1
|
Liu W, Li C, Xie W, Fan Y, Zhang X, Wang Y, Li L, Zhang Z. The signature of the gut microbiota associated with psoriatic arthritis revealed by metagenomics. Ther Adv Musculoskelet Dis 2024; 16:1759720X241266720. [PMID: 39131798 PMCID: PMC11316960 DOI: 10.1177/1759720x241266720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/20/2024] [Indexed: 08/13/2024] Open
Abstract
Background Gut microbiota is involved in the development of psoriatic arthritis (PsA), but until now, there has been a lack of understanding of the PsA host-bacteria interaction. Objectives To reveal the labels of gut microbiota in PsA patients and the species and functions related to disease activity. Design Observational research (cross-sectional) with an exploratory nature. Methods Metagenomics sequencing was used to analyze stool samples from 20 treatment-naïve PsA patients and 10 age-matched healthy individuals. All samples were qualified for subsequent analysis. Results Compared with the healthy group, α-diversity was reduced in the PsA group, and β-diversity could distinguish the two groups. Two bacteria with high abundance and correlation with PsA disease activity were identified, Bacteroides sp. 3_1_19 and Blautia AF 14-40. In different functions, K07114 (calcium-activated chloride channel (CaCC) homolog) showed a positive correlation with PsA disease activity (disease activity in psoriatic arthritis, DAPSA) and Tet32 (an antibiotic-resistant gene), and carbohydrate-binding module family 50 was negatively correlated with erythrocyte sedimentation rate. A bacterial co-expression network associated with DAPSA was constructed. The network was centered on the bacteria in the Bacteroides genus, which formed a closely related network and were positively correlated with DAPSA. As another core of the network, K07114 was closely related to multiple bacteria in the Bacteroides genus and is also positively correlated with disease activity. Conclusion The network composed of Bacteroides is associated with PsA disease activity, and its therapeutic value needs to be further explored. CaCCs may be a key channel for the interaction between Bacteroides and PsA-host.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Chunyan Li
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Xiaohui Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing 100034, China
| |
Collapse
|
2
|
Antunes BC, Mateus T, Morais VA. In the Brain, It Is Not All about Sugar. NEUROSCI 2024; 5:209-221. [PMID: 39483499 PMCID: PMC11493208 DOI: 10.3390/neurosci5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Collapse
Affiliation(s)
- Bernardo C Antunes
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Tomás Mateus
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Vanessa A Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| |
Collapse
|
3
|
Yu Y, Hao H, Kong L, Zhang J, Bai F, Guo F, Wei P, Chen R, Hu W. A metabolomics-based analysis of the metabolic pathways associated with the regulation of branched-chain amino acids in rats fed a high-fructose diet. Endocr Connect 2023; 12:e230079. [PMID: 37522853 PMCID: PMC10503218 DOI: 10.1530/ec-23-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Previous studies have shown that the elevated levels of circulating branched-chain amino acids (BCAAs) are associated with the development of insulin resistance and its complications, including obesity, type 2 diabetes, cardiovascular disease and some cancers. However, animal models that can mimic the metabolic state of chronically elevated BCAAs in humans are rare. Therefore, the aim of this study was to establish the above animal model and analyse the metabolic changes associated with high BCAA levels. Sixteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into two groups and given either a high fructose diet or a normal diet. BCAA levels as well as blood glucose and lipid levels were measured at different time points of feeding. The mRNA expression levels of two key enzymes of BCAA catabolism, ACAD (acyl-CoA dehydrogenase) and BCKDH (branched-chain α-keto acid dehydrogenase), were measured by qPCR, and the protein expression levels of these two enzymes were analysed by immunohistochemistry. Finally, the metabolite expression differences between the two groups were analysed by Q300 metabolomics technology. Our study confirms that defects in the catabolic pathways of BCAAs lead to increased levels of circulating BCAAs, resulting in disorders of glucose and lipid metabolism characterized by insulin resistance by affecting metabolic pathways associated with amino acids and bile acids.
Collapse
Affiliation(s)
- Yang Yu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Hairong Hao
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Linghui Kong
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Feng Bai
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Fei Guo
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Pan Wei
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Rui Chen
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Wen Hu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| |
Collapse
|
4
|
Mirmiran P, Gaeini Z, Feizy Z, Azizi F. Dietary fatty acid patterns and risk of metabolic syndrome: Tehran lipid and glucose study. Eur J Med Res 2023; 28:358. [PMID: 37730615 PMCID: PMC10510261 DOI: 10.1186/s40001-023-01348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The association between individual dietary fatty acids (FAs) and risk of metabolic syndrome (MetS) has been investigated in previous studies. However, synergistic or additive effects of multiple FA have received less attention. Hence, we aimed to determine the major dietary FA patterns and evaluate the association between FA patterns and risk of MetS. METHODS Dietary intakes of 1713 MetS-free adults who participated in the third phase of the Tehran Lipid and Glucose Study (TLGS) were assessed using a validated 168-items food frequency questionnaire. FA patterns were obtained by principal component analysis (PCA). Adjusted Hazard Ratios (HRs) and 95% confidence intervals (CIs) were calculated for the association of MetS incident with the extracted FA patterns. RESULTS Four major FA patterns were identified through PCA of the 24 FAs consumed: "short- and medium-chain saturated fatty acid (SFA) pattern", "long-chain FA pattern", "omega-3 PUFA pattern", and "long-chain SFA pattern". There was no significant association between dietary FA patterns and risk of MetS incidence. CONCLUSIONS We found no significant association between FA patterns and risk of MetS. More prospective cohort studies and clinical trials are needed to clarify the issue.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Shahid-Erabi St., Yeman St., Velenjak, P.O. Box: 19395-4763, Tehran, Iran.
