1
|
Smith EC, Limbach KJ, Rangel N, Oda K, Bolton JS, Du M, Gowda K, Wang J, Moch JK, Sonawane S, Velasco R, Belmonte A, Danner R, Lumsden JM, Patterson NB, Sedegah M, Hollingdale MR, Richie TL, Sacci JB, Villasante ED, Aguiar JC. Novel malaria antigen Plasmodium yoelii E140 induces antibody-mediated sterile protection in mice against malaria challenge. PLoS One 2020; 15:e0232234. [PMID: 32407410 PMCID: PMC7224506 DOI: 10.1371/journal.pone.0232234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Only a small fraction of the antigens expressed by malaria parasites have been evaluated as vaccine candidates. A successful malaria subunit vaccine will likely require multiple antigenic targets to achieve broad protection with high protective efficacy. Here we describe protective efficacy of a novel antigen, Plasmodium yoelii (Py) E140 (PyE140), evaluated against P. yoelii challenge of mice. Vaccines targeting PyE140 reproducibly induced up to 100% sterile protection in both inbred and outbred murine challenge models. Although PyE140 immunization induced high frequency and multifunctional CD8+ T cell responses, as well as CD4+ T cell responses, protection was mediated by PyE140 antibodies acting against blood stage parasites. Protection in mice was long-lasting with up to 100% sterile protection at twelve weeks post-immunization and durable high titer anti-PyE140 antibodies. The E140 antigen is expressed in all Plasmodium species, is highly conserved in both P. falciparum lab-adapted strains and endemic circulating parasites, and is thus a promising lead vaccine candidate for future evaluation against human malaria parasite species.
Collapse
Affiliation(s)
- Emily C. Smith
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Keith J. Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Nonenipha Rangel
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- CAMRIS International, Bethesda, Maryland, United States of America
| | - Kyosuke Oda
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- CAMRIS International, Bethesda, Maryland, United States of America
| | - Jessica S. Bolton
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Mengyan Du
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jianyang Wang
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- CAMRIS International, Bethesda, Maryland, United States of America
| | - J. Kathleen Moch
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Rachel Velasco
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Rebecca Danner
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Joanne M. Lumsden
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Noelle B. Patterson
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - John B. Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Joao C. Aguiar
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- CAMRIS International, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Zhou J, Kaiser A, Ng C, Karcher R, McConnell T, Paczkowski P, Fernandez C, Zhang M, Mackay S, Tsuji M. CD8+ T-cell mediated anti-malaria protection induced by malaria vaccines; assessment of hepatic CD8+ T cells by SCBC assay. Hum Vaccin Immunother 2018; 13:1625-1629. [PMID: 28362549 DOI: 10.1080/21645515.2017.1304333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malaria is a severe infectious disease with relatively high mortality, thus having been a scourge of humanity. There are a few candidate malaria vaccines that have shown a protective efficacy in humans against malaria. One of the candidate human malaria vaccines, which is based on human malaria sporozoites and called PfSPZ Vaccine, has been shown to protect a significant proportion of vaccine recipients from getting malaria. PfSPZ Vaccine elicits a potent response of hepatic CD8+ T cells that are specific for malaria antigens in non-human primates. To further characterize hepatic CD8+ T cells induced by the sporozoite-based malaria vaccine in a mouse model, we have used a cutting-edge Single-cell Barcode (SCBC) assay, a recently emerged approach/method for investigating the nature of T-cells responses during infection or cancer. Using the SCBC technology, we have identified a population of hepatic CD8+ T cells that are polyfunctional at a single cell level only in a group of vaccinated mice upon malaria challenge. The cytokines/chemokines secreted by these polyfunctional CD8+ T-cell subsets include MIP-1α, RANTES, IFN-γ, and/or IL-17A, which have shown to be associated with protective T-cell responses against certain pathogens. Therefore, a successful induction of such polyfunctional hepatic CD8+ T cells may be a key to the development of effective human malaria vaccine. In addition, the SCBC technology could provide a new level of diagnostic that will allow for a more accurate determination of vaccine efficacy.
