1
|
Arbon D, Mach J, Čadková A, Sipkova A, Stursa J, Klanicová K, Machado M, Ganter M, Levytska V, Sojka D, Truksa J, Werner L, Sutak R. Chelation of Mitochondrial Iron as an Antiparasitic Strategy. ACS Infect Dis 2024; 10:676-687. [PMID: 38287902 PMCID: PMC10862539 DOI: 10.1021/acsinfecdis.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Aneta Čadková
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Anna Sipkova
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Stursa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Kristýna Klanicová
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Marta Machado
- Graduate
Program in Areas of Basic and Applied Biology, Instituto de Ciências
Biomédicas Abel Salazar, Universidade
do Porto, Porto 4050-313, Portugal
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Markus Ganter
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Viktoriya Levytska
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Daniel Sojka
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Jaroslav Truksa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
| | - Lukáš Werner
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Robert Sutak
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| |
Collapse
|
2
|
Mostafa E, Ahmed FASMS, Yahia SH, Ibrahim AIM, Elbahaie ES. The effects of intracellular iron availability on the outcome of Toxoplasma gondii infection in mice. J Parasit Dis 2023; 47:608-618. [PMID: 37520204 PMCID: PMC10382456 DOI: 10.1007/s12639-023-01603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite that obtains the iron it needs for its own metabolism from the host-cell iron pool. In this work, we aimed to investigate if iron supplementation or deficiency affected the course of T. gondii infection. Eighty mice were divided into four groups, each with 20 animals: Group (I): Uninfected control group. Group (II): Infected control group: injected with Phosphate buffered saline. Group (III): Infected group: received iron sucrose treatment. Group (IV): Infected group: treated with deferoxamine. Quantitative PCR studies were performed on days 3 and 8 post-infection to detect the expression of iron metabolism genes (hamp and ferroprotin) and immune-histochemical analysis to study the percentage of TNF-α and TGF-β tissue expression. Iron supplementation induced progressions of infection evident by increased tissue expression of pro-inflammatory cytokine TNF-α and downregulation of TGF-β which is mostly linked to suppression of the inflammatory process caused by T. gondii. Increased expression of TGF-β and decreased expression of TNF-α was noticed when iron deprivation occurred. On day 3, we noticed increased expression in the hamp gene with iron supplementation while it decreases when the iron supply is low. On the contrary, iron deficiency increased ferroprotin gene expression whereas supplementing decreased it. On day 8, the level of expression of these genes returned to normal levels. These observations document the potential role of iron in controlling toxoplasmosis infection and indicate that the transcription of hamp and ferroprotin in T. gondii-infected cells appears to be regulated by a sophisticated indirect mechanism.
Collapse
Affiliation(s)
- Eman Mostafa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Samah Hassan Yahia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Enas Saed Elbahaie
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Maldonado E, Rojas DA, Urbina F, Solari A. The Use of Antioxidants as Potential Co-Adjuvants to Treat Chronic Chagas Disease. Antioxidants (Basel) 2021; 10:antiox10071022. [PMID: 34202043 PMCID: PMC8300663 DOI: 10.3390/antiox10071022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosome cruzi. This illness affects to almost 8–12 million people worldwide, however, is endemic to Latin American countries. It is mainly vectorially transmitted by insects of the Triatominae family, although other transmission routes also exist. T. cruzi-infected cardiomyocytes at the chronic stage of the disease display severe mitochondrial dysfunction and high ROS production, leading to chronic myocardial inflammation and heart failure. Under cellular stress, cells usually can launch mitochondrial biogenesis in order to restore energy loss. Key players to begin mitochondrial biogenesis are the PGC-1 (PPARγ coactivator 1) family of transcriptional coactivators, which are activated in response to several stimuli, either by deacetylation or dephosphorylation, and in turn can serve as coactivators for the NRF (nuclear respiratory factor) family of transcription factors. The NRF family of transcriptional activators, namely NRF1 and NRF2, can activate gene expression of oxidative phosphorylation (OXPHOS) components, mitochondrial transcriptional factor (Tfam) and nuclear encoded mitochondrial proteins, leading to mitochondrial biogenesis. On the other hand, NRF2 can activate gene expression of antioxidant enzymes in response to antioxidants, oxidants, electrophile compounds, pharmaceutical and dietary compounds in a mechanism dependent on KEAP1 (Kelch-like ECH-associated protein 1). Since a definitive cure to treat Chagas disease has not been found yet; the use of antioxidants a co-adjuvant therapy has been proposed in an effort to improve mitochondrial functions, biogenesis, and the antioxidant defenses response. Those antioxidants could activate different pathways to begin mitochondrial biogenesis and/or cytoprotective antioxidant defenses. In this review we discuss the main mechanisms of mitochondrial biogenesis and the NRF2-KEAP1 activation pathway. We also reviewed the antioxidants used as co-adjuvant therapy to treat experimental Chagas disease and their action mechanisms and finish with the discussion of antioxidant therapy used in Chagas disease patients.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
- Correspondence: (E.M.); (A.S.)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8380453, Chile;
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
- Correspondence: (E.M.); (A.S.)
