1
|
Ariyadasa S, van Hamelsveld S, Taylor W, Lin S, Sitthirit P, Pang L, Billington C, Weaver L. Diversity of Free-Living Amoebae in New Zealand Groundwater and Their Ability to Feed on Legionella pneumophila. Pathogens 2024; 13:665. [PMID: 39204265 PMCID: PMC11357516 DOI: 10.3390/pathogens13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Free-living amoebae (FLA) are common in both natural and engineered freshwater ecosystems. They play important roles in biofilm control and contaminant removal through the predation of bacteria and other taxa. Bacterial predation by FLA is also thought to contribute to pathogen dispersal and infectious disease transmission in freshwater environments via the egestion of viable bacteria. Despite their importance in shaping freshwater microbial communities, the diversity and function of FLA in many freshwater ecosystems are poorly understood. In this study, we isolated and characterized FLA from two groundwater sites in Canterbury, New Zealand using microbiological, microscopic, and molecular techniques. Different methods for groundwater FLA isolation and enrichment were trialed and optimized. The ability of these isolated FLA to predate on human pathogen Legionella pneumophila was assessed. FLA were identified by 18S metagenomic amplicon sequencing. Our study showed that Acanthamoeba spp. (including A. polyphaga) and Vermamoeba veriformis were the main FLA species present in both groundwater sites examined. While most of the isolated FLA co-existed with L. pneumophila, the FLA populations in the L. pneumophila co-culture experiments predominantly consisted of A. polyphaga, Acanthamoeba spp., Naegleria spp., V. vermiformis, Paravahlkampfia spp., and Echinamoeba spp. These observations suggest that FLA may have the potential to act as reservoirs for L. pneumophila in Canterbury, New Zealand groundwater systems and could be introduced into the local drinking water infrastructure, where they may promote the survival, multiplication, and dissemination of Legionella. This research addresses an important gap in our understanding of FLA-mediated pathogen dispersal in freshwater ecosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand (L.P.)
| | | |
Collapse
|
2
|
Zahid MT, Mustafa G, Sajid R, Razzaq A, Waheed M, Khan MA, Hwang JH, Park YK, Chung WJ, Jeon BH. Surviving chlorinated waters: bleaching sensitivity and persistence of free-living amoebae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48073-48084. [PMID: 39017868 DOI: 10.1007/s11356-024-34379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.
Collapse
Affiliation(s)
- Muhammad Tariq Zahid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Ghulam Mustafa
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Romasa Sajid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Ayesha Razzaq
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Muzdalfa Waheed
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jae-Hoon Hwang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Young Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Weger HG, Polasek AK, Wright DM, Damodaran A, Stavrinides J. Grazing preferences of three species of amoebae on cyanobacteria and green algae. J Eukaryot Microbiol 2024; 71:e13018. [PMID: 38197812 DOI: 10.1111/jeu.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Twenty species/isolates of cyanobacteria and green algae were isolated from cyanobacterial bloom samples in lakes associated with the upper Qu'Appelle River drainage system in southern Saskatchewan, Canada. Three amoebae species (Cochliopodium sp., Vannella sp. and Vermamoeba vermiformis) were also isolated from one of these samples, and were subjected to grazing assays to determine which species of cyanobacteria or algae could potentially serve as a food source. Amoeba grazing rates were quantified based on the diameter of the plaque after 12 days on agar plate assays, and by estimation of the amoeba population growth rate from the rate of increase of plaque area. The common cyanobacterial bloom-formers Dolichospermum sp. and Aphanizomenon flos-aquae supported high growth rates for all three amoebae, while green algae, with the exception of one green alga/amoeba combination, did not support growth of the tested amoebae. Many of the cyanobacterial and algal isolates that did not support amoebae growth were ingested, suggesting that ingestion did not determine grazing success. Overall, while the cyanobacteria Dolichospermum sp. and Aphanizomenon flos-aquae were suitable food sources for the amoebae, the other cyanobacteria were grazed in an unpredictable manner, with some species/strains grazed by some amoebae and some species not grazed at all.
