1
|
Ferreira EA, Campos IM, Cajas RA, de Souza Costa D, Aleixo de Carvalho LS, Fernandes da Costa Franklin P, de Nigro NDPD, de Faria Pinto P, Capriles PSZ, de Moraes J, da Silva Filho AA. In vivo efficacy of uvangoletin from Piper aduncum (Piperaceae) against Schistosoma mansoni and in silico studies targeting SmNTPDases. Exp Parasitol 2025; 269:108897. [PMID: 39800044 DOI: 10.1016/j.exppara.2025.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Schistosomiasis stands as one of the most significant parasitic diseases on a global scale, with approximately 250 million infections worldwide. It is imperative to address this pressing issue by developing new antischistosomal drugs. Chalcones have emerged as a promising class of natural compounds, demonstrating noteworthy effects observed in vitro experiments with Schistosoma mansoni, and demonstrating the ability to inhibit SmNTPDases and apyrase from potatoes. In this study, we focused on uvangoletin, a naturally occurring dihydrochalcone from Piper aduncum. We isolated uvangoletin from P. aduncum fruits and conducted in vivo experiments to evaluate the efficacy of uvangoletin against adult Schistosoma parasites. Furthermore, we explored the inhibitory effects of uvangoletin on potato apyrase and employed molecular docking analyses to investigate its interactions with apyrase from potato and the two isoforms SmNTPDase 1 and 2 through in silico studies. Uvangoletin (400 mg/kg, p. o.), exhibited significant in vivo antiparasitic effects against adult S. mansoni, leading to a decrease of 53.7% in worm burden and 54.3% in egg production. The treatment also reduced hepatomegaly and splenomegaly. In silico investigations and ADMET studies indicated that uvangoletin possesses favorable drug-like properties and may interact with key residues involved in apyrase and SmNTPDases activities. Furthermore, uvangoletin demonstrated a substantial reduction in potato apyrase activity. These results suggest the potential for exploring other dihydrochalcones as promising candidates for antischistosomal agents.
Collapse
Affiliation(s)
- Everton Allan Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Igor Moreira Campos
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Rayssa A Cajas
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, 07025-000, Brazil
| | - Danilo de Souza Costa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Lara Soares Aleixo de Carvalho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Paula Fernandes da Costa Franklin
- Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Nathália de Paula D de Nigro
- Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Priscila de Faria Pinto
- Institute of Biological Sciences, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - PriscilaV S Z Capriles
- Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, 07025-000, Brazil; Núcleo de Pesquisa em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil
| | - Ademar A da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
2
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
3
|
Azevedo CM, Meira CS, da Silva JW, Moura DMN, de Oliveira SA, da Costa CJ, Santos EDS, Soares MBP. Therapeutic Potential of Natural Products in the Treatment of Schistosomiasis. Molecules 2023; 28:6807. [PMID: 37836650 PMCID: PMC10574020 DOI: 10.3390/molecules28196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Jaqueline Wang da Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Danielle Maria Nascimento Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Sheilla Andrade de Oliveira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Cícero Jádson da Costa
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| |
Collapse
|
4
|
Lu Q, Xie Y, Luo J, Gong Q, Li C. Natural flavones from edible and medicinal plants exhibit enormous potential to treat ulcerative colitis. Front Pharmacol 2023; 14:1168990. [PMID: 37324477 PMCID: PMC10268007 DOI: 10.3389/fphar.2023.1168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic aspecific gut inflammatory disorder that primarily involves the recta and colons. It mostly presents as a long course of repeated attacks. This disease, characterized by intermittent diarrhoea, fecal blood, stomachache, and tenesmus, severely decreases the living quality of sick persons. UC is difficult to heal, has a high recurrence rate, and is tightly related to the incidence of colon cancer. Although there are a number of drugs available for the suppression of colitis, the conventional therapy possesses certain limitations and severe adverse reactions. Thus, it is extremely required for safe and effective medicines for colitis, and naturally derived flavones exhibited huge prospects. This study focused on the advancement of naturally derived flavones from edible and pharmaceutical plants for treating colitis. The underlying mechanisms of natural-derived flavones in treating UC were closely linked to the regulation of enteric barrier function, immune-inflammatory responses, oxidative stress, gut microflora, and SCFAs production. The prominent effects and safety of natural-derived flavones make them promising candidate drugs for colitis treatment.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yuhong Xie
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Cailan Li
