of all cell types except granulocytes to be observed in the skin of B. t. indicus cattle but the differences between the two breeds were consistently significant only for gammadelta T cells. Granulocyte infiltrations increased more rapidly from the day after infestation and were higher in B. t. taurus cattle than in B. t. indicus. Granulocytes and MHC class II-expressing cells infiltrated the areas closest to the mouthparts of larvae. A large volume of granulocyte antigens was seen in the gut of attached, feeding larvae.
Collapse
Affiliation(s)
- C C Constantinoiu
- Cooperative Research Centre for Beef Genetic Technologies, Armidale 2351, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo ARR, Anderson JM, Ferreira BR, Ribeiro JMC, Moré DD, Augusto Mendes Maia A, Valenzuela JG, Garcia GR, de Miranda Santos IKF. Rhipicephalus (Boophilus) microplus: clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol 2010; 124:428-35. [PMID: 20045690 DOI: 10.1016/j.exppara.2009.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host's local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick's blood meal.
Collapse
Affiliation(s)
- Wanessa Araújo Carvalho
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carvalho WA, Franzin AM, Abatepaulo ARR, de Oliveira CJF, Moré DD, da Silva JS, Ferreira BR, de Miranda Santos IKF. Modulation of cutaneous inflammation induced by ticks in contrasting phenotypes of infestation in bovines. Vet Parasitol 2009; 167:260-73. [PMID: 19836891 DOI: 10.1016/j.vetpar.2009.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly more resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick's blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host's ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks.
Collapse
Affiliation(s)
- Wanessa Araújo Carvalho
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bagnall N, Gough J, Cadogan L, Burns B, Kongsuwan K. Expression of intracellular calcium signalling genes in cattle skin during tick infestation. Parasite Immunol 2009; 31:177-87. [PMID: 19292769 DOI: 10.1111/j.1365-3024.2008.01092.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is widely acknowledged that changes in intracellular calcium ion (Ca(2+)) concentration provide dynamic signals that control a plethora of cellular processes, including triggering and mediating host defence mechanisms. In this study, quantitative real-time PCR was used to analyse gene expression of 14 Ca(2+) signalling proteins in skin obtained from high tick-resistant (HR) and low tick-resistant (LR) cattle following artificial challenge with cattle tick (Rhipicephalus (Boophilus) microplus). Up-regulation of numerous genes was observed in both HR and LR skin following tick challenge, however substantially higher transcription activation was found in HR tissue. The elevated expression in HR skin of specific Ca(2+) signalling genes such as AHNAK, CASQ, IL2, NFAT2CIP and PLCG1 may be related to host resistance. Our data suggest that Ca(2+) and its associated proteins might play an important role in host response to ticks and that further investigation is warranted.
Collapse
Affiliation(s)
- N Bagnall
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia QLD, Australia
| | | | | | | | | |
Collapse
|
35
|
Comparative immunogenicity of Haemaphysalis longicornis and Rhipicephalus (Boophilus) microplus calreticulins. Vet Parasitol 2009; 164:282-90. [PMID: 19560273 DOI: 10.1016/j.vetpar.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/07/2009] [Accepted: 05/22/2009] [Indexed: 11/24/2022]
Abstract
The ticks Rhipicephalus (Boophilus) microplus and Haemaphysalis longicornis are blood-sucking ectoparasites of bovines, causing serious damages to the livestock production. The main control method for these ticks is based on acaricides. However, the use of vaccines has been studied as a promising control strategy. Calreticulin (CRT) is a multifunctional, predominantly intracellular protein present in almost all cells of animals. The secretion of CRT during feeding might be linked to the modulation of the parasite-host interaction. In the present study, recombinant CRTs of R. microplus (rBmCRT) and H. longicornis (rHlCRT) were expressed in Escherichia coli and purified by ion exchange chromatography and used for the immunization of bovines and mouse. ELISA demonstrated that both rCRTs are recognized by the sera of immunized bovines. In silico, despite the difference in amino acid sequences, antigenic index analysis of HlCRT and BmCRT using the Jameson-Wolf algorithm indicated that both proteins were very similar in antigenicity index, although six different epitopes between the tick CRTs have been inferred. These data were corroborated by competitive ELISA analyses, which suggest the presence of different epitopes within the proteins. Western blot analyses showed that anti-rBmCRT and anti-rHlCRT bovine sera also recognized the native proteins in larvae extracts and, moreover, sera of bovines immunized with saliva and extract of salivary glands recognized both recombinant CRTs. Thus, mouse and bovine immune system recognized rCRTs, resulting in the production of antibodies with similar specificity for both recombinant proteins, although different epitopes could be distinguished between rBmCRT and rHlCRT.