Collapse
Affiliation(s)
- Harold G Weger
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - April K Polasek
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Derek M Wright
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Arun Damodaran
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
4
|
Villeneuve K, Turcotte-Blais V, Lazar CS. Effect of Snowmelt on Groundwater Bacterial Community Composition and Potential Role of Surface Environments as Microbial Seed Bank in Two Distinct Aquifers from the Region of Quebec, Canada. Microorganisms 2023; 11:1526. [PMID: 37375028 DOI: 10.3390/microorganisms11061526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Events of groundwater recharge are associated with changes in the composition of aquifer microbial communities but also abiotic conditions. Modification in the structure of the community can be the result of different environmental condition favoring or hindering certain taxa, or due to the introduction of surface-derived taxa. Yet, in both cases, the local hydrogeochemical settings of the aquifer is likely to affect the amount of variation observed. Therefore, in our study, we used 16S rRNA gene sequencing to assess how microbial communities change in response to snowmelt and the potential connectivity between subsurface and surface microbiomes in two distinct aquifers located in the region of Vaudreuil-Soulanges (Québec, Canada). At both sites, we observed an increase in groundwater level and decrease in temperature following the onset of snow melt in March 2019. Bacterial community composition of each aquifer was significantly different (p < 0.05) between samples collected prior and after groundwater recharge. Furthermore, microbial source tracking results suggested a low contribution of surface environments to the groundwater microbiome except for in the months associated with recharge (March 2019 and April 2019). Overall, despite differences in soil permeability between both sites, the period of snow melt was followed by important changes in the composition of microbial communities from aquifers.
Collapse
Affiliation(s)
- Karine Villeneuve
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| | - Valérie Turcotte-Blais
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
5
|
Geballa-Koukoulas K, La Scola B, Blanc G, Andreani J. Diversity of Giant Viruses Infecting Vermamoeba vermiformis. Front Microbiol 2022; 13:808499. [PMID: 35602053 PMCID: PMC9116030 DOI: 10.3389/fmicb.2022.808499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of Acanthamoeba polyphaga mimivirus in 2003 using the free-living amoeba Acanthamoeba polyphaga caused a paradigm shift in the virology field. Twelve years later, using another amoeba as a host, i.e., Vermamoeba vermiformis, novel isolates of giant viruses have been discovered. This amoeba–virus relationship led scientists to study the evolution of giant viruses and explore the origins of eukaryotes. The purpose of this article is to review all the giant viruses that have been isolated from Vermamoeba vermiformis, compare their genomic features, and report the influence of these viruses on the cell cycle of their amoebal host. To date, viruses putatively belonging to eight different viral taxa have been described: 7 are lytic and 1 is non-lytic. The comparison of giant viruses infecting Vermamoeba vermiformis has suggested three homogenous groups according to their size, the replication time inside the host cell, and the number of encoding tRNAs. This approach is an attempt at determining the evolutionary origins and trajectories of the virus; therefore, more giant viruses infecting Vermamoeba must be discovered and studied to create a comprehensive knowledge on these intriguing biological entities.