Collapse
Affiliation(s)
- Jing Zhou
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Alaina Kaiser
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Colin Ng
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Rachel Karcher
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Tim McConnell
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Patrick Paczkowski
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Cristina Fernandez
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Min Zhang
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Sean Mackay
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| | - Moriya Tsuji
- a IsoPlexis , Branford , CT , USA.,b Aaron Diamond AIDS Research Center , Affiliate of the Rockefeller University , New York , NY , USA
| |
Collapse
|
3
|
Shiratsuchi T, Rai U, Kaneko I, Zhang M, Iwanaga S, Yuda M, Tsuji M. A potent malaria vaccine based on adenovirus with dual modifications at Hexon and pVII. Vaccine 2017; 35:6990-7000. [PMID: 29089194 DOI: 10.1016/j.vaccine.2017.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/23/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Adenovirus (Ad) is thought to be one of the most promising platforms for a malaria vaccine targeted against its liver stages, because of its ability to induce a strong T-cell response against a transgene. However, a further improvement of this platform is needed in order to elicit another arm of the immunity, i.e. humoral response, against malaria. In order to augment immunogenicity and protective efficacy of Ad-based malaria vaccine, we inserted B-cell, as well as CD4+ T-cell, epitopes of Plasmodium falciparum circumsporozoite protein (PfCSP) into the capsid protein, Hexon, and the core protein, VII (pVII), of Ad, respectively, in addition to the PfCSP transgene. Insertion of PfCSP-derived B cell epitope to Hexon significantly enhanced the epitope-specific antibody response compared to AdPfCSP, an Ad vaccine expressing only PfCSP transgene. PfCSP-derived CD4+ T-cell epitope insertion into pVII augmented not only PfCSP-specific CD4+ T-cell response but also anti-PfCSP antibody response. Finally, mice immunized with AdPfCSP having both Hexon and pVII modifications were more protected than AdPfCSP or Hexon-modified AdPfCSP against challenge with transgenic rodent malaria parasites expressing the PfCSP. Overall, this study has demonstrated that Hexon and pVII-modified AdPfCSP vaccine is a promising malaria vaccine which induces strong PfCSP-specific humoral, CD4+ T-cell, and CD8+ T-cell responses and protects against infection with transgenic malaria parasites expressing the PfCSP.
Collapse
Affiliation(s)
- Takayuki Shiratsuchi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA; Otsuka Maryland Medicinal Laboratories, Inc., 9900 Medical Center Drive, Rockville, MD 20850, USA
| | - Urvashi Rai
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Min Zhang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Shiroh Iwanaga
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
4
|
In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines. J Mol Graph Model 2017; 78:195-205. [PMID: 29100164 DOI: 10.1016/j.jmgm.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/24/2023]
Abstract
Malaria is a global health burden, and a major cause of mortality and morbidity in Africa. Here we designed a putative malaria epitope ensemble vaccine by selecting an optimal set of pathogen epitopes. From the IEDB database, 584 experimentally-verified CD8+ epitopes and 483 experimentally-verified CD4+ epitopes were collected; 89% of which were found in 8 proteins. Using the PVS server, highly conserved epitopes were identified from variability analysis of multiple alignments of Plasmodium falciparum protein sequences. The allele-dependent binding of epitopes was then assessed using IEDB analysis tools, from which the population protection coverage of single and combined epitopes was estimated. Ten conserved epitopes from four well-studied antigens were found to have a coverage of 97.9% of the world population: 7 CD8+ T cell epitopes (LLMDCSGSI, FLIFFDLFLV, LLACAGLAYK, TPYAGEPAPF, LLACAGLAY, SLKKNSRSL, and NEVVVKEEY) and 3 CD4+ T cell epitopes (MRKLAILSVSSFLFV, KSKYKLATSVLAGLL and GLAYKFVVPGAATPYE). The addition of four heteroclitic peptides - single point mutated epitopes - increased HLA binding affinity and raised the predicted world population coverage above 99%.
Collapse
|
5
|
Bruder JT, Chen P, Ekberg G, Smith EC, Lazarski CA, Myers BA, Bolton J, Sedegah M, Villasante E, Richie TL, King CR, Aguiar JC, Doolan DL, Brough DE. Profiling the Targets of Protective CD8 + T Cell Responses to Infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:20-31. [PMID: 28948187 PMCID: PMC5602877 DOI: 10.1016/j.omtm.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
Abstract
T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.