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Costa DDS, Leal CM, Cajas RA, Gazolla MC, Silva LM, Carvalho LSAD, Lemes BL, Moura ROD, Almeida JD, de Moraes J, da Silva Filho AA. Antiparasitic properties of 4-nerolidylcatechol from Pothomorphe umbellata (L.) Miq. (Piperaceae) in vitro and in mice models with either prepatent or patent Schistosoma mansoni infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116607. [PMID: 37149066 DOI: 10.1016/j.jep.2023.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Roots of Pothomorphe umbellata (L.) Miq. are used in traditional medicine of Africa and South America for the treatment of malaria and helminthiasis. However, neither P. umbellata nor its isolated compounds have been evaluated against Schistosoma species. AIMS OF THIS STUDY To investigate the antischistosomal effects of P. umbellata root extracts and the isolated compound 4-nerolidylcatechol (4-NC) against Schistosoma mansoni ex vivo and in murine models of schistosomiasis. MATERIALS AND METHODS The crude hydroalcoholic (PuE) and hexane (PuH) extracts of P. umbellata roots were prepared and initially submitted to an ex vivo phenotypic screening against adult S. mansoni. PuH was analyzed by HPLC-DAD, characterized by UHPLC-HRMS/MS, and submitted to chromatographic fractionation, leading to the isolation of 4-NC. The anthelmintic properties of 4-NC were assayed ex vivo against adult schistosomes and in murine models of schistosomiasis for both patent and prepatent S. mansoni infections. Praziquantel (PZQ) was used as a reference compound. RESULTS PuE (EC50: 18.7 μg/mL) and PuH (EC50: 9.2 μg/mL) kill adult schistosomes ex vivo. The UHPLC-HRMS/MS analysis of PuH, the most active extract, revealed the presence of 4-NC, peltatol A, and peltatol B or C. After isolation from PuH, 4-NC presented remarkable in vitro schistosomicidal activity with EC50 of 2.9 μM (0.91 μg/mL) and a selectivity index higher than 68 against Vero mammalian cells, without affecting viability of nematode Caenorhabditis elegans. In patent S. mansoni infection, the oral treatment with 4-NC decreased worm burden and egg production in 52.1% and 52.3%, respectively, also reducing splenomegaly and hepatomegaly. 4-NC, unlike PZQ, showed in vivo efficacy against juvenile S. mansoni, decreasing worm burden in 52.4%. CONCLUSIONS This study demonstrates that P. umbellata roots possess antischistosomal activity, giving support for the medicinal use of this plant against parasites. 4-NC was identified from P. umbellata roots as one of the effective in vitro and in vivo antischistosomal compound and as a potential lead for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Danilo de Souza Costa
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Carla Monteiro Leal
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Rayssa A Cajas
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Matheus Coutinho Gazolla
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lívia Mara Silva
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Bruna L Lemes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Renato Oliveira de Moura
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Juliana de Almeida
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Ademar A da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
6
|
Biochanin A in murine Schistosoma mansoni infection: effects on inflammation, oxidative stress and fibrosis. J Helminthol 2023; 97:e16. [PMID: 36740983 DOI: 10.1017/s0022149x22000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biochanin A (BCA) is a multifunctional natural compound that possesses anti-infective, anti-inflammatory, anti-oxidative and hepatoprotective effects. The aim of the study was to assess the therapeutic efficacy of BCA on Schistosoma mansoni-infected mice. Fifty mice were divided into six different groups as non-infected, non-infected BCA-treated, infected untreated, early infected BCA-treated (seven days post-infection (dpi)), late infected BCA-treated 60 dpi and infected praziquantel (PZQ)-treated groups. Parasitological, histopathological examination and immunohistochemical staining of transforming growth factor (TGF)-β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were investigated in liver sections. Cytochrome P450 (CYP450) gene expression of S. mansoni was evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). A single dose of BCA significantly reduced worm burden in early (82.14%) and late infection (77.74%), mean tissue egg load in early (7.27 ± 0.495) and late BCA administration (7.63 ± 0.435) and decreased granuloma size. CYP450 mRNA expression was significantly reduced in early BCA treatment as compared to late treatment which emphasizes that early administration of BCA had more pronounced effects on worms than late administration. Both early and late BCA administration led to significant reduction in inflammatory cytokines as TGF and iNOS. Although the reduction of TGF and iNOS in BCA-treated mice was superior to PZQ, no statistically significant differences were noted. However, a significant downregulation of COX2 was noted in hepatocytes as compared to both infected control and PZQ-treated mice. BCA has schistosomicidal, anti-inflammatory, antioxidant and anti-fibrotic effects and could be regarded as a potential drug in schistosomiasis treatment.