Collapse
Affiliation(s)
- Khalil Geballa-Koukoulas
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- *Correspondence: Khalil Geballa-Koukoulas,
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
| | - Guillaume Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Julien Andreani,
| |
Collapse
|
6
|
Siddiqui R, Makhlouf Z, Khan NA. The Increasing Importance of Vermamoeba vermiformis. J Eukaryot Microbiol 2021; 68:e12857. [PMID: 33987951 DOI: 10.1111/jeu.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vermamoeba vermiformis are one of the most prevalent free-living amoebae. These amoebae are ubiquitous and also thermotolerant. Of concern, V. vermiformis have been found in hospital water networks. Furthermore, associations between V. vermiformis and pathogenic bacteria have been reported, such as Legionella pneumophila. Moreover, V. vermiformis are well known to host viruses, bacteria, and other microorganisms and cases of keratitis due to V. vermiformis in conjunction with other amoebae have been reported. Despite the preceding, the medical importance of V. vermiformis is still an ongoing discussion and its genome has been only recently sequenced. Herein, we present a review of the current understanding of the biology and pathogenesis pertaining to V. vermiformis, as well as its' role as an etiological agent and trojan horse. An approach known as theranostics which combines both diagnosis and therapy could be utilized to eradicate and diagnose keratitis cases caused by such amoebae. Given the rise in global warming, it is imperative to investigate these rarely studied amoebae and to understand their importance in human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Martin KH, Borlee GI, Wheat WH, Jackson M, Borlee BR. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms. MICROBIOLOGY (READING, ENGLAND) 2020; 166:695-706. [PMID: 32459167 PMCID: PMC7641382 DOI: 10.1099/mic.0.000933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.
Collapse
Affiliation(s)
- Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int J Hyg Environ Health 2019; 224:113440. [PMID: 31978735 DOI: 10.1016/j.ijheh.2019.113440] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.
Collapse
|
9
|
Delafont V, Rodier MH, Maisonneuve E, Cateau E. Vermamoeba vermiformis: a Free-Living Amoeba of Interest. MICROBIAL ECOLOGY 2018; 76:991-1001. [PMID: 29737382 DOI: 10.1007/s00248-018-1199-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Free-living amoebae are protists that are widely distributed in the environment including water, soil, and air. Although the amoebae of the genus Acanthamoeba are still the most studied, other species, such as Vermamoeba vermiformis (formerly Hartmannella vermiformis), are the subject of increased interest. Found in natural or man-made aquatic environments, V. vermiformis can support the multiplication of other microorganisms and is able to harbor and potentially protect pathogenic bacteria or viruses. This feature is to be noted because of the presence of this thermotolerant amoeba in hospital water networks. As a consequence, this protist could be implicated in health concerns and be indirectly responsible for healthcare-related infections. This review highlights, among others, the consequences of V. vermiformis relationships with other microorganisms and shows that this free-living amoeba species is therefore of interest for public health.
Collapse
Affiliation(s)
- Vincent Delafont
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Marie-Helene Rodier
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France
| | - Elodie Maisonneuve
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Estelle Cateau
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France.
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France.
| |
Collapse
|
10
|
Abstract
Bacteria thrive in showerheads and throughout household water distribution systems. While most of these bacteria are innocuous, some are potential pathogens, including members of the genus Mycobacterium that can cause nontuberculous mycobacterial (NTM) lung infection, an increasing threat to public health. We found that showerheads in households across the United States and Europe often harbor abundant mycobacterial communities that vary in composition depending on geographic location, water chemistry, and water source, with households receiving water treated with chlorine disinfectants having particularly high abundances of certain mycobacteria. The regions in the United States where NTM lung infections are most common were the same regions where pathogenic mycobacteria were most prevalent in showerheads, highlighting the important role of showerheads in the transmission of NTM infections. Bacteria within the genus Mycobacterium can be abundant in showerheads, and the inhalation of aerosolized mycobacteria while showering has been implicated as a mode of transmission in nontuberculous mycobacterial (NTM) lung infections. Despite their importance, the diversity, distributions, and environmental predictors of showerhead-associated mycobacteria remain largely unresolved. To address these knowledge gaps, we worked with citizen scientists to collect showerhead biofilm samples and associated water chemistry data from 656 households located across the United States and Europe. Our cultivation-independent analyses revealed that the genus Mycobacterium was consistently the most abundant genus of bacteria detected in residential showerheads, and yet mycobacterial diversity and abundances were highly variable. Mycobacteria were far more abundant, on average, in showerheads receiving municipal water than in those receiving well water and in U.S. households than in European households, patterns that are likely driven by differences in the use of chlorine disinfectants. Moreover, we found that water source, water chemistry, and household location also influenced the prevalence of specific mycobacterial lineages detected in showerheads. We identified geographic regions within the United States where showerheads have particularly high abundances of potentially pathogenic lineages of mycobacteria, and these “hot spots” generally overlapped those regions where NTM lung disease is most prevalent. Together, these results emphasize the public health relevance of mycobacteria in showerhead biofilms. They further demonstrate that mycobacterial distributions in showerhead biofilms are often predictable from household location and water chemistry, knowledge that advances our understanding of NTM transmission dynamics and the development of strategies to reduce exposures to these emerging pathogens.