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Shahid-Erabi St., Yeman St., Velenjak, P.O. Box: 19395-4763, Tehran, Iran
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Thomas D, Wu M, Nakauchi Y, Zheng M, Thompson-Peach CA, Lim K, Landberg N, Köhnke T, Robinson N, Kaur S, Kutyna M, Stafford M, Hiwase D, Reinisch A, Peltz G, Majeti R. Dysregulated Lipid Synthesis by Oncogenic IDH1 Mutation Is a Targetable Synthetic Lethal Vulnerability. Cancer Discov 2023; 13:496-515. [PMID: 36355448 PMCID: PMC9900324 DOI: 10.1158/2159-8290.cd-21-0218] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Manhong Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ming Zheng
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Chloe A.L. Thompson-Peach
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Niklas Landberg
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, South Australia, Australia
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Monika Kutyna
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Hematology and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Corresponding Author: Ravindra Majeti, Department of Medicine, Division of Hematology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305. Phone: 650-721-6376; Fax: 650-736-2961; E-mail:
| |
Collapse
|
6
|
Bogaards FA, Gehrmann T, Beekman M, van den Akker EB, van de Rest O, Hangelbroek RWJ, Noordam R, Mooijaart SP, de Groot LCPGM, Reinders MJT, Slagboom PE. PLIS: A metabolomic response monitor to a lifestyle intervention study in older adults. FASEB J 2022; 36:e22578. [PMID: 36183353 DOI: 10.1096/fj.202201037r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
The response to lifestyle intervention studies is often heterogeneous, especially in older adults. Subtle responses that may represent a health gain for individuals are not always detected by classical health variables, stressing the need for novel biomarkers that detect intermediate changes in metabolic, inflammatory, and immunity-related health. Here, our aim was to develop and validate a molecular multivariate biomarker maximally sensitive to the individual effect of a lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We used 1 H-NMR fasting blood metabolite measurements from before and after the 13-week combined physical and nutritional Growing Old TOgether (GOTO) lifestyle intervention study in combination with a fivefold cross-validation and a bootstrapping method to train a separate PLIS score for men and women. The PLIS scores consisted of 14 and four metabolites for females and males, respectively. Performance of the PLIS score in tracking health gain was illustrated by association of the sex-specific PLIS scores with several classical metabolic health markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, the primary outcome of the GOTO study. We also showed that the baseline PLIS score indicated which participants respond positively to the intervention. Finally, we explored PLIS in an independent physical activity lifestyle intervention study, showing similar, albeit remarkably weaker, associations of PLIS with classical metabolic health markers. To conclude, we found that the sex-specific PLIS score was able to track the individual short-term metabolic health gain of the GOTO lifestyle intervention study. The methodology used to train the PLIS score potentially provides a useful instrument to track personal responses and predict the participant's health benefit in lifestyle interventions similar to the GOTO study.
Collapse
Affiliation(s)
- Fatih A Bogaards
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands.,Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Ben van den Akker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ondine van de Rest
- Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Roland W J Hangelbroek
- Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond Noordam
- Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Mooijaart
- Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Jolly RA, Bandara S, Bercu J, Callis CM, Dolan DG, Graham J, HaMai D, Barle EL, Maier A, Masuda-Herrera M, Moudgal C, Parker JA, Reichard J, Sandhu R, Fung ES. Setting impurity limits for endogenous substances: Recommendations for a harmonized procedure and an example using fatty acids. Regul Toxicol Pharmacol 2022; 134:105242. [PMID: 35964842 DOI: 10.1016/j.yrtph.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Endogenous substances, such as fatty, amino, and nucleic acids, are often purposefully used in parenterally pharmaceuticals, but may be present as impurities. Currently, no consensus guidance exists on setting impurity limits for these substances. Specific procedures are needed, as the amount and types of toxicity data available for endogenous substances are typically far less than those for other chemical impurities. Additionally, the parenteral route of administration of these substances is inherently non-physiological, resulting in potentially different or increased severity of toxicity. Risk Assessment Process Maps (RAPMAPs) are proposed as a model to facilitate the development of health-based exposure limits (HBELs) for endogenous substances. This yielded a framework that was applied to derive HBELs for several fatty acids commonly used in parenteral pharmaceuticals. This approach was used to derive HBELs with further vetting based on anticipated perturbations in physiological serum levels, impacts of dose-rate, and consideration of intermittent dosing. Parenteral HBELs of 100-500 mg/day were generated for several fatty acids, and a proposed class-based limit of 50 mg/day to be used in the absence of chemical-specific data. This default limit is consistent with the low toxicity of this chemical class and ICH Q3C value for Class 3 solvents.