Collapse
|
7
|
Mtemeli FL, Ndlovu J, Mugumbate G, Makwikwi T, Shoko R. Advances in schistosomiasis drug discovery based on natural products. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- F. L. Mtemeli
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - J. Ndlovu
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - G. Mugumbate
- Department of Chemical Technology, Midlands State University, Gweru, Zimbabwe
| | - T. Makwikwi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - R. Shoko
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
8
|
de Carvalho LSA, de Souza VC, Rodrigues VC, Ribeiro AC, Nascimento JWL, Capriles PVSZ, Pinto PDF, de Moraes J, da Silva Filho AA. Identification of Asiaticoside from Centella erecta (Apiaceae) as Potential Apyrase Inhibitor by UF-UHPLC-MS and Its In Vivo Antischistosomal Activity. Pharmaceutics 2022; 14:pharmaceutics14051071. [PMID: 35631657 PMCID: PMC9143675 DOI: 10.3390/pharmaceutics14051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis, caused by parasites of the genus Schistosoma, is a neglected disease with high global prevalence, affecting more than 240 million people in several countries. Praziquantel (PZQ) is the only drug currently available for the treatment. S. mansoni NTPDases (known as SmNTPDases, ATP diphosphohydrolases or ecto-apyrases) are potential drug targets for the discovery of new antischistosomal drugs. In this study, we screen NTPDases inhibitors from Centella erecta (Apiaceae) using an ultrafiltration combined UHPLC-QTOF-MS method and potato apyrase, identifying asiaticoside as one of the apyrase-binding compounds. After isolation of asiaticoside from C. erecta extract, we assessed its in vivo antischistosomal activities against Schistosoma mansoni worms and its in vitro enzymatic apyrase inhibition. Also, molecular docking analysis of asiaticoside against potato apyrase, S. mansoni NTPDases 1 and 2 were performed. Asiaticoside showed a significant in vitro apyrase inhibition and molecular docking studies corroborate with its possible actions in potato apyrase and S. mansoni NTPDases. In mice harboring a patent S. mansoni infection, a single oral dose of asiaticoside (400 mg/kg. p.o.) showed significantly in vivo antischistosomal efficacy, markedly decreasing the total worm load and egg burden, giving support for further exploration of apyrase inhibitors as antischistosomal agents.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
| | - Vinícius Carius de Souza
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Vinícius C. Rodrigues
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Aline Correa Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Jorge Willian Leandro Nascimento
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Priscila V. S. Z. Capriles
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Priscila de F. Pinto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Ademar Alves da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
- Correspondence: ; Tel.: +55-32-21023893; Fax: +55-32-21023801
| |
Collapse
|
9
|
Zhang J, Xu X, Li N, Cao L, Sun Y, Wang J, He S, Si J, Qing D. Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora. Eur J Pharmacol 2021; 916:174730. [PMID: 34968462 DOI: 10.1016/j.ejphar.2021.174730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a major inflammatory disease worldwide. We previously demonstrated that licorice residue flavones (LFs) showed satisfactory efficacy in the treatment of UC. Therefore, research into the ingredients of LFs may lead to the discovery of novel anti-UC targets. In the current study, we separated licoflavone B (LB) from LFs and administered it to dextran sodium sulfate (DSS)-exposed C57BL/6 mice for 14 days. Our results demonstrated that high dose LB (120mg/kg) significantly prevented DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and colonic inflammation, indicating that LB has ameliorative effects on UC. We also investigated the composition of the intestinal barrier and microflora in an attempt to explore the mechanisms of LB against UC. As a result, we found that LB preserved the integrity of the colonic barrier by inhibiting colonic cell apoptosis and protecting the expression of occludin, claudin-1, and ZO-1. Moreover, LB reshaped the microflora composition by suppressing harmful bacteria (Enterococcus et al.) and boosting beneficial microorganisms (Bacteroides et al.). Further molecular exploration implied that LB exerted anti-UC activity through blocking the MAPK pathway. Here, we explored anti-UC activity of LB for the first time and clarified its mechanisms. These results will provide valuable clues for the discovery of novel anti-UC agents.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Xiaoqin Xu
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, 313000, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Degang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| |
Collapse
|
10
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
de Carvalho LSA, Silva LM, de Souza VC, da Silva MPN, Capriles PVSZ, de Faria Pinto P, de Moraes J, Da Silva Filho AA. Cardamonin Presents in Vivo Activity against Schistosoma mansoni and Inhibits Potato Apyrase. Chem Biodivers 2021; 18:e2100604. [PMID: 34608744 DOI: 10.1002/cbdv.202100604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Lívia Mara Silva