Collapse
|
11
|
Lee KH, Ab Samad LS, Lwin PM, Riedel SF, Magin A, Bashir M, Vaishampayan PA, Lin WJ. On the Rocks: Microbiological Quality and Microbial Diversity of Packaged Ice in Southern California. J Food Prot 2017; 80:1041-1049. [PMID: 28517954 DOI: 10.4315/0362-028x.jfp-16-295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ice is defined as a food and is frequently used in direct contact with food and beverages. Packaged ice is commercially produced and can be easily found in grocery and convenience stores. However, the quality and safety of packaged ice products is not consistent. The Packaged Ice Quality Control Standards manual (PIQCS) published by the International Packaged Ice Association provides the quality and processing standards for packaged ice produced by its members. Packaged ice produced on the premise of stores (on-site packaged ice) is not required to be in compliance with these standards. In this study, packaged ice produced by manufacturing plants or by in-store bagger (ISB) machines and on-site packaged ice were compared for their microbiological quality and microbial diversity. Our results revealed that 19% of the 120 on-site packaged ice samples did not meet the PIQCS microbial limit of 500 CFU/mL (or g) and also the absence of coliforms and Escherichia coli . Staphylococci were found in 34% of the on-site packaged ice samples, most likely through contamination from the packaging workers. None of the ISB and manufactured packaged ice samples had unacceptable microbial levels, and all were devoid of staphylococci. Salmonella was absent in all samples analyzed in this study. Microbial community analysis of ice based on 16S/18S rRNA targeted sequencing revealed a much higher microbial diversity and abundance in the on-site packaged ice than in the ISB ice. Proteobacteria, especially Alphaproteobacteria and Betaproteobacteria, were the dominant bacterial groups in all samples tested. Most of these bacteria were oligotrophic; however, a few opportunistic or potential pathogens were found at low levels in the on-site packaged ice but not in the ISB packaged ice. The types of microbes identified may provide information needed to investigate potential sources of contamination. Our data also suggest a need for enforcement of processing standards during the on-site packaging of ice.
Collapse
Affiliation(s)
- Kun Ho Lee
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| | - Liana S Ab Samad
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| | - Phillip M Lwin
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| | - Stefan F Riedel
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| | - Ashley Magin
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| | - Mina Bashir
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.,3 Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Parag A Vaishampayan
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - Wei-Jen Lin
- 1 Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA (ORCID; http://orcid.org/0000-0003-0001-3488 [W.-J.L.])
| |
Collapse
|
12
|
Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Sci Rep 2016; 6:36448. [PMID: 27805070 PMCID: PMC5091012 DOI: 10.1038/srep36448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is a ubiquitous, pathogenic, Gram-negative bacterium responsible for legionellosis. Like many other amoeba-resistant microorganisms, L. pneumophila resists host clearance and multiplies inside the cell. Through its Dot/Icm type IV secretion system, the bacterium injects more than three hundred effectors that modulate host cell physiology in order to promote its own intracellular replication. Here we report that L. pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Infected amoebae could not undergo DNA replication and no cell division was observed. The Dot/Icm secretion system was necessary for L. pneumophila to prevent the eukaryotic proliferation. The absence of proliferation was associated with altered amoebal morphology and with a decrease of mRNA transcript levels of CDC2b, a putative regulator of the A. castellanii cell cycle. Complementation of CDC28-deficient Saccharomyces cerevisiae by the CDC2b cDNA was sufficient to restore proliferation of CDC28-deficient S. cerevisiae and suggests for the first time that CDC2b from A. castellanii could be functional and a bona fide cyclin-dependent kinase. Hence, our results reveal that L. pneumophila impairs proliferation of A. castellanii and this effect could involve the cell cycle protein CDC2b.