Collapse
Affiliation(s)
- Joseph T. Bruder
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
- Corresponding author: Joseph T. Bruder, Summit Consulting, 567 Chestertown Street, Gaithersburg, MD 20878, USA.
| | - Ping Chen
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Greg Ekberg
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Emily C. Smith
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | | | - Bennett A. Myers
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - C. Richter King
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Joao C. Aguiar
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Camris International, 3 Bethesda Metro Center, 16th Floor, Bethesda, MD 20814, USA
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Road, Cairns, QLD 4870, Australia
| | - Douglas E. Brough
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| |
Collapse
|
6
|
Limbach K, Stefaniak M, Chen P, Patterson NB, Liao G, Weng S, Krepkiy S, Ekberg G, Torano H, Ettyreddy D, Gowda K, Sonawane S, Belmonte A, Abot E, Sedegah M, Hollingdale MR, Moormann A, Vulule J, Villasante E, Richie TL, Brough DE, Bruder JT. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model. Malar J 2017; 16:263. [PMID: 28673287 PMCID: PMC5496260 DOI: 10.1186/s12936-017-1911-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. Results The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. Conclusion These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1911-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Limbach
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Maureen Stefaniak
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ping Chen
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Noelle B Patterson
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Grant Liao
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Shaojie Weng
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Svetlana Krepkiy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Greg Ekberg
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Holly Torano
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Damodar Ettyreddy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Esteban Abot
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Michael R Hollingdale
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ann Moormann
- University of Massachusetts Medical School, Worcester, MA, USA
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Thomas L Richie
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Douglas E Brough
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Joseph T Bruder
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA.
| |
Collapse
|
7
|
Gurung P, Kanneganti TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell Mol Life Sci 2016; 73:3035-51. [PMID: 27032699 PMCID: PMC4956549 DOI: 10.1007/s00018-016-2212-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Nod-like receptors (NLRs) have gained attention in recent years because of the ability of some family members to assemble into a multimeric protein complex known as the inflammasome. The role of NLRs and the inflammasome in regulating innate immunity against bacterial pathogens has been well studied. However, recent studies show that NLRs and inflammasomes also play a role during infections caused by protozoan parasites, which pose a significant global health burden. Herein, we review the diseases caused by the most common protozoan parasites in the world and discuss the roles of NLRs and inflammasomes in host immunity against these parasites.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Despite recent advances, malaria remains a major health threat both to populations in endemic areas as well travelers, including military personnel, to these areas. Subunit vaccines have not yet achieved sufficient efficacy needed for use in any of these at risk populations. Areas covered: This review discusses the current status of various whole sporozoite vaccine approaches and is mainly focused on current clinical trials. Expert commentary: Nearly 100% efficacy was achieved by administering multiple bites of radiation-attenuated sporozoite (RAS) Plasmodium falciparum-infected mosquitoes; this is impractical for widespread use. Now, this high level efficacy has been reproduced using purified, metabolically active RAS (PfSPZ Sanaria® Vaccine), which is undergoing extensive clinical testing. Alternative whole sporozoite vaccines include immunization with fully infectious sporozoites under chloroquine prophylaxis (CPS) or as genetically-attenuated parasites (GAP). By also manufacturing purified infectious sporozoites, it is now possible to combine these with CPS and GAP, as well as perform challenge studies using controlled doses of sporozoites.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
9
|
Dendritic Cells and Their Multiple Roles during Malaria Infection. J Immunol Res 2016; 2016:2926436. [PMID: 27110574 PMCID: PMC4823477 DOI: 10.1155/2016/2926436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.
Collapse
|
10
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
11
|
Proietti C, Doolan DL. The case for a rational genome-based vaccine against malaria. Front Microbiol 2015; 5:741. [PMID: 25657640 PMCID: PMC4302942 DOI: 10.3389/fmicb.2014.00741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/06/2014] [Indexed: 12/22/2022] Open
Abstract
Historically, vaccines have been designed to mimic the immunity induced by natural exposure to the target pathogen, but this approach has not been effective for any parasitic pathogen of humans or complex pathogens that cause chronic disease in humans, such as Plasmodium. Despite intense efforts by many laboratories around the world on different aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology, progress towards the goal of an effective malaria vaccine has been disappointing. The premise of rational vaccine design is to induce the desired immune response against the key pathogen antigens or epitopes targeted by protective immune responses. We advocate that development of an optimally efficacious malaria vaccine will need to improve on nature, and that this can be accomplished by rational vaccine design facilitated by mining genomic, proteomic and transcriptomic datasets in the context of relevant biological function. In our opinion, modern genome-based rational vaccine design offers enormous potential above and beyond that of whole-organism vaccines approaches established over 200 years ago where immunity is likely suboptimal due to the many genetic and immunological host-parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human host, and which are associated with logistic and regulatory hurdles for production and delivery.