Collapse
|
8
|
López-Montoya P, Cerqueda-García D, Rodríguez-Flores M, López-Contreras B, Villamil-Ramírez H, Morán-Ramos S, Molina-Cruz S, Rivera-Paredez B, Antuna-Puente B, Velázquez-Cruz R, Villarreal-Molina T, Canizales-Quinteros S. Association of Gut Microbiota with Atherogenic Dyslipidemia, and Its Impact on Serum Lipid Levels after Bariatric Surgery. Nutrients 2022; 14:nu14173545. [PMID: 36079803 PMCID: PMC9460232 DOI: 10.3390/nu14173545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota has been suggested to modulate circulating lipids. However, the relationship between the gut microbiota and atherogenic dyslipidemia (AD), defined as the presence of both low HDL-C and hypertriglyceridemia, is not fully understood. Moreover, because obesity is among the main causes of secondary AD, it is important to analyze the effect of gut microbiota composition on lipid profiles after a weight loss intervention. We compared the microbial diversity and taxonomic composition in patients with AD (n = 41) and controls (n = 38) and sought correlations of genera abundance with serum lipid levels in 20 patients after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Gut microbiota composition was profiled using next-generation sequencing of 16S rRNA. Gut microbiota diversity was significantly lower in atherogenic dyslipidemia. Moreover, relative abundance of two genera with LDA score >3.5 (Megasphaera and LPS-producing Escherichia-Shigella), was significantly higher in AD subjects, while the abundance of four short chain fatty acids (SCFA) producing-genera (Christensenellaceae R-7, Ruminococcaceae UCG-014; Akkermansia and [Eubacterium] eligens group) was significantly higher in controls. Notably, [Eubacterium] eligens group abundance was also significantly associated with higher HDL-C levels in RYGB patients one year after surgery. Although dietary polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio and PUFA intake were higher in controls than in AD subjects, of the four genera differentiated in cases and controls, only Akkermansia abundance showed a positive and significant correlation with PUFA/SFA ratio. Our results suggest that SCFA-producing bacteria promote a healthy lipid homeostasis, while the presence of LPS-producing bacteria such Escherichia-Shigella may contribute to the development of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Priscilla López-Montoya
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Daniel Cerqueda-García
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Marcela Rodríguez-Flores
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Blanca López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Selene Molina-Cruz
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud (CIPPS), Facultad de Medicina-UNAM, Mexico City 04510, Mexico
| | - Bárbara Antuna-Puente
- Infection Disease Division, Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| | | | | | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 14610, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|
9
|
Dalle Zotte A, Singh Y, Gerencsér Z, Matics Z, Szendrő Z, Cappellozza S, Cullere M. Feeding silkworm (Bombyx mori L.) oil to growing rabbits improves the fatty acid composition of meat, liver and perirenal fat. Meat Sci 2022; 193:108944. [PMID: 35969976 DOI: 10.1016/j.meatsci.2022.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
Abstract
Silkworm oil was used in a rabbit diet to evaluate its benefit on the fatty acid (FA) profile of different carcass portions. Two experimental diets were prepared: a control diet (commercial diet with 13 g/kg sunflower oil) and a silkworm oil diet (SWO) (commercial diet with 13 g/kg silkworm oil). Rabbits received the experimental diets the last three weeks before slaughter, which occurred at 10 weeks of age. At slaughter, hind leg meat, liver, and perirenal fat were sampled for FA profile analysis. The SWO diet significantly increased the n-3 FA of all three sampling sites and halved the n-6/n-3 ratio of hind leg meat and perirenal fat. Furthermore, the liver of SWO rabbits was also richer in C22:6 n-3 compared to that of control rabbits. In conclusion, this study demonstrated that the total dietary replacement of sunflower oil with silkworm oil in fattening rabbits positively changed the FA profile of the considered carcass tissues.
Collapse
Affiliation(s)
- A Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Y Singh
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Zs Gerencsér
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, H-7400 Kaposvár, Guba Sándor u. 40, Hungary.
| | - Zs Matics
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, H-7400 Kaposvár, Guba Sándor u. 40, Hungary.
| | - Zs Szendrő
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, H-7400 Kaposvár, Guba Sándor u. 40, Hungary.
| | - S Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA - AA), Sericulture Laboratory of Padova, Via Eulero 6a, 35143 Padova, Italy.
| | - M Cullere
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
10
|
Collodel G, Moretti E, Noto D, Corsaro R, Signorini C. Oxidation of Polyunsaturated Fatty Acids as a Promising Area of Research in Infertility. Antioxidants (Basel) 2022; 11:antiox11051002. [PMID: 35624866 PMCID: PMC9137497 DOI: 10.3390/antiox11051002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the role of fatty acids (FA) in human pathological conditions, infertility in particular, was considered. FA and FA-derived metabolites modulate cell membrane composition, membrane lipid microdomains and cell signaling. Moreover, such molecules are involved in cell death, immunological responses and inflammatory processes. Human health and several pathological conditions are specifically associated with both dietary and cell membrane lipid profiles. The role of FA metabolism in human sperm and spermatogenesis has recently been investigated. Cumulative findings indicate F2 isoprostanes (oxygenated products from arachidonic acid metabolism) and resolvins (lipid mediators of resolution of inflammation) as promising biomarkers for the evaluation of semen and follicular fluid quality. Advanced knowledge in this field could lead to new scenarios in the treatment of infertility.
Collapse
|
11
|
Mattioli S, Dimauro C, Cesarani A, Dal Bosco A, Bartolini D, Galli F, Migni A, Sebastiani B, Signorini C, Oger C, Collodel G, Castellini C. A Dynamic Model for Estimating the Interaction of ROS–PUFA–Antioxidants in Rabbit. Antioxidants (Basel) 2022; 11:antiox11030531. [PMID: 35326181 PMCID: PMC8944554 DOI: 10.3390/antiox11030531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Defining optimal nutrition in animals and humans remains a main scientific challenge. The objective of the work was to develop a dynamic model of reactive oxygen species (ROS)–polyunsaturated fatty acid (PUFA)–antioxidant homeostasis using the rabbit as a model. The problem entity was to evaluate the main metabolites generated from interactions between traits included in the conceptual model and identified by three main sub–models: (i) ROS generation, (ii) PUFA oxidation and (iii) antioxidant defence. A mathematical model (VENSIM software) that consisted of molecular stocks (INPUTs, OUTPUTs), exchange flows (intermediate OUTPUTs) and process rates was developed. The calibration was performed by using standard experimental data (Experiment 1), whereas the validation was carried out in Experiments 2 and 3 by using supra–nutritional dietary inputs (VIT E+ and PUFA+). The accuracy of the models was measured using 95% confidence intervals. Analytical OUTPUTs (ROS, PUFA, Vit E, Ascorbic acid, Iso–/NeuroProstanes, Aldehydes) were well described by the standard model. There was also good accuracy for the VIT E+ scenario, whereas some compensatory rates (Kc1–Kc4) were added to assess body compensation when high levels of dietary PUFA were administered (Experiment 3). In conclusion, the model can be very useful for predicting the effects of dietary treatments on the redox homeostasis of rabbits.