Collapse
|
36
|
Immunological profiles of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1074-86. [PMID: 19474263 DOI: 10.1128/cvi.00157-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cattle tick, Rhipicephalus (Boophilus) microplus, is a major threat to the improvement of cattle production in tropical and subtropical countries worldwide. Bos indicus cattle are naturally more resistant to infestation with the cattle tick than are Bos taurus breeds, although considerable variation in resistance occurs within and between breeds. It is not known which genes contribute to the resistant phenotype, nor have immune parameters involved in resistance to R. microplus been fully described for the bovine host. This study was undertaken to determine whether selected cellular and antibody parameters of the peripheral circulation differed between tick-resistant Bos indicus and tick-susceptible Bos taurus cattle following a period of tick infestations. This study demonstrated significant differences between the two breeds with respect to the percentage of cellular subsets comprising the peripheral blood mononuclear cell population, cytokine expression by peripheral blood leukocytes, and levels of tick-specific immunoglobulin G1 (IgG1) antibodies measured in the peripheral circulation. In addition to these parameters, the Affymetrix bovine genome microarray was used to analyze gene expression by peripheral blood leukocytes of these animals. The results demonstrate that the Bos indicus cattle developed a stabilized T-cell-mediated response to tick infestation evidenced by their cellular profile and leukocyte cytokine spectrum. The Bos taurus cattle demonstrated cellular and gene expression profiles consistent with a sustained innate, inflammatory response to infestation, although high tick-specific IgG1 titers suggest that these animals have also developed a T-cell response to infestation.
Collapse
|
37
|
Caljon G, Broos K, De Goeyse I, De Ridder K, Sternberg JM, Coosemans M, De Baetselier P, Guisez Y, Den Abbeele JV. Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:332-341. [PMID: 19507303 DOI: 10.1016/j.ibmb.2009.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Our previous screening of a Glossina morsitans morsitans lamdagt11 salivary gland expression library with serum of a tsetse fly exposed rabbit identified a cDNA encoding Tsetse Antigen5 (TAg5, 28.9 kDa), a homologue of Antigen5 sting venom allergens. Recombinant TAg5 was produced in Sf9 cells in order to assess its immunogenic properties in humans. Plasma from a patient that previously exhibited anaphylactic reactions against tsetse fly bites contained circulating anti-TAg5 and anti-saliva IgEs. In a significant proportion of plasma samples of African individuals, TAg5 and saliva binding IgEs (respectively 56 and 65%) can be detected. Saliva, harvested from flies that were subjected to TAg5- specific RNA interference (RNAi), displayed significantly reduced IgE binding potential. Allergenic properties of TAg5 and tsetse fly saliva were further illustrated in immunized mice, using an immediate cutaneous hypersensitivity and passive cutaneous anaphylaxis assay. Collectively, TAg5 was illustrated to be a tsetse fly salivary allergen, demonstrating that Antigen5-related proteins are represented as functional allergens not only in stinging but also in blood feeding insects.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Parasitology, Institute of Tropical Medicine Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. FRONT BIOSCI-LANDMRK 2009; 14:2051-88. [PMID: 19273185 PMCID: PMC2785505 DOI: 10.2741/3363] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
39
|
Gene expression in the skin of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Immunol Immunopathol 2008; 126:110-9. [DOI: 10.1016/j.vetimm.2008.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/18/2008] [Accepted: 06/25/2008] [Indexed: 11/30/2022]
|
40
|
Rhipicephalus (Boophilus) microplus: distinct acute phase proteins vary during infestations according to the genetic composition of the bovine hosts, Bos taurus and Bos indicus. Exp Parasitol 2007; 118:587-91. [PMID: 18171576 DOI: 10.1016/j.exppara.2007.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 11/23/2022]
Abstract
Tick bites may trigger acute phase responses. Positive and negative acute phase proteins were measured in infested cattle genetically resistant and susceptible to ticks. During heavier infestations levels of haptoglobin increased significantly in susceptible bovines; levels of serum amyloid A increased in resistant bovines; levels of alpha-1-acid glycoprotein decreased significantly in resistant bovines; levels of transferrin decreased significantly in susceptible bovines. In conclusion, tick infestations trigger acute phase responses and enhancement of specific acute phase proteins differs according to the genetic composition of hosts. Acute phase proteins may constitute useful biological signatures for monitoring the stress induced by tick infestations.