Collapse
Affiliation(s)
- Carla Proietti
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Denise L Doolan
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| |
Collapse
|
12
|
Circumsporozoite protein-specific K(d)-restricted CD8+ T cells mediate protective antimalaria immunity in sporozoite-immunized MHC-I-K(d) transgenic mice. Mediators Inflamm 2014; 2014:728939. [PMID: 25132735 PMCID: PMC4124204 DOI: 10.1155/2014/728939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022] Open
Abstract
Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS) protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6) transgenic (Tg) mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg) F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg), which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg) F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.
Collapse
|
13
|
Bijker EM, Teirlinck AC, Schats R, van Gemert GJ, van de Vegte-Bolmer M, van Lieshout L, IntHout J, Hermsen CC, Scholzen A, Visser LG, Sauerwein RW. Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites. J Infect Dis 2014; 210:1605-15. [PMID: 24872326 PMCID: PMC4208622 DOI: 10.1093/infdis/jiu293] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Immunization of healthy volunteers by bites from Plasmodium falciparum-infected mosquitoes during chloroquine chemoprophylaxis (hereafter, chemoprophylaxis and sporozoites [CPS] immunization) induces sterile protection against malaria. CPS-induced protection is mediated by immunity against pre-erythrocytic stages, presumably at least partially by cytotoxic cellular responses. We therefore aimed to investigate the association of CPS-induced cytotoxic T-cell markers with protection. METHODS In a double-blind randomized controlled trial, we performed dose titration of CPS immunization followed by homologous challenge infection in 29 subjects. Immune responses were assessed by in vitro restimulation of peripheral blood mononuclear cells and flow cytometry. RESULTS Dose-dependent complete protection was obtained in 4 of 5 volunteers after immunization with bites from 45 P. falciparum-infected mosquitoes, in 8 of 9 volunteers with bites from 30, and in 5 of 10 volunteers with bites from 15 (odds ratio [OR], 5.0; 95% confidence interval [CI], 1.5-17). Completely protected subjects had significantly higher proportions of CD4 T cells expressing the degranulation marker CD107a (OR, 8.4; 95% CI, 1.5-123; P = .011) and CD8 cells producing granzyme B (OR, 11; 95% CI, 1.9-212; P = .004) after P. falciparum restimulation. CONCLUSIONS These data underline the efficiency of CPS immunization to induce sterile protection and support a possible role for cytotoxic CD4 and CD8 T-cell responses in pre-erythrocytic immunity. CLINICAL TRIALS REGISTRATION NCT01218893.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisette van Lieshout
- Department of Medical Microbiology, Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen
| | | | | | | | | |
Collapse
|
14
|
Frevert U, Nacer A. Immunobiology of Plasmodium in liver and brain. Parasite Immunol 2014; 35:267-82. [PMID: 23631610 DOI: 10.1111/pim.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Malaria remains one of the most serious health problems globally, but our understanding of the biology of the parasite and the pathogenesis of severe disease is still limited. Multiple cellular effector mechanisms that mediate parasite elimination from the liver have been described, but how effector cells use classical granule-mediated cytotoxicity to attack infected hepatocytes and how cytokines and chemokines spread via the unique fluid pathways of the liver to reach the parasites over considerable distances remains unknown. Similarly, a wealth of information on cerebral malaria (CM), one of the most severe manifestations of the disease, was gained from post-mortem analyses of human brain and murine disease models, but the cellular processes that ultimately cause disease are not fully understood. Here, we discuss how imaging of the local dynamics of parasite infection and host response as well as consideration of anatomical and physiological features of liver and brain can provide a better understanding of the initial asymptomatic hepatic phase of the infection and the cascade of events leading to CM. Given the increasing drug resistance of both parasite and vector and the unavailability of a protective vaccine, the urgency to reduce the tremendous morbidity and mortality associated with severe malaria is obvious.