| |
Collapse
|
4
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
5
|
Urquiza J, Cevallos C, Elizalde MM, Delpino MV, Quarleri J. Priming Astrocytes With HIV-Induced Reactive Oxygen Species Enhances Their Trypanosoma cruzi Infection. Front Microbiol 2020; 11:563320. [PMID: 33193149 PMCID: PMC7604310 DOI: 10.3389/fmicb.2020.563320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Trypanosoma cruzi is an intracellular protozoa and etiological agent that causes Chagas disease. Its presence among the immunocompromised HIV-infected individuals is relevant worldwide because of its impact on the central nervous system (CNS) causing severe meningoencephalitis. The HIV infection of astrocytes – the most abundant cells in the brain, where the parasite can also be hosted – being able to modify reactive oxygen species (ROS) could influence the parasite growth. In such interaction, extracellular vesicles (EVs) shed from trypomastigotes may alter the surrounding environment including its pro-oxidant status. Methods: We evaluated the interplay between both pathogens in human astrocytes and its consequences on the host cell pro-oxidant condition self-propitiated by the parasite – using its EVs – or by HIV infection. For this goal, we challenged cultured human primary astrocytes with both pathogens and the efficiency of infection and multiplication were measured by microscopy and flow cytometry and parasite DNA quantification. Mitochondrial and cellular ROS levels were measured by flow cytometry in the presence or not of scavengers with a concomitant evaluation of the cellular apoptosis level. Results: We observed that increased mitochondrial and cellular ROS production boosted significantly T. cruzi infection and multiplication in astrocytes. Such oxidative condition was promoted by free trypomastigotes-derived EVs as well as by HIV infection. Conclusions: The pathogenesis of the HIV-T. cruzi coinfection in astrocytes leads to an oxidative misbalance as a key mechanism, which exacerbates ROS generation and promotes positive feedback to parasite growth in the CNS.
Collapse
Affiliation(s)
- Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
7
|
Mesías AC, Garg NJ, Zago MP. Redox Balance Keepers and Possible Cell Functions Managed by Redox Homeostasis in Trypanosoma cruzi. Front Cell Infect Microbiol 2019; 9:435. [PMID: 31921709 PMCID: PMC6932984 DOI: 10.3389/fcimb.2019.00435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The toxicity of oxygen and nitrogen reactive species appears to be merely the tip of the iceberg in the world of redox homeostasis. Now, oxidative stress can be seen as a two-sided process; at high concentrations, it causes damage to biomolecules, and thus, trypanosomes have evolved a strong antioxidant defense system to cope with these stressors. At low concentrations, oxidants are essential for cell signaling, and in fact, the oxidants/antioxidants balance may be able to trigger different cell fates. In this comprehensive review, we discuss the current knowledge of the oxidant environment experienced by T. cruzi along the different phases of its life cycle, and the molecular tools exploited by this pathogen to deal with oxidative stress, for better or worse. Further, we discuss the possible redox-regulated processes that could be governed by this oxidative context. Most of the current research has addressed the importance of the trypanosomes' antioxidant network based on its detox activity of harmful species; however, new efforts are necessary to highlight other functions of this network and the mechanisms underlying the fine regulation of the defense machinery, as this represents a master key to hinder crucial pathogen functions. Understanding the relevance of this balance keeper program in parasite biology will give us new perspectives to delineate improved treatment strategies.