Collapse
|
41
|
Jensen K, de Miranda Santos IKF, Glass EJ. Using genomic approaches to unravel livestock (host)-tick-pathogen interactions. Trends Parasitol 2007; 23:439-44. [PMID: 17656152 DOI: 10.1016/j.pt.2007.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/25/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
Ticks and tick-borne diseases are a major constraint on livestock farming in many developing countries, which has a huge impact on their economies. Genomic information is becoming more abundant for many of the species involved, which if exploited successfully could be used to develop new control strategies. Here, we review the genomic resources that are now available and discuss how this information is currently being harnessed or can be used in the future to explore the complex interplay that occurs between livestock hosts, tick vectors and tick-borne pathogens.
Collapse
Affiliation(s)
- Kirsty Jensen
- Division of Genetics and Genomics, Roslin Institute, Roslin, Midlothian, Edinburgh, EH25 9PS, UK.
| | | | | |
Collapse
|
42
|
Untalan PM, Pruett JH, Steelman CD. Association of the bovine leukocyte antigen major histocompatibility complex class II DRB3*4401 allele with host resistance to the Lone Star tick, Amblyomma americanum. Vet Parasitol 2007; 145:190-5. [PMID: 17208379 DOI: 10.1016/j.vetpar.2006.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 11/24/2022]
Abstract
The MHC of cattle, known as the bovine leukocyte antigen (BoLA) complex, plays an integral role in disease and parasite susceptibility, and immune responsiveness of the host. While susceptibility to tick infestation in cattle is believed to be heritable, genes that may be responsible for the manifestation of this phenotype remain elusive. In an effort to analyze the role that genes within the BoLA complex may play in host resistance to ticks, we have evaluated components of this system within a herd of cattle established at our laboratory that has been phenotyped for ectoparasite susceptibility. Of three microsatellite loci within the BoLA complex analyzed, alleles of two microsatellite loci within the BoLA class IIa cluster (DRB1-118 and DRB3-174) associated with the tick-resistant phenotype, prompting further investigation of gene sequences within the DRB3 region. DRB3 is a class IIa gene, the second exon of which is highly polymorphic since it encodes the antigen recognition site of the DR class II molecule. Analysis of the second exon of the DRB3 gene from the phenotyped calves in our herd revealed a significant association between the DRB3*4401 allele and the tick-resistant phenotype. To our knowledge, this is the first report of a putative association between a class IIa DRB3 sequence and host resistance to the Lone Star tick. Elucidation of the mechanism involved in tick resistance will contribute to improving breeding schemes for parasite resistance, which will be beneficial to the cattle industry.