Collapse
Affiliation(s)
- U Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA.
| | | |
Collapse
|
15
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
17
|
In vivo CD8+ T cell dynamics in the liver of Plasmodium yoelii immunized and infected mice. PLoS One 2013; 8:e70842. [PMID: 23967119 PMCID: PMC3743839 DOI: 10.1371/journal.pone.0070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/21/2013] [Indexed: 12/28/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.
Collapse
|
18
|
Teixeira C, Gomes R. Experimental models in vaccine research: malaria and leishmaniasis. Braz J Med Biol Res 2013; 46:109-16. [PMID: 23369975 PMCID: PMC3854354 DOI: 10.1590/1414-431x20122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/18/2012] [Indexed: 12/11/2022] Open
Abstract
Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis.
Collapse
Affiliation(s)
- C. Teixeira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ),
Salvador, BA, Brasil
| | - R. Gomes
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ),
Salvador, BA, Brasil
| |
Collapse
|
19
|
Jangpatarapongsa K, Xia H, Fang Q, Hu K, Yuan Y, Peng M, Gao Q, Sattabongkot J, Cui L, Li B, Udomsangpetch R. Immunity to malaria in Plasmodium vivax infection: a study in central China. PLoS One 2012; 7:e45971. [PMID: 23049909 PMCID: PMC3457974 DOI: 10.1371/journal.pone.0045971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/23/2012] [Indexed: 12/03/2022] Open
Abstract
Background P. vivax infection is characterised by relapsing fever, indicating reinfection by previously hidden parasites in the host. Relapsed infection can lead to the activation of the memory T cell pool, which may lead to protective immunity. This study aims to characterise immune responses in acute P. vivax-infected patients living in an area of central China characterised by only P. vivax infection. Methodology/Principal Findings We conducted a cross-sectional immune-phenotypic analysis of adults using the following inclusion criteria: acute P. vivax infection (N = 37), a history of P. vivax infection (N = 17), and no known history of P. vivax infection (N = 21). We also conducted a 2-week longitudinal analysis following acute P. vivax infection, in which PBMC proliferation was measured in response to P. vivax and P. falciparum blood stage lysates. Using flow cytometry, we showed elevated memory T cells in the blood during acute P. vivax infection. The levels of γδ T cells were two-fold higher than those measured in naive controls. This result suggested that in the two populations, memory and γδ T cells promptly responded to P. vivax parasites. Interestingly, P. falciparum antigens stimulated T cells obtained from P. vivax-infected patients during a day 14-convalescence, whereas lymphocytes from the naïve control group responded to a lower degree of convalescence. Conclusions/Significance Cell-mediated immunity during the convalescent period of the P. vivax-infected hosts was comprised of T cells that were specifically able to recognise P. falciparum antigens. Although the magnitude of the response was only half that measured after stimulation with P. vivax antigens, the matter of cross-antigenic stimulation is of great interest.
Collapse
Affiliation(s)
- Kulachart Jangpatarapongsa
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Hui Xia
- Department of Parasitology, Bengbu Medical College, Anhui, China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui, China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
| | - Kaiming Hu
- Department of Parasitology, Bengbu Medical College, Anhui, China
| | - Yuanying Yuan
- Department of Parasitology, Bengbu Medical College, Anhui, China
| | - Meiyu Peng
- Department of Immunology, Bengbu Medical College, Anhui, China
| | - Qi Gao
- Jiangsu Institute of Parasitic Disease, Wuxi, China
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Baiqing Li
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
- Department of Immunology, Bengbu Medical College, Anhui, China
- * E-mail: (RU); (BL)
| | - Rachanee Udomsangpetch
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- * E-mail: (RU); (BL)
| |
Collapse
|
20
|
Vaughan AM, Kappe SHI. Malaria vaccine development: persistent challenges. Curr Opin Immunol 2012; 24:324-31. [DOI: 10.1016/j.coi.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|
21
|
Butler NS, Vaughan AM, Harty JT, Kappe SH. Whole parasite vaccination approaches for prevention of malaria infection. Trends Immunol 2012; 33:247-54. [DOI: 10.1016/j.it.2012.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/27/2011] [Accepted: 02/02/2012] [Indexed: 12/14/2022]
|
22