Collapse
Affiliation(s)
- Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| | - Desiree Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via Enrico Dal Pozzo, 06126 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Via Enrico Dal Pozzo, 06126 Perugia, Italy
| | - Anna Migni
- Department of Life Science and System Biology, Università di Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, Via del Giochetto, University of Perugia, 06126 Perugia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, 1919 route de Mende, CEDEX 05, 34293 Montpellier, France
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy
| |
Collapse
|
12
|
Cartoni Mancinelli A, Di Veroli A, Mattioli S, Cruciani G, Dal Bosco A, Castellini C. Lipid metabolism analysis in liver of different chicken genotypes and impact on nutritionally relevant polyunsaturated fatty acids of meat. Sci Rep 2022; 12:1888. [PMID: 35115659 PMCID: PMC8814176 DOI: 10.1038/s41598-022-05986-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Humans and mammalian species are unable to synthesize significant amounts of polyunsaturated fatty acids (PUFA), which therefore must be introduced with the diet. In birds, lipogenesis takes place primarily in the liver, whereas adipose tissue serves as the storage site for triacylglycerols (TG, composed by 80-85% esterified fatty acids). However, both the nature (unsaturation level, n-3, or n-6 series) and the allocation (such as constituents of complexed lipids) of PUFA are very important to evaluate their function in lipid metabolism. The objective of the present investigation was to study the liver lipid metabolism, with particular attention to non-esterified fatty acids (NEFA), TG, phospholipids (PL), FADS2 gene expression, and Δ6-desaturase activity of three chicken genotypes, Leghorn (Leg), Ross 308 (Ross), and their crossbreed (LxR), by LC/MS analysis. The concentration of single fatty acids in muscle was quantified by GC-FID. The results showed that the Ross has a lipid metabolism related mainly to storage and structural roles, exhibiting higher levels of TG, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that are largely unsaturated. Meanwhile Leg showed a relevant amount of n-3 NEFA characterized by a higher phosphatidylserine (PS) unsaturation level, FADS2 gene expression and enzyme activity. The LxR seem to have a moderate trend: n-6 and n-3 NEFA showed intermediate values compared with that of the Ross and Leg and the TG trend was similar to that of the Ross, while PE and PC were largely unsaturated (mainly 6 and 7 UNS most of the metabolic energy for storage fatty acids in their tissues (TG) whereas, the Leg birds were characterized by different lipid metabolism showing in their liver a higher content of n-3 NEFA and higher unsaturation level in PS. Furthers details are needed to better attribute the lipid energy to the different metabolic portion.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06123, Perugia, Italy
| |
Collapse
|
13
|
Wang LC, Huang YM, Lu C, Chiang BL, Shen YR, Huang HY, Lee CC, Su NW, Lin BF. Lower caprylate and acetate levels in the breast milk is associated with atopic dermatitis in infancy. Pediatr Allergy Immunol 2022; 33:e13744. [PMID: 35212041 DOI: 10.1111/pai.13744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) occurs in exclusively breastfed infants. As fatty acids have some immunomodulatory effect, we aimed to investigate the influence of fatty acid compositions in breast milk (BM) on the development of AD in exclusively breastfed infants. METHODS We enrolled two- to four-month-old exclusively breastfed infants. The objective SCORing Atopic Dermatitis (objSCORAD) was evaluated. The lipid layer of BM was analyzed by gas chromatography for fatty acid levels. Medical charts were reviewed. RESULTS Forty-seven AD infants and 47 healthy controls were enrolled. The objSCORAD was 20.5 ± 1.7 (shown as mean ± SEM) in the AD group. The age, sex, parental atopy history, and nutrient intake of mothers were not significantly different between two groups. The palmitate and monounsaturated fatty acid (MUFA) levels in BM positively correlated with objSCORAD, while caprylate, acetate, and short-chain fatty acid (SCFA) levels negatively correlated with objSCORAD (p = .031, .019, .039, .013, .022, respectively). However, the butyrate levels in BM were not significantly different. The caprylate and acetate levels in BM were significantly associated with the presence of infantile AD (p = .021 and .015, respectively) after adjusting for age, sex, parental allergy history, MUFA, palmitate, and SCFA levels in BM. ObjSCORAD in infancy was significantly associated with persistent AD (p = .026) after adjusting for age, sex, parental atopy history, caprylate, palmitate, MUFA, acetate, and SCFA levels in BM. CONCLUSION Caprylate and acetate levels in BM for exclusively breastfed infants were negatively associated with objSCORAD. Lower caprylate and acetate in BM might be the risk factors for infantile AD, while butyrate in BM was not associated with infantile AD.
Collapse
Affiliation(s)
- Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ming Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Emergency Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chieh Lu
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Rou Shen
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsun-Yi Huang
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Huang Z, Liu X, Li Z, Cui L, Liu C, Wang W, Hu Y, Chen B. The Associations of Erythrocyte Fatty Acids with Whole Blood Mineral Elements in Children. Nutrients 2022; 14:618. [PMID: 35276976 PMCID: PMC8838319 DOI: 10.3390/nu14030618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Minerals play important biological roles in lipid metabolism. The primary aim of this study was to examine the relationships between erythrocyte fatty acids (FAs) levels with whole blood mineral elements concentrations among Chinese children. Methods. A cross-sectional study was conducted. A total of 435 children aged 4−7 years were recruited. Whole blood mineral elements were determined by atomic absorption spectrometry and erythrocyte FAs composition by gas chromatography-mass spectrometer. Results. There were direct correlations between Zn and C18:2n-6 (FDR corrected p = 0.019), total n-6 PUFAs (FDR corrected p = 0.034), and total PUFAs (FDR corrected p = 0.034). Direct correlations were found between whole blood Zn and C18:1n-9 (FDR corrected p = 0.035), C24:1n-9 (FDR corrected p = 0.023), total MUFAs (FDR corrected p = 0.023), and C18:2n-6 (FDR corrected p = 0.048) in the Cu < P50 group. In the Cu ≥ P50 group, Mg was inversely related to most FAs (All FDR corrected p < 0.05). In the Zn < P50 group, Cu was directly related to C24:1n-9, total MUFAs, C20:5n-3, C22:6n-3, total n-3 PUFAs, C20:4n-6, total n-6 PUFAs, total PUFAs, and total FAs (All FDR corrected p < 0.05). Conclusions. Whole blood Cu and Zn levels were directly linked to several FAs levels in the erythrocytes of children. The interactions of Mg, Cu, and Zn with fatty acids may affect FA metabolism, in which Mg influences FA absorption.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Phytochemical R & D of Hunan Province, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China; (Z.H.); (X.L.); (C.L.)