Collapse
Affiliation(s)
- Andrea C. Mesías
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Nisha J. Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - M. Paola Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
8
|
Haematological alterations in non-human hosts infected with Trypanosoma cruzi: a systematic review. Parasitology 2018; 146:142-160. [PMID: 30070181 DOI: 10.1017/s0031182018001294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
American trypanosomiasis is a neglected tropical disease whose spectrum has not been quite understood, including the impact of Trypanosoma cruzi infection on the haematological parameters of different vertebrate hosts. Thus, this study was designed to compare the pattern of haematological changes induced by T. cruzi infection in order to identify possible species-specific differences among taxons. We also aimed at evaluating the use of this parameter as a tool for diagnosis during the acute phase, when symptoms are usually masked. For this purpose, we performed a systematic search on PubMed and Scopus databases to retrieve original studies published until August 2016. Thirty-one studies were selected using Prisma strategy, which were then submitted to data extraction and methodological bias analysis. Half of the studies showed that the number of erythrogram decreased in infected animals, indicating anaemia. In 68.2% of the studies, the total amount of leukogram values increased, suggesting infection. The main methodological limitations were insufficient information for T. cruzi strains identification, inoculation routes and parasitological characterization. Most of the mammalian species analysed showed the same pattern of haematological changes following T. cruzi infection, indicating that haematological parameters might direct the diagnosis of Chagas disease in the initial phase.
Collapse
|
9
|
Abstract
Iron is an essential cofactor for many basic metabolic pathways in pathogenic microbes and their hosts. It is also dangerous as it can catalyse the production of reactive free radicals. This dual character makes the host can either limit iron availability to invading microbes or exploit iron to induce toxicity to pathogens. Successful pathogens, including Leishmania species, must possess mechanisms to circumvent host's iron limitation and iron-induced toxicity in order to survive. In this review, we discuss the regulation of iron metabolism in the setting of infection and delineate the iron acquisition strategies used by Leishmania parasites and their subversions to host iron metabolism to overcome host's iron-related defences.
Collapse
|
10
|
Sanches TLM, Cunha LD, Silva GK, Guedes PMM, Silva JS, Zamboni DS. The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease. PLoS One 2014; 9:e91640. [PMID: 24651711 PMCID: PMC3961278 DOI: 10.1371/journal.pone.0091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
Chagas disease develops upon infection with the protozoan parasite Trypanosoma cruzi and undergoes an acute phase characterized by massive parasite replication and the presence of parasites in the blood. This condition is known as acute phase parasitemia. This initial stage may result in a cure, in the development of the chronic stages of the disease or in the death of the infected host. Despite intensive investigation related to the characterization of the acute and chronic phases of the disease, the cause-effect relationship of acute phase parasitemia to the outcome of the disease is still poorly understood. In this study, we artificially generated a heterogeneously controlled mouse population by intercrossing F1 mice obtained from a parental breeding of highly susceptible A/J with highly resistant C57BL/6 mouse strains. This F2 population was infected and used to assess the correlation of acute phase parasitemia with the longevity of the animals. We used nonparametric statistical analyses and found a significant association between parasitemia and mortality. If males and females were evaluated separately, we found that the former were more susceptible to death, although parasitemia was similar in males and females. In females, we found a strong negative correlation between parasitemia and longevity. In males, however, additional factors independent of parasitemia may favor mouse mortality during the development of the disease. The correlations of acute phase parasitemia with mortality reported in this study may facilitate an appropriate prognostic approach to the disease in humans. Moreover, these results illustrate the complexity of the mammalian genetic traits that regulate host resistance during Chagas disease.