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Vinícius Carius de Souza
- Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Priscila V S Z Capriles
- Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Priscila de Faria Pinto
- Institute of Biological Sciences, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, 07025-000, Brazil
| | - Ademar Alves Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
12
|
Maestrini M, Molento MB, Forzan M, Perrucci S. In vitro anthelmintic activity of an aqueous extract of Glycyrrhiza glabra and of glycyrrhetinic acid against gastrointestinal nematodes of small ruminants. Parasite 2021; 28:64. [PMID: 34468311 PMCID: PMC10649775 DOI: 10.1051/parasite/2021060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/12/2021] [Indexed: 01/13/2023] Open
Abstract
This study evaluated the in vitro anthelmintic activity of a liquorice (Glycyrrhiza glabra) root aqueous extract and of glycyrrhetinic acid at 30, 10, 5, 1, and 0.5 mg/mL against sheep gastrointestinal nematodes (GINs), using the egg hatch test (EHT), the larval development test (LDT), and the larval migration inhibition test (LMIT). The compounds were applied on a mixture of GIN eggs and larvae, mainly Trichostrongylus spp. and Teladorsagia/Ostertagia spp. Cytotoxicity assays were also performed. In the EHT, both candidates showed significant concentration-dependent efficacy and were significantly more effective (p < 0.001) at the highest concentrations (30 and 10 mg/mL) than the lowest ones. In the LDT, only G. glabra showed a concentration-dependent effect (R2 = 0.924), but glycyrrhetinic acid (R2 = 0.910) had significantly higher efficacy than G. glabra root extract. Moreover, the efficacy of glycyrrhetinic acid at 30, 10, and 5 mg/mL was significantly higher (p < 0.001) than at lower concentrations. In the LMIT, G. glabra showed concentration-dependent efficacy (R2 = 0.971), while considerably reduced efficacy was observed for glycyrrhetinic acid (R2 = 0.855) at the lowest concentrations. These data suggest that the two compounds may have different mechanisms of action. In the LMIT, the 50% lethal concentration (LC50) of glycyrrhetinic acid (~5.12 mg/mL) was > 2.0-fold lower when compared to G. glabra (12.25 mg/mL). Analysis and previous findings indicated low toxicity for both compounds. The results obtained encourage in vivo studies aimed at evaluating the potential use of the tested compounds as natural de-wormers in ruminants.
Collapse
Affiliation(s)
- Michela Maestrini
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Marcelo Beltrão Molento
- Department of Veterinary Medicine, University of Paraná R. dos Funcionarios, 1540 Curitiba 80035-050 PR Brazil
| | - Mario Forzan
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Stefania Perrucci
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| |
Collapse
|
13
|
Dai C, Wang S, De Souza C, Li YY, Zhou C, Qiu R, Xu XZ, Zhou HL, Wu Y. Chemical constituents and chemotaxonomic study of Glycyrrhiza pallidiflora maxim. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Silva MP, Silva TM, Mengarda AC, Salvadori MC, Teixeira FS, Alencar SM, Luz Filho GC, Bueno-Silva B, de Moraes J. Brazilian red propolis exhibits antiparasitic properties in vitro and reduces worm burden and egg production in an mouse model harboring either early or chronic Schistosoma mansoni infection. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113387. [PMID: 32918996 DOI: 10.1016/j.jep.2020.113387] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has been used in folk medicine for thousands of years and, in the past few decades, it has attracted renewed interest. Although propolis has been traditionally used in many communities worldwide against parasitic diseases, its effect against Schistosoma mansoni infection remains unclear. AIM OF THE STUDY To demonstrate the effects of Brazilian red propolis on Schistosoma mansoni ex vivo and in an animal model of schistosomiasis. MATERIALS AND METHODS In vitro, we monitored phenotypic and tegumental changes as well as the effects of the crude extract of propolis on pairing and egg production. In a mouse infected with either immature (early infection) or adult (chronic infection) worms, propolis was administered by oral gavage and we studied the influence of this natural product on worm burden and egg production. RESULTS Propolis 25 μg/mL reduced motility and caused 100% mortality of adult parasites ex vivo. Further analysis revealed a pronounced reduction in oviposition after exposure to propolis at sub-lethal concentrations. In addition, scanning electron microscopy showed morphological alterations in the tegument of schistosomes. In the animal model, propolis markedly reduced worm burden and egg production in both early and chronic S. mansoni infection when compared to untreated control animals. CONCLUSIONS The efficacy of Brazilian red propolis in both in vitro and in vivo studies suggests its potential anthelmintic properties against S. mansoni infection.