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China
- School of Public Health and Laboratory, Hunan University of Medicine, Jinxi Road No. 492, Huaihua 418000, China
| | - Xing Liu
- Key Laboratory of Phytochemical R & D of Hunan Province, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China; (Z.H.); (X.L.); (C.L.)
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China
| | - Ziming Li
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Furong Road No. 450, Changsha 410005, China; (Z.L.); (L.C.); (W.W.)
| | - Luwei Cui
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Furong Road No. 450, Changsha 410005, China; (Z.L.); (L.C.); (W.W.)
| | - Candi Liu
- Key Laboratory of Phytochemical R & D of Hunan Province, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China; (Z.H.); (X.L.); (C.L.)
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China
| | - Weifeng Wang
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Furong Road No. 450, Changsha 410005, China; (Z.L.); (L.C.); (W.W.)
| | - Yuming Hu
- The Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Furong Road No. 450, Changsha 410005, China; (Z.L.); (L.C.); (W.W.)
| | - Bo Chen
- Key Laboratory of Phytochemical R & D of Hunan Province, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China; (Z.H.); (X.L.); (C.L.)
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, School of Chemistry & Chemical Engineering, Hunan Normal University, Lu Mountain Road No. 286, Changsha 410081, China
| |
Collapse
|
15
|
Panda C, Varadharaj S, Voruganti VS. PUFA, genotypes and risk for cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102377. [PMID: 34915303 DOI: 10.1016/j.plefa.2021.102377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are long chain fatty acids that are characterized by the presence of more than one double bond. These include fatty acids such as ꞷ-3-α-linolenic acid (ALA) and ꞷ-6 -linoleic acid (LA) which can only be obtained from dietary sources and are therefore termed essential fatty acids. They contain the building blocks for dihomo-γ-linolenic acid and arachidonic acid in the ꞷ-6 family as well as eicosapentaenoic acid and docosahexaenoic acid in the ꞷ-3 family. Both ALA and LA are important constituents of animal and plant cell membranes and are important components of anti-inflammatory and pro-inflammatory hormones and therefore, often modulate cellular immunity under chronic inflammatory states. The variation in physiological PUFA levels is under significant genetic influence, the fatty acid desaturase (FADS) genes being key regulators of PUFA metabolism. These genetic variants have been shown to alter fatty acid metabolism and influence the onset and progression of various metabolic conditions. This detailed review discusses the role of PUFAs, diet and genotypes in risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Chinmayee Panda
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, United States; Standard Process Inc, United States
| | | | - Venkata Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
16
|
A bioorthogonal chemical reporter for fatty acid synthase-dependent protein acylation. J Biol Chem 2021; 297:101272. [PMID: 34606827 PMCID: PMC8551652 DOI: 10.1016/j.jbc.2021.101272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian cells acquire fatty acids (FAs) from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers of the breast, prostate, and liver, among others, and is required during the replication of many viruses, such as dengue virus, hepatitis C, HIV-1, hepatitis B, and severe acute respiratory syndrome coronavirus 2, among others. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo FA synthesis contributes to host or viral protein acylation has been traditionally difficult to study. Here, we describe a cell-permeable and click chemistry-compatible alkynyl acetate analog (alkynyl acetic acid or 5-hexynoic acid [Alk-4]) that functions as a reporter of FASN-dependent protein acylation. In an FASN-dependent manner, Alk-4 selectively labels the cellular protein interferon-induced transmembrane protein 3 at its known palmitoylation sites, a process that is essential for the antiviral activity of the protein, and the HIV-1 matrix protein at its known myristoylation site, a process that is required for membrane targeting and particle assembly. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.
Collapse
|
17
|
Mehra R, Singh R, Nayan V, Buttar HS, Kumar N, Kumar S, Bhardwaj A, Kaushik R, Kumar H. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
An anticonvulsive drug, valproic acid (valproate), has effects on the biosynthesis of fatty acids and polyketides in microorganisms. Sci Rep 2020; 10:9300. [PMID: 32518288 PMCID: PMC7283484 DOI: 10.1038/s41598-020-66251-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Valproic acid or valproate (VPA) is an anticonvulsive drug used for treatments of epilepsy, bipolar disorder, and migraine headaches. VPA is also an epigenetic modulator, inhibiting histone deacetylase, and it has been subjected to clinical study for cancer treatment. During the investigation of VPA on a metabolite profile in a fungus, we found that VPA has significant effects on the production of some fatty acids. Further exploration of VPA on fatty acid profiles of microorganisms, fungi, yeast, and bacteria, as well as representative gut microbiome, revealed that VPA could enhance or reduce the production of some fatty acids. VPA was found to induce the production of trans-9-elaidic acid, a fatty acid that was previously reported to have cellular effects in human macrophages. VPA could also inhibit the production of some polyketides produced by a model fungus. The present work suggests that the induction or inhibition of fatty acid biosynthesis by VPA (100 µM) in gut microbiome could give effects to patients treated with VPA because high doses of VPA oral administration (up to 600 mg to 900 mg) are used by patients; the concentration of VPA in the human gut may reach a concentration of 100 µM, which may give effects to gut microorganisms.