Collapse
Affiliation(s)
- Tiago L. M. Sanches
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Grace K. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Paulo M. M. Guedes
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Velmurugan C, Vivek B, Wilson E, Bharathi T, Sundaram T. Evaluation of safety profile of black shilajit after 91 days repeated administration in rats. Asian Pac J Trop Biomed 2013; 2:210-4. [PMID: 23569899 DOI: 10.1016/s2221-1691(12)60043-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/10/2011] [Accepted: 10/02/2011] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To evaluate the safety of shilajit by 91 days repeated administration in different dose levels in rats. METHODS In this study the albino rats were divided into four groups. Group I received vehicle and group II, III and IV received 500, 2 500 and 5 000 mg/kg of shilajit, respectively. Finally animals were sacrificed and subjected to histopathology and iron was estimated by flame atomic absorption spectroscopy and graphite furnace. RESULTS The result showed that there were no significant changes in iron level of treated groups when compared with control except liver (5 000 mg/kg) and histological slides of all organs revealed normal except negligible changes in liver and intestine with the highest dose of shilajit. The weight of all organs was normal when compared with control. CONCLUSIONS The result suggests that black shilajit, an Ayurvedic formulation, is safe for long term use as a dietary supplement for a number of disorders like iron deficiency anaemia.
Collapse
Affiliation(s)
- C Velmurugan
- Department of Pharmacology, Sri Krishna Chaithanya College of Pharmacy, Nimnapalli Road, Madanapalle, Andhra Pradesh
| | | | | | | | | |
Collapse
|
12
|
Paiva CN, Feijó DF, Dutra FF, Carneiro VC, Freitas GB, Alves LS, Mesquita J, Fortes GB, Figueiredo RT, Souza HSP, Fantappié MR, Lannes-Vieira J, Bozza MT. Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 2012; 122:2531-42. [PMID: 22728935 DOI: 10.1172/jci58525] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase-1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti-T. cruzi drugs.
Collapse
Affiliation(s)
- Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes (IMPPG), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Estevam M, Appoloni CR, Malvezi AD, Tatakihara VLH, Panis C, Cecchini R, Rizzo LV, Pinge-Filho P. Trypanosoma cruzi: in vivoevaluation of iron in skin employing X-ray fluorescence (XRF) in mouse strains that differ in their susceptibility to infection. ACTA ACUST UNITED AC 2012; 64:334-42. [DOI: 10.1111/j.1574-695x.2011.00917.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/10/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
|
14
|
Iron metabolism and the innate immune response to infection. Microbes Infect 2011; 14:207-16. [PMID: 22033148 DOI: 10.1016/j.micinf.2011.10.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022]
Abstract
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.
Collapse
|
15
|
Arantes JM, Francisco AF, de Abreu Vieira PM, Silva M, Araújo MSS, de Carvalho AT, Pedrosa ML, Carneiro CM, Tafuri WL, Martins-Filho OA, Elói-Santos SM. Trypanosoma cruzi: desferrioxamine decreases mortality and parasitemia in infected mice through a trypanostatic effect. Exp Parasitol 2011; 128:401-8. [PMID: 21620835 DOI: 10.1016/j.exppara.2011.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/07/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Desferrioxamine (DFO) is a potent iron chelator that is also known to modulate inflammation and act as an efficient antioxidant under normal conditions and under oxidative stress. Many in vitro and in vivo studies have shown the efficacy of DFO in the treatment of viral, bacterial and protozoan infections. DFO is known to reduce the intensity of Trypanosoma cruzi infections in mice even during a course of therapy that is not effective in maintaining anaemia or low iron levels. To further clarify these findings, we investigated the action of DFO on mouse T. cruzi infection outcomes and the direct impact of DFO on parasites. Infected animals treated with DFO (5 mg/animal/day) for 35 days, beginning 14 days prior to infection, presented lower parasitemia and lower cumulative mortality rate. No significant effect was observed on iron metabolism markers, erythrograms, leukograms or lymphocyte subsets. In the rapid method for testing in vivo T. cruzi susceptibility, DFO also induced lower parasitemia. In regard to its direct impact on parasites, DFO slightly inhibited the growth of amastigotes and trypomastigotes in fibroblast culture. Trypan blue staining showed no effects of DFO on parasite viability, and only minor apoptosis in trypomastigotes was observed. Nevertheless, a clear decrease in parasite mobility was detected. In conclusion, the beneficial actions of DFO on mice T. cruzi infection seem to be independent of host iron metabolism and free of significant haematological side effects. Through direct action on the parasite, DFO has more effective trypanostatic than trypanocidal properties.