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Vaughan AM, Kappe SHI. Vaccination using radiation- or genetically attenuated live sporozoites. Methods Mol Biol 2012; 923:549-66. [PMID: 22990804 DOI: 10.1007/978-1-62703-026-7_38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The attenuation of Plasmodium parasites by either radiation or targeted gene deletion can result in viable sporozoites that invade the liver and subsequently arrest. The death of the growth-arrested liver stage parasite and the ensuing recognition by the immune system of parasite antigens promotes protective immunity in immunized mice and humans. The methods described below will enable researchers to determine the efficacy of radiation-attenuated and genetically attenuated rodent malaria sporozoite immunizations against infectious sporozoite challenge, and study protective immunity in immunized mice. In addition, by determining the time of arrest of genetically attenuated parasite liver stages and the mechanisms of clearance, researchers will be able to correlate biological features of the growth-arrested parasites with their ability to promote protective immunity.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Seattle Biomedical Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
24
|
Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SHI, Harty JT. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 2011; 9:451-62. [PMID: 21669394 DOI: 10.1016/j.chom.2011.05.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/20/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
While subunit vaccines have shown partial efficacy in clinical trials, radiation-attenuated sporozoites (RAS) remain the "gold standard" for sterilizing protection against Plasmodium infection in human vaccinees. The variability in immunogenicity and replication introduced by the extensive, random DNA damage necessary to generate RAS could be overcome by genetically attenuated parasites (GAP) designed via gene deletion to arrest at defined points during liver-stage development. Here, we demonstrate the principle that late liver stage-arresting GAP induce larger and broader CD8 T cell responses that provide superior protection in inbred and outbred mice compared to RAS or early-arresting GAP immunizations. Late liver stage-arresting GAP also engender high levels of cross-stage and cross-species protection and complete protection when administered by translationally relevant intradermal or subcutaneous routes. Collectively, our results underscore the potential utility of late liver stage-arresting GAP as broadly protective next-generation live-attenuated malaria vaccines and support their potential as a powerful model for identifying antigens to generate cross-stage protection.
Collapse
Affiliation(s)
- Noah S Butler
- Department of Microbiology, University of Iowa, 3-512 Bowen Science Building, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
25
|
Harnessing immune responses against Plasmodium for rational vaccine design. Trends Parasitol 2011; 27:274-83. [PMID: 21531627 DOI: 10.1016/j.pt.2011.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/06/2023]
Abstract
In recent years, groundbreaking advances have been made in understanding the biology of and immune mechanisms against the Plasmodium spp. parasite, the causative agent of malaria. Novel features of the Plasmodium life cycle have been unravelled and immune mechanisms, which take place during both infection and immunization, have been dissected. We have undoubtedly enhanced our knowledge, but the question now is how to use this information to manipulate immune responses against Plasmodium and to develop an efficacious malaria vaccine. In this review, we discuss the latest developments in the field and speculate on how immune responses against Plasmodium could be harnessed for rational vaccine design and application.
Collapse
|
26
|
Perlaza BL, Sauzet JP, Brahimi K, BenMohamed L, Druilhe P. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity. Malar J 2011; 10:27. [PMID: 21303495 PMCID: PMC3046914 DOI: 10.1186/1475-2875-10-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
Abstract
Immunity against the pre-erythrocytic stages of malaria is the most promising, as it is strong and fully sterilizing. Yet, the underlying immune effectors against the human Plasmodium falciparum pre-erythrocytic stages remain surprisingly poorly known and have been little explored, which in turn prevents any rational vaccine progress. Evidence that has been gathered in vitro and in vivo, in higher primates and in humans, is reviewed here, emphasizing the significant role of IFN-γ, either as a critical immune mediator or at least as a valuable surrogate marker of protection. One may hope that these results will trigger investigations in volunteers immunized either by optimally irradiated or over-irradiated sporozoites, to quickly delineate better surrogates of protection, which are essential for the development of a successful malaria vaccine.
Collapse
Affiliation(s)
- Blanca-Liliana Perlaza
- Malaria Vaccine Development Laboratory, Pasteur Institute, 25-28 Rue du Dr, Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | |
Collapse
|
27
|
Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 2010; 140:142-51. [PMID: 21185784 DOI: 10.1016/j.clim.2010.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023]
Abstract
Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines.
Collapse
Affiliation(s)
- Neal N Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.
Collapse
|
29
|
Kalinna BH, Terrazas LI, Satoskar AR. A special issue on immunology and cell biology of protozoa. Exp Parasitol 2010; 126:281-2. [PMID: 20816388 DOI: 10.1016/j.exppara.2010.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|