Collapse
Affiliation(s)
- Pia M Untalan
- USDA-ARS, Knipling Bushland US Livestock Insect Research Laboratory, Kerrville, TX 78028, USA.
| | | | | |
Collapse
|
43
|
Wang YH, Reverter A, Kemp D, McWilliam SM, Ingham A, Davis CA, Moore RJ, Lehnert SA. Gene expression profiling of Hereford Shorthorn cattle following challenge with Boophilus microplus tick larvae. ACTA ACUST UNITED AC 2007. [DOI: 10.1071/ea07012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of cattle to resist tick infestations is partly genetically determined. In order to better define the nature of Bos taurus resistance to the cattle tick Boophilus microplus, skin gene expression was studied using a cattle skin derived cDNA microarray. Expression profiles were determined in skin biopsies sampled from three highly tick resistant animals (HR) and two animals with lower tick resistance (LR) at time 0, immediately before challenge, and again 24 h after challenge. The analysis of the resulting expression data addressed two biological questions: first, for any animal exposed to ticks, which genes are differentially expressed in the 24 h following challenge; and second, which genes are differentially expressed between animals of high and low resistance at 24 h after challenge? In total, 214 genes were found to be differentially expressed in response to larval challenge across all the animals. Seventy-two genes were upregulated and 76 were downregulated at 24 h after challenge. Genes with significantly altered gene expression levels following tick infestation were predominantly keratin genes or mitochondrial genes, as well as odorant binding protein (OBP) and Bos taurus major allergen BDA20. In addition, we identified 66 genes with differential expression between HR and LR animals at 24 h. Of these, genes representing the extracellular matrix and immunoglobulin gene expression pathways were overrepresented. Three differentially expressed genes, OBP, Bos taurus major allergen BDA20 and dendritic cell protein HFL-B5 were further analysed by quantitative reverse transcription PCR (qRT-PCR). The qRT-PCR assay results closely mirrored the expression profiles found in the microarray experiment.
Collapse
|
44
|
Leal AT, Seixas A, Pohl PC, Ferreira CAS, Logullo C, Oliveira PL, Farias SE, Termignoni C, da Silva Vaz I, Masuda A. Vaccination of bovines with recombinant Boophilus Yolk pro-Cathepsin. Vet Immunol Immunopathol 2006; 114:341-5. [PMID: 16997384 DOI: 10.1016/j.vetimm.2006.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/14/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Boophilus Yolk pro-Cathepsin (BYC) is an aspartic proteinase found in Boophilus microplus eggs that is involved in the embryogenesis and has been tested as antigen to compose an anti-tick vaccine. The vaccine potential of a recombinant BYC expressed in Escherichia coli (rBYC) was investigated. rBYC was purified and used to immunize Hereford cattle. The sera of bovines immunized with rBYC recognized the native BYC with a titer ranging from 125 to 4000. Furthermore, immunized bovines challenged with 20,000 larvae presented an overall protection of 25.24%. The partial protection obtained against B. microplus infestation with the recombinant protein immunization was similar to the already described for native BYC immunization.
Collapse
Affiliation(s)
- Alexandre T Leal
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre RS 91501-970, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Andrade BB, Teixeira CR, Barral A, Barral-Netto M. Haematophagous arthropod saliva and host defense system: a tale of tear and blood. AN ACAD BRAS CIENC 2005; 77:665-93. [PMID: 16341443 DOI: 10.1590/s0001-37652005000400008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The saliva from blood-feeding arthropod vectors is enriched with molecules that display diverse functions that mediate a successful blood meal. They function not only as weapons against host's haemostatic, inflammatory and immune responses but also as important tools to pathogen establishment. Parasites, virus and bacteria taking advantage of vectors' armament have adapted to facilitate their entry in the host. Today, many salivary molecules have been identified and characterized as new targets to the development of future vaccines. Here we focus on current information on vector's saliva and the molecules responsible to modify host's hemostasis and immune response, also regarding their role in disease transmission.
Collapse
Affiliation(s)
- Bruno B Andrade
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, 40295-001 Salvador, BA, Brazil
| | | | | | | |
Collapse
|