Collapse
Affiliation(s)
- Jerusa Marilda Arantes
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Osvaldo Cruz, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Malafaia G, Talvani A. Nutritional Status Driving Infection by Trypanosoma cruzi: Lessons from Experimental Animals. J Trop Med 2011; 2011:981879. [PMID: 21577255 PMCID: PMC3090609 DOI: 10.1155/2011/981879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/30/2010] [Accepted: 02/17/2011] [Indexed: 01/21/2023] Open
Abstract
This paper reviews the scientific knowledge about protein-energy and micronutrient malnutrition in the context of Chagas disease, especially in experimental models. The search of articles was conducted using the electronic databases of SciELO (Scientific Electronic Library Online), PubMed and MEDLINE published between 1960 and March 2010. It was possible to verify that nutritional deficiencies (protein-energy malnutrition and micronutrient malnutrition) exert a direct effect on the infection by T. cruzi. However, little is known about the immunological mechanisms involved in the relationship "nutritional deficiencies and infection by T. cruzi". A hundred years after the discovery of Chagas disease many aspects of this illness still require clarification, including the effects of nutritional deficiencies on immune and pathological mechanisms of T. cruzi infection.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Departamento de Ciências Biológicas, Núcleo de Pesquisas e Estudos Ambientais e Biológicos, Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Urutaí, Rodovia Geraldo Silva Nascimento km 2.5, 75790-000 Urutaí, GO, Brazil
| | - André Talvani
- Laboratório de Doença de Chagas, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisa em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35400-000 Ouro Preto, MG, Brazil
| |
Collapse
|
17
|
Maioli TU, Assis FA, Vieira PMA, Borelli P, Santiago H, Alves R, Romanha AJ, Carneiro CM, Faria AMC. Splenectomy increases mortality in murine Trypanosoma cruzi infection. Scand J Immunol 2010; 73:36-45. [PMID: 21129001 DOI: 10.1111/j.1365-3083.2010.02478.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spleen is a secondary lymphoid organ that harbours a variety of cells such as T and B lymphocytes and antigen-presenting cells important to immune response development. In this study, we evaluated the impact of spleen removal in the immune response to experimental Trypanosoma cruzi infection. C57BL/6 mice were infected with Y strain of the parasite and infection was followed daily. Mice that underwent splenectomy had fewer parasites in peripheral blood at the peak of infection; however, mortality was increased. Histological analysis of heart and liver tissues revealed an increased number of parasites and inflammatory infiltrates at these sites. Spleen removal was associated with reduction in IFN-γ and TNF-α production during infection as well as with a decrease in specific antibody secretion. Haematological disorders were also detected. Splenectomized mice exhibited severe anaemia and decreased bone marrow cell numbers. Our results indicate that spleen integrity is critical in T. cruzi infection for the immune response against the parasite, as well as for the control of bone marrow haematological function.