Collapse
|
19
|
Kuznetsova D, Rodimova S, Gulin A, Reunov D, Bobrov N, Polozova A, Vasin A, Shcheslavskiy V, Vdovina N, Zagainov V, Zagaynova E. Metabolic imaging and secondary ion mass spectrometry to define the structure and function of liver with acute and chronic pathology. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-14. [PMID: 31849207 PMCID: PMC7008498 DOI: 10.1117/1.jbo.25.1.014508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 05/09/2023]
Abstract
Conventional techniques are insufficient precisely to describe the internal structure, the heterogeneous cell populations, and the dynamics of biological processes occurring in diseased liver during surgery. There is a need for a rapid and safe method for the successful diagnosis of liver disease in order to plan surgery and to help avoid postoperative liver failure. We analyze the progression of both acute (cholestasis) and chronic (fibrosis) liver pathology using multiphoton microscopy with fluorescence lifetime imaging and second-harmonic generation modes combined with time-of-flight secondary ion mass spectrometry chemical analysis to obtain new data about pathological changes to hepatocytes at the cellular and molecular levels. All of these techniques allow the study of cellular metabolism, lipid composition, and collagen structure without staining the biological materials or the incorporation of fluorescent or other markers, enabling the use of these methods in a clinical situation. The combination of multiphoton microscopy and mass spectrometry provides more complete information about the liver structure and function than could be assessed using either method individually. The data can be used both to obtain new criteria for the identification of hepatic pathology and to develop a rapid technique for liver quality analysis in order to plan surgery and to help avoid postoperative liver failure in clinic.
Collapse
Affiliation(s)
- Daria Kuznetsova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Address all correspondence to Daria Kuznetsova, E-mail:
| | - Svetlana Rodimova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Alexander Gulin
- Russian Academy of Sciences, N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Dmitry Reunov
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Federal Medical and Biological Agency, Volga District Medical Centre, Nizhny Novgorod, Russia
| | - Anastasia Polozova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Alexander Vasin
- Russian Academy of Sciences, N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Vladislav Shcheslavskiy
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Becker & Hickl GmbH, Berlin, Germany
| | - Natalia Vdovina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Federal Medical and Biological Agency, Volga District Medical Centre, Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Papandreou C, Sala-Vila A, Galié S, Muralidharan J, Estruch R, Fitó M, Razquin C, Corella D, Ros E, Timiraos J, Lapetra J, Serra-Majem L, Carlos S, Castañer O, Asensio EM, Salas-Salvadó J, Bulló M. Association Between Fatty Acids of Blood Cell Membranes and Incidence of Coronary Heart Disease. Arterioscler Thromb Vasc Biol 2019; 39:819-825. [PMID: 30727755 DOI: 10.1161/atvbaha.118.312073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
To examine the associations between baseline levels of fatty acids in blood cell membranes and their 1-year changes with the incidence of coronary heart disease (CHD) in older adults at high cardiovascular disease risk.
Approach and Results—
This is a case-control study nested in the PREDIMED trial (Prevención con Dieta Mediterránea), with 136 CHD cases and 272 controls (matched on age, sex, body mass index, intervention group, and time of permanence in the study to the time event). We used gas chromatography to measure the proportion of 22 fatty acids in blood cell membranes at baseline and after 1 year. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% CIs. After adjustment for classical CHD risk factors and multiple testing, 1 SD increase in baseline levels of C22:0, C24:0 and the sum of individual very long chain saturated fatty acids was associated with 56% (OR, 0.44 [95% CI, 0.28–0.69]), 59% (OR, 0.41 [95% CI, 0.25–0.65]), and 55% (OR, 0.45 [95% CI, 0.29–0.70]) a decreased odds of developing CHD, respectively. Baseline C20:1n9 was associated with higher odds of CHD (OR, 1.58 [95% CI, 1.25–2.00]).
Conclusions—
Higher levels of C22:0 and C24:0 were associated with a lower CHD incidence, whereas higher levels of C20:1n9 were associated with a higher risk. This study adds to the growing body of evidence suggesting potential differences in the cardiovascular disease effects of different types of circulating saturated fatty acids.
Collapse
Affiliation(s)
- Christopher Papandreou
- From the Department of Biochemistry and Biotechnology, Human Nutrition Unit, IISPV, Hospital Universitari Sant Joan de Reus, Rovira i Virgili University, Reus, Spain (C.P., S.G., J.M., J.S.-S., M.B.)
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
| | - Aleix Sala-Vila
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Hospital Clinic (A.S.-V., E.R.), University of Barcelona, Spain
| | - Serena Galié
- From the Department of Biochemistry and Biotechnology, Human Nutrition Unit, IISPV, Hospital Universitari Sant Joan de Reus, Rovira i Virgili University, Reus, Spain (C.P., S.G., J.M., J.S.-S., M.B.)
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
| | - Jananee Muralidharan
- From the Department of Biochemistry and Biotechnology, Human Nutrition Unit, IISPV, Hospital Universitari Sant Joan de Reus, Rovira i Virgili University, Reus, Spain (C.P., S.G., J.M., J.S.-S., M.B.)
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Internal Medicine, Hospital Clínic, IDIBAPS August Pi i Sunyer Biomedical Research Institute (R.E.), University of Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Research Institute (IMIM), Barcelona, Spain (M.F., O.C.)
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain (C.R., S.C.)
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain (C.R., S.C.)
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Preventive Medicine, University of Valencia, Spain (D.C., E.M.A.)