Collapse
|
13
|
Reyes-Batlle M, Wagner C, Zamora-Herrera J, Vargas-Mesa A, Sifaoui I, González AC, López-Arencibia A, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J. Isolation of thermotolerant Vermamoeba vermiformis strains from water sources in Lanzarote Island, Canary Islands, Spain. Acta Parasitol 2016; 61:650-3. [PMID: 27447234 DOI: 10.1515/ap-2016-0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
In this study, twenty water samples were collected in the island of Lanzarote, Canary Islands, Spain in order to check for the presence of V. vermiformis strains in these samples. Water samples were cultured on 2% Non-Nutrient Agar (NNA) plates covered with a thin layer of heat killed E. coli and checked daily for the presence of Vermamoeba. After a week, V. vermiformis amoebae were observed in 2 of the 20 processed samples (10%) incubated at room temperature and 37°C. Molecular characterization was carried out by amplifying the 18S rDNA gene and DNA sequencing in order to confirm the identity of the isolated amoebic strains. To the best of our knowledge, this is the first report on the presence of FLA in environmental sources in Lanzarote Island and the first report of Vermamoeba vermiformis in water sources in this island. Furthermore, the two strains isolated in this study were collected in recreational areas with close contact with humans and thus awareness should be raised.
Collapse
|
14
|
Isolation and Molecular Identification of Vermamoeba vermiformis Strains from Soil Sources in El Hierro Island, Canary Islands, Spain. Curr Microbiol 2016; 73:104-7. [DOI: 10.1007/s00284-016-1035-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
|
15
|
Delafont V, Samba-Louaka A, Bouchon D, Moulin L, Héchard Y. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:970-978. [PMID: 26471960 DOI: 10.1111/1758-2229.12343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The TM6 phylum belongs to the so-called microbial dark matter that gathers uncultivated bacteria detected only via DNA sequencing. Recently, the genome sequence of a TM6 bacterium (TM6SC1) has led to suggest that this bacterium would adopt an endosymbiotic life. In the present paper, free-living amoebae bearing a TM6 strain were isolated from a water network. The amoebae were identified as Vermamoeba vermiformis and the presence of a TM6 strain was detected by polymerase chain reaction and microscopy. The partial sequence of its 16S rRNA gene showed this strain to be closely related to the sequenced TM6SC1 strain. These bacteria displayed a pyriform shape and were found within V. vermiformis. Therefore, these bacteria were named Vermiphilus pyriformis. Interactions studies showed that V. pyriformis was highly infectious and that its relation with V. vermiformis was specific and highly stable. Finally, it was found that V. pyriformis inhibited the encystment of V. vermiformis. Overall, this study describes for the first time an endosymbiotic relationship between a TM6 bacterium and a free-living amoeba in the environment. It suggests that other bacteria of the TM6 phylum might also be endosymbiotic bacteria and may be found in other free-living amoebae or other organisms.
Collapse
Affiliation(s)
- Vincent Delafont
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
- Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, Eau de Paris, 33, avenue Jean Jaurès, 94200, Ivry sur Seine, Paris, France
| | - Ascel Samba-Louaka
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| | - Didier Bouchon
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| | - Laurent Moulin
- Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, Eau de Paris, 33, avenue Jean Jaurès, 94200, Ivry sur Seine, Paris, France
| | - Yann Héchard
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| |
Collapse
|
16
|
Buse HY, Lu J, Ashbolt NJ. Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes. Appl Environ Microbiol 2015; 81:630-9. [PMID: 25381242 PMCID: PMC4277573 DOI: 10.1128/aem.03394-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.
Collapse
Affiliation(s)
| | - Jingrang Lu
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - Nicholas J Ashbolt
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| |
Collapse
|