Collapse
Affiliation(s)
- T U Maioli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Malafaia G, Marcon LDN, Pereira LDF, Pedrosa ML, Rezende SA. Leishmania chagasi: effect of the iron deficiency on the infection in BALB/c mice. Exp Parasitol 2010; 127:719-23. [PMID: 21110973 DOI: 10.1016/j.exppara.2010.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 11/04/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
Abstract
Iron deficiency and visceral leishmaniasis are serious problems of public health. The aim of this study was to evaluate the effect of iron deficiency, induced by the iron chelator desferrioxamine, on the course of the infection by Leishmania chagasi in BALB/c mice. Our data show that the iron chelator caused significant reduction in hemoglobin concentration of treated mice and reduction in parasite load in spleen and liver. Significant differences were not observed in the production of IFN-gamma and IL-4 among the experimental groups. In conclusion, the data reported in this paper suggest that iron deficiency may favor the host. If there is not enough iron available to the parasite, its multiplication may be reduced and infection attenuated.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Laboratório de Ciências Ambientais, Departamento de Ciências Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano-Campus Urutaí (IF Goiano), Núcleo de Pesquisa em Ciências Ambientais e Biológicas, Rodovia Geraldo Nascimento Silva, 2.5km, Zona Rural, CEP 75790-000, Urutaí, GO, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Francisco AF, de Abreu Vieira PM, Arantes JM, Silva M, Pedrosa ML, Elói-Santos SM, Martins-Filho OA, Teixeira-Carvalho A, Araújo MSS, Tafuri WL, Carneiro CM. Increase of reactive oxygen species by desferrioxamine during experimental Chagas' disease. Redox Rep 2010; 15:185-90. [PMID: 20663295 PMCID: PMC2955510 DOI: 10.1179/174329210x12650506623528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress is common in inflammatory processes associated with many diseases including Chagas' disease. The aim of the present study was to evaluate, in a murine model, biomarkers of oxidative stress together with components of the antioxidant system in order to provide an overview of the mechanism of action of the iron chelator desferrioxamine (DFO). The study population comprised 48 male Swiss mice, half of which were treated daily by intraperitoneal injection of DFO over a 35-day period, while half were administered sterile water in a similar manner. On the 14th day of the experiment, 12 DFO-treated mice and an equal number of untreated mice were experimentally infected with Trypanosoma cruzi. Serum concentrations of nitric oxide and superoxide dismutase and hepatic levels of total glutathione, thiobarbituric acid reactive species and protein carbonyl, were determined on days 0, 7, 14 and 21 post-infection. The results obtained revealed that DFO enhances antioxidant activity in the host but also increases oxidative stress, indicating that the mode of action of the drug involves a positive contribution to the host together with an effect that is not beneficial to the parasite.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fernandes SS, Nunes A, Gomes AR, de Castro B, Hider RC, Rangel M, Appelberg R, Gomes MS. Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium. Microbes Infect 2010; 12:287-94. [DOI: 10.1016/j.micinf.2010.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 11/28/2022]
|
21
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
22
|
Trypanosoma cruzi: effect of benznidazole therapy combined with the iron chelator desferrioxamine in infected mice. Exp Parasitol 2008; 120:314-9. [PMID: 18789321 DOI: 10.1016/j.exppara.2008.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/15/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022]
Abstract
Iron chelators have been employed in various studies aimed at evaluating the relationship between the iron status of the host and the development of infection. In the present study, the effects of benznidazole (BZ) therapy in combination with the iron chelator desferrioxamine (DFO) on the development of infection in mice inoculated with Trypanosoma cruzi Y strain have been investigated. Infected mice treated with DFO presented lower levels of parasitemia compared with infected untreated animals. Therapy with BZ for 21 days, with or without DFO, led to decreased parasitemia and reduced mortality, but BZ in combination with DFO treatment for 35 days (BZ/DFO-35) gave 0% mortality. All infected groups presented lower levels of iron in the liver, but serum iron concentrations were greater in DFO-35 and BZ/DFO-35, whereas hemoglobin levels were higher in BZ/DFO-35 and lower in DFO-35 compared with other treated groups. The percentage cure, determined from negative hemoculture and PCR results in animals that had survived for 60 days post-infection, was 18% for BZ and BZ/DFO-35, 42% for BZ combined with DFO for 21 days, and 67% for DFO-35. The results demonstrate that modification in iron stores increases BZ efficacy.
Collapse
|