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Hospital Clinic (A.S.-V., E.R.), University of Barcelona, Spain
| | - Juan Timiraos
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Neurology, University Hospital Araba, Vitoria, Spain (J.T.)
| | - Jose Lapetra
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Family Medicine, Unit Research, Distrito Sanitario Atención Primaria Sevilla, Spain (J.L.)
| | - Lluis Serra-Majem
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Clinical Sciences, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (L.S.-M.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain (C.R., S.C.)
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain (C.R., S.C.)
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Research Institute (IMIM), Barcelona, Spain (M.F., O.C.)
| | - Eva M Asensio
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
- Department of Clinical Sciences, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (L.S.-M.)
| | - Jordi Salas-Salvadó
- From the Department of Biochemistry and Biotechnology, Human Nutrition Unit, IISPV, Hospital Universitari Sant Joan de Reus, Rovira i Virgili University, Reus, Spain (C.P., S.G., J.M., J.S.-S., M.B.)
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
| | - Mònica Bulló
- From the Department of Biochemistry and Biotechnology, Human Nutrition Unit, IISPV, Hospital Universitari Sant Joan de Reus, Rovira i Virgili University, Reus, Spain (C.P., S.G., J.M., J.S.-S., M.B.)
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (C.P., A.S.-V., S.G., J.M., R.E., M.F., C.R., D.C., E.R., J.T., J.L., L.S.-M., O.C., E.M.A., J.S.-S., M.B.)
| |
Collapse
|
21
|
Senarath S, Beppu F, Yoshinaga K, Nagai T, Yoshida A, Gotoh N. Comparison of the Effects of Long-chain Monounsaturated Fatty Acid Positional Isomers on Lipid Metabolism in 3T3-L1 Cells. J Oleo Sci 2019; 68:379-387. [PMID: 30867386 DOI: 10.5650/jos.ess18223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long chain monounsaturated fatty acids (LC-MUFAs) have shown beneficial health effects in previous studies. They occur as mixtures of positional isomers (PIs) in food. The functionalities of LC-MUFA PIs have not been studied extensively. Common LC-MUFA PIs, namely cis-octadecenoic acid (c-18:1), cis-eicosenoic acid (c-20:1), and cis-docosenoic acid (c-22:1), were screened based on their effects on lipid accumulation. We selected nine fatty acids (FAs) to assess their effects on cellular lipid metabolism using 3T3-L1 preadipocytes. Lipid accumulation was found to be higher in cells treated with LC-MUFAs than in the non-treated cells. When comparing the influence of chain length of LC-MUFAs, TG levels tended to be higher in cells treated with c-22:1 group than that of the c18:1 and c-20:1 groups. Among the c-22:1 group, c9-22:1 treatment showed higher lipid accumulation, and was accompanied with elevated expression of transcription factors related to adipogenesis and lipogenesis, such as PPARγ and C/EBPα, and SREBP-1, respectively. In contrast, the effects of c-20:1 FAs were less pronounced than those of c-18:1 and c-22:1. Levels of accumulated lipid in cells treated with c15-20:1 were the same as in non-treated control. PPARγ, C/EBPα, and SREBP-1 were expressed at lower levels with c15-20:1 FA. Furthermore, mRNA levels of SCD-1 and FAS were lowered more by c15- and c11-20:1 than by other MUFAs. These results revealed that differences in the effects of LC-MUFAs on lipid metabolism depend on their chain lengths and on the position of the double bond.
Collapse
Affiliation(s)
- Samanthika Senarath
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology.,Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
22
|
Effects of feeding regimens on meat quality, fatty acid composition and metabolism as related to gene expression in Chinese Sunit sheep. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake. PLoS One 2017; 12:e0188007. [PMID: 29141038 PMCID: PMC5687764 DOI: 10.1371/journal.pone.0188007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
A high-fat diet has been recognized as an important risk factor of obesity, with variable impacts of different fatty acid compositions on the physiological process. To understand the effects of a high-margarine/lard diet, which is a major source of trans fatty acids (TFAs)/ saturated fatty acids (SFAs), elaidic acid as a biomarker of margarine intake was used to screen affected adipokines on mature human adipocytes in vitro. Weaned male Wistar rats were fed a high-fat diet enriched with margarine/lard to generate obesity-prone (OP) and obesity-resistant (OR) models, which were then used to explore the inflammatory responses of depot-specific white adipose tissue. Adiposity, glucose and lipid metabolism parameters and macrophage cell markers were also compared in vivo. In the subcutaneous depot, a high-margarine diet induced elevated IL-6, MCP-1 and XCL1 expression levels in both M-OP and M-OR groups. High-lard diet-fed rats displayed higher protein expression levels of MCP-1 and XCL1 compared with the control group. In the epididymal depot, significantly elevated IL-6 production was observed in M-OP rats, and high-lard diet-fed rats displayed elevated IL-6 and decreased XCL1 expression. In the retroperitoneal depot, a high-margarine diet caused higher IL-6 and MCP-1 expression levels, a high-lard diet caused elevated IL-6 expression in L-OP/L-OR rats, and elevated XCL1 expression was observed only in L-OP rats. In general, CD206 mRNA levels were notably down-regulated by high-fat diet feeding in the above-mentioned depots. CD11c mRNA levels were slightly upregulated in the subcutaneous depot of OP rats fed a high-margarine/lard diet. In the epidydimal depot, higher expression levels of F4/80 and CD206 mRNA were observed only in high-margarine diet-fed OP rats. These results suggest that depot-specific inflammation with decreased expression of adipose tissue anti-inflammatory M2-type (ATM2) macrophages could be induced by high-margarine/lard intake.
Collapse
|
24
|
Wang SH, Pan Y, Li J, Chen HQ, Zhang H, Chen W, Gu ZN, Chen YQ. Endogenous omega-3 long-chain fatty acid biosynthesis from alpha-linolenic acid is affected by substrate levels, gene expression, and product inhibition. RSC Adv 2017. [DOI: 10.1039/c7ra06728c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested that dietary alpha-linolenic acid (ALA) increases the levels of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs)in vivo, but the conversion procedure and the genes involved remain poorly understood.