Collapse
Affiliation(s)
- Marcos P Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Thiago M Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Severino M Alencar
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Bruno Bueno-Silva
- Departamento de Odontologia, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| |
Collapse
|
15
|
Effect of a newly synthesized quinoline-based compound (PPQ-8) on murine schistosomiasis mansoni. J Helminthol 2020; 94:e123. [PMID: 32029011 DOI: 10.1017/s0022149x2000005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schistosomiasis represents a public health problem and praziquantel is the only drug used for treatment of all forms of the disease. Thus, the development of new anti-schistosomal agents is of utmost importance to increase the effectiveness, reduce side effects and delay the emergence of resistance. The present study was conducted to report the therapeutic efficacy of PPQ-8, a new synthetic quinoline-based compound against Schistosoma mansoni. Mice were treated with PPQ-8 at day 49 post infection using two treatment regimens (20 and 40 mg/kg). Significant reductions were recorded in hepatic (62.9% and 83.6%) and intestinal tissue egg load (57.4% and 73.5%), granuloma count (75.4% and 89.1%) and diameter (26.2% and 47.3%), in response to the drug regimens, respectively. In addition, both treatment regimens induced significant decrease in liver (23.3% and 32.8%) and spleen (37.5% and 45.3%) indices. Also, there were significant reductions in mature ova, total worm and female count, which were more prominent with the higher dose. The reduction in the level of nitric oxide in the liver by both therapeutic regimens to 22.5% and 47.2% indicates the anti-oxidant activity of PPQ-8. Bright field microscopic examination of worms recovered from infected and PPQ-8-treated mice showed nearly empty intestinal caeca with no observable changes in the tegument. Our findings hold promise for the development of a novel anti-schistosomal drug using PPQ-8, but further in vitro and in vivo studies are needed to elucidate the possible mechanism/s of action and to study the effect of PPQ-8 on other human schistosomes.
Collapse
|
16
|
de Carvalho LSA, Alves Jr Ij, Junqueira LR, Silva LM, Riani LR, de Faria Pinto P, da Silva Filho AA. ATP-Diphosphohydrolases in Parasites: Localization, Functions and Recent Developments in Drug Discovery. Curr Protein Pept Sci 2020; 20:873-884. [PMID: 31272352 DOI: 10.2174/1389203720666190704152827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023]
Abstract
ATP-diphosphohydrolases (EC 3.6.1.5), also known as ATPDases, NTPases, NTPDases, EATPases or apyrases, are enzymes that hydrolyze a variety of nucleoside tri- and diphosphates to their respective nucleosides, being their activities dependent on the presence of divalent cations, such as calcium and magnesium. Recently, ATP-diphosphohydrolases were identified on the surface of several parasites, such as Trypanosoma sp, Leishmania sp and Schistosoma sp. In parasites, the activity of ATPdiphosphohydrolases has been associated with the purine recuperation and/or as a protective mechanism against the host organism under conditions that involve ATP or ADP, such as immune responses and platelet activation. These proteins have been suggested as possible targets for the development of new antiparasitic drugs. In this review, we will comprehensively address the main aspects of the location and function of ATP-diphosphohydrolase in parasites. Also, we performed a detailed research in scientific database of recent developments in new natural and synthetic inhibitors of the ATPdiphosphohydrolases in parasites.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alves Jr Ij
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lauriene Ricardo Junqueira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lorena Rodrigues Riani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ademar Alves da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
17
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Rando DG, da Costa MO, Pavani TF, Oliveira T, dos Santos PF, Amorim CR, Pinto PL, de Brito MG, Silva MP, Roquini DB, de Moraes J. Vanillin-Related N-Acylhydrazones: Synthesis, Antischistosomal Properties and Target Fishing Studies. Curr Top Med Chem 2019; 19:1241-1251. [DOI: 10.2174/1568026619666190620163237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Background:
Schistosomiasis is a neglected disease, which affects millions of people in developing
countries. Its treatment relies on a single therapeutic alternative, the praziquantel. This situation
may lead to drug resistance which, in turn, made urgent the need for new antischistosomal agents. Nacylhydrazones
are usually explored as good antimicrobial agents, but the vanillin-related N-acylhydrazones
have never been tested by their antiparasitic potential.