Collapse
Affiliation(s)
- Shun-he Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yong Pan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Jing Li
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hai-qin Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Zhen-nan Gu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
25
|
Yang ZH, Emma-Okon B, Remaley AT. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids Health Dis 2016; 15:201. [PMID: 27876051 PMCID: PMC5120510 DOI: 10.1186/s12944-016-0366-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Regular fish/fish oil consumption is widely recommended for protection against cardiovascular diseases (CVD). Fish and other marine life are rich sources of the cardioprotective long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (C20:5 n-3; EPA) and docosahexaenoic acid (C22:6 n-3; DHA). The lipid content and fatty acid profile of fish, however, vary greatly among different fish species. In addition to n-3 PUFA, certain fish, such as saury, pollock, and herring, also contain high levels of long-chain monounsaturated fatty acids (LCMUFA), with aliphatic tails longer than 18 C atoms (i.e., C20:1 and C22:1 isomers). Compared with well-studied n-3 PUFA, limited information, however, is available on the health benefits of marine-derived LCMUFA, particularly in regard to CVD. Our objective in this review is to summarize the current knowledge and provide perspective on the potential therapeutic value of dietary LCMUFA-rich marine oil for improving CVD risk factors. We will also review the possible mechanisms of LCMUFA action on target tissues. Finally, we describe the epidemiologic data and small-scaled clinical studies that have been done on marine oils enriched in LCMUFA. Although there are still many unanswered questions about LCMUFA, this appears to be promising new area of research that may lead to new insights into the health benefits of a different component of fish oils besides n-3 PUFA.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.,Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Beatrice Emma-Okon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.
| |
Collapse
|
26
|
Castellini C, Dal Bosco A, Mattioli S, Davidescu M, Corazzi L, Macchioni L, Rimoldi S, Terova G. Activity, Expression, and Substrate Preference of the Δ(6)-Desaturase in Slow- or Fast-Growing Rabbit Genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:792-800. [PMID: 26745387 DOI: 10.1021/acs.jafc.5b05425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present paper liver fatty acid Δ(6) desaturation (fads2) activity was analyzed in two rabbit strains with slow- (S, 27.5 g/day) or fast-growing (F, 48.5 g/day) rate. The fatty acid profile of the liver showed a different PUFA profile in the two strains with a lower n-6/n-3 ratio in the S rabbits. The expression of fads2 was 2-fold higher in S than in F rabbits, whereas enzyme activity was higher in F and more oriented toward the desaturation of linoleic acid (90%). In contrast, S showed a higher preference for linolenic acid (38.9 vs 10%). This study identified a single difference in the fads2 amino acid sequence between these two strains. Such a difference consists in the substitution of Gly104 to Ser104 in the sequence of F fads2. These results indicate for the first time that genetic selection for performance may affect the preference for PUFA toward desaturation of linoleic/linolenic acid.
Collapse
Affiliation(s)
- Cesare Castellini
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria , Via J. H. Dunant 3, 21100 Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria , Via J. H. Dunant 3, 21100 Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria , 21100 Varese, Italy
| |
Collapse
|
27
|
Janssens S, Heemskerk MM, van den Berg SA, van Riel NA, Nicolay K, Willems van Dijk K, Prompers JJ. Effects of low-stearate palm oil and high-stearate lard high-fat diets on rat liver lipid metabolism and glucose tolerance. Nutr Metab (Lond) 2015; 12:57. [PMID: 26691906 PMCID: PMC4683731 DOI: 10.1186/s12986-015-0053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Background Excess consumption of energy-dense, high-fat Western diets contributes to the development of obesity and obesity-related disorders, such as fatty liver disease. However, not only the quantity but also the composition of dietary fat may play a role in the development of liver steatosis. The aim of this study was to determine the effects of low-stearate palm oil and high-stearate lard high-fat diets on in vivo liver lipid metabolism. Methods Wistar rats were fed with either normal chow (CON), a high-fat diet based on palm oil (HFP), or a high-fat diet based on lard (HFL). After 10 weeks of diet, magnetic resonance spectroscopy was applied for the in vivo determination of intrahepatocellular lipid content and the uptake and turnover of dietary fat after oral administration of 13C-labeled lipids. Derangements in liver lipid metabolism were further assessed by measuring hepatic very-low density lipoprotein (VLDL) secretion and ex vivo respiratory capacity of liver mitochondria using fat-derived substrates. In addition, whole-body and hepatic glucose tolerance were determined with an intraperitoneal glucose tolerance test. Results Both high-fat diets induced liver lipid accumulation (p < 0.001), which was accompanied by a delayed uptake and/or slower turnover of dietary fat in the liver (p < 0.01), but without any change in VLDL secretion rates. Surprisingly, liver lipid content was higher in HFP than in HFL (p < 0.05), despite the increased fatty acid oxidative capacity in isolated liver mitochondria of HFP animals (p < 0.05). In contrast, while both high-fat diets induced whole-body glucose intolerance, only HFL impaired hepatic glucose tolerance. Conclusion High-fat diets based on palm oil and lard similarly impair the handling of dietary lipids in the liver, but only the high-fat lard diet induces hepatic glucose intolerance.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mattijs M Heemskerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd A van den Berg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands ; Present address: Amphia Hospital, Breda, The Netherlands
| | - Natal A van Riel
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands ; Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
28
|
Nantapo CW, Muchenje V, Nkukwana TT, Hugo A, Descalzo A, Grigioni G, Hoffman LC. Socio-economic dynamics and innovative technologies affecting health-related lipid content in diets: Implications on global food and nutrition security. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|