Objective:
Herein, we report the synthesis of seven analogues, three of them unpublished, their biological
investigation against Schistosoma mansoni and Target Fishing studies.
Methods:
The compounds were synthesized following classical synthetical approaches. The anthelmintic
potential was assessed as well as their cytotoxicity profile. Confocal laser scanning microscopy and target
fishing study were performed to better understand the observed antischistosomal activity.
Results:
Compound GPQF-407 exhibited good antischistosomal activity (47.91 µM) with suitable selectivity
index (4.14). Confocal laser scanning microscopy revealed that it triggered severe tegumental destruction
and tubercle disintegration. Target fishing studies pointed out some probable targets, such as the
serine-threonine kinases, dihydroorotate dehydrogenases and carbonic anhydrase II.
Conclusion:
The GPQF-407 was revealed to be a promising antischistosomal agent which, besides presenting
the N-acylhydrazone privileged scaffold, also could be easily synthesized on large scales from
commercially available materials.
Collapse
Affiliation(s)
- Daniela G.G. Rando
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Marcela O.L. da Costa
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Thais F.A. Pavani
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Thiago Oliveira
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Paloma F. dos Santos
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Carina R. Amorim
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Pedro L.S. Pinto
- Nucleo de Enteroparasitas, Instituto Adolfo Lutz, Sao Paulo, SP, Brazil
| | - Mariana G. de Brito
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Marcos P.N. Silva
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Daniel B. Roquini
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| |
Collapse
|
19
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
20
|
Siqueira LDP, Fontes DAF, Aguilera CSB, Timóteo TRR, Ângelos MA, Silva LCPBB, de Melo CG, Rolim LA, da Silva RMF, Neto PJR. Schistosomiasis: Drugs used and treatment strategies. Acta Trop 2017; 176:179-187. [PMID: 28803725 DOI: 10.1016/j.actatropica.2017.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
Neglected tropical diseases (NTDs) affect millions of people in different geographic regions, especially the poorest and most vulnerable. Currently NTDs are prevalent in 149 countries, seventeen of these neglected tropical parasitic diseases are classified as endemic. One of the most important of these diseases is schistosomiasis, also known as bilharzia, a disease caused by the genus Schistosoma. It presents several species, such as Schistosoma haematobium, Schistosoma japonicum and Schistosoma mansoni, the latter being responsible for parasitosis in Brazil. Contamination occurs through exposure to contaminated water in the endemic region. This parasitosis is characterized by being initially asymptomatic, but it is able to evolve into more severe clinical forms, potentially causing death. Globally, more than 200 million people are infected with one of three Schistosome species, including an estimated 40 million women of reproductive age. In Brazil, about 12 million children require preventive chemotherapy with anthelmintic. However, according to the World Health Organization (WHO), only about 15% of the at-risk children receive regular treatment. The lack of investment by the pharmaceutical industry for the development and/or improvement of new pharmaceutical forms, mainly aimed at the pediatric public, is a great challenge. Currently, the main forms of treatment used for schistosomiasis are praziquantel (PZQ) and oxaminiquine (OXA). PZQ is the drug of choice because it presents as a high-spectrum anthelmintic, used in the treatment of all known species of schistosomiasis and some species of cestodes and trematodes. OXA, however, is not active against the three Schistosome species. This work presents a literature review regarding schistosomiasis. It addresses points such as available treatments, the role of the pharmaceutical industry against neglected diseases, and perspectives for treatment.
Collapse
Affiliation(s)
- Lidiany da Paixão Siqueira
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Danilo Augusto Ferreira Fontes
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Cindy Siqueira Britto Aguilera
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Taysa Renata Ribeiro Timóteo
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Matheus Alves Ângelos
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Laysa Creusa Paes Barreto Barros Silva
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Camila Gomes de Melo
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos da Universidade Federal do Vale do São Francisco, Avenida José de Sá Maniçoba, CEP 56304-917, Petrolina, Pernambuco, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil.
| |
Collapse
|
21
|
Dias MM, Zuza O, Riani LR, de Faria Pinto P, Pinto PLS, Silva MP, de Moraes J, Ataíde ACZ, de Oliveira Silva F, Cecílio AB, Da Silva Filho AA. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother 2017; 94:489-498. [PMID: 28780467 DOI: 10.1016/j.biopha.2017.07.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H2O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400μg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125μg/mL), which showed similar antiviral effect to acyclovir (50μg/mL) when tested at 400μg/mL. Also, AL (400, 200, and 100μg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans.
Collapse
Affiliation(s)
- Mirna Meana Dias
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ohana Zuza
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Lorena R Riani
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Ana Caroline Z Ataíde
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Fernanda de Oliveira Silva
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Alzira Batista Cecílio
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ademar A Da Silva Filho
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
22
|
Cyclohexene-fused 1,3-oxazines with selective antibacterial and antiparasitic action and low cytotoxic effects. Toxicol In Vitro 2017; 44:273-279. [PMID: 28755871 DOI: 10.1016/j.tiv.2017.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022]
Abstract
Oxazine derivatives, a class of heterocyclic compounds, exhibit a variety of biological properties, such as anticonvulsant and antitumor activities. In this study, we evaluated the effect of two cyclohexene-fused 1,3-oxazines (cis‑1-benzyl-N-phenyl-1,4,4a,5,8,8a-hexahydro-3,1-benzoxazin-2-imine (1) and trans‑N-phenyl-1,4,4a,5,8,8a-hexahydro-3,1-benzoxazin-2-imine (2)) in cultures of Bacillus cereus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Serratia marcescens, Shigella flexneri and Staphylococcus aureus by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). Additionally, the ex vivo antiparasitic activity of oxazines was assessed against Schistosoma mansoni, a helminth that is one of the major agents of the disease schistosomiasis Also, oxazines were evaluated on three tumor cell lines, NCI-H292 (human lung carcinoma), MCF-7 (human breast adenocarcinoma) and HEp-2 (human cervix carcinoma), and two normal cell lines (Vero and red blood cells). Bioassays revealed that oxazine 2 is more effective against bacteria than oxazine 1, with the lowest MIC and MBC values of 3.91 and 32.5μg/mL, respectively. Similarly, compound 2 demonstrated higher antiparasitic activity than 1, and scanning electron microscopy analysis showed several morphological alterations in the tegument of worms in a concentration-dependent manner. In contrast, both oxazines exhibited low cytotoxic effects on cancer and normal cell lines. These results indicated that oxazines exerted direct effects on bacteria and parasite schistosomes. More importantly, since schistosomiasis control programs rely on one drug, praziquantel, oxazines may have the potential to become new antischistosomal agents.
Collapse
|
23
|
Flavonoids and Sesquiterpene Lactones from Artemisia absinthium and Tanacetum parthenium against Schistosoma mansoni Worms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9521349. [PMID: 27980595 PMCID: PMC5131251 DOI: 10.1155/2016/9521349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 01/11/2023]
Abstract
Human schistosomiasis, caused by trematode worms of the genus Schistosoma, is one of the most significant neglected tropical diseases, affecting more than 200 million individuals worldwide and praziquantel is the only available drug to treat this disease. Artemisia absinthium L. and Tanacetum parthenium L. are species popularly used as anthelmintics. We investigated the in vitro schistosomicidal activity of crude extracts of A. absinthium (AA) and T. parthenium (TP) and their isolated compounds. AA and TP, at 200 μg/mL, were active, causing 100% mortality of all adult worms. Chromatographic fractionation of AA leads to isolation of artemetin and hydroxypelenolide, while santin, apigenin, and parthenolide were isolated from TP. Artemetin, hydroxypelenolide, santin, and apigenin, at 100 μM, were inactive against adult worms. Parthenolide (12.5 to 100 μM) caused 100% mortality, tegumental alterations, and reduction of motor activity of all adult worms of S. mansoni, without affecting mammalian cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms. This report provides the first evidence for the in vitro activity of parthenolide against adult worms of S. mansoni, opening the route to further schistosomicidal studies with this compound.
Collapse
|