1
|
Javed R, Sharafat U, Rathnayake A, Galagedara L, Selopal GS, Thomas R, Cheema M. Valorization and repurposing of seafood waste to next-generation carbon nanofertilizers. BIORESOURCE TECHNOLOGY 2025; 416:131783. [PMID: 39528026 DOI: 10.1016/j.biortech.2024.131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The surge in population growth, urbanization, and shifts in food consumption patterns have resulted in a rise in the global production of organic waste. This waste material must be repurposed and effectively managed to minimize environmental footprints. The generation of abundant biowaste, especially from marine sources, may have detrimental impacts on the environment and human health if left untreated. In recent years, substantial efforts have been made to valorize seafood waste, contributing significantly to the sustainability of the blue economy through the repurposing of marine discards. Seafood waste can be transformed into different by-products which can be applied as soil amendment to enhance soil quality and health, demonstrating a holistic approach to repurposing and waste utilization. The extraction of bioactive metabolites from these waste materials has opened avenues for developing nanofertilizers. This intersection of waste valorization and nanotechnology is pertinent in the context of sustainable agriculture. While conventional fertilizers improve soil fertility with significant leaching and gaseous losses, the advent of nanofertilizers introduces a paradigm shift with their targeted and controlled delivery mechanisms, rendering them significantly more efficient in resource utilization and mitigation of environmental crises. This review delves into the global issue of seafood waste accumulation, offering an overview of various methods for repurposing. The primary aim of this review is to bring into limelight the recent efforts in developing a portfolio of carbon-based nanofertilizers derived from organic waste, replacing previous valorization methods due to their sustainability, efficiency, and eco-friendliness. There are immense opportunities for future work in this direction by exploring innovative nanoengineering approach owing to the potential of carbon nanofertilizers in enhancing the production of value-added products and reduction of environmental pollution.
Collapse
Affiliation(s)
- Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada.
| | - Uzma Sharafat
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Ayesha Rathnayake
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agricultural, Dalhousie University, Truro B2N 5E3, NS, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, Western University, London, ON, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
2
|
Dayakar B, Xavier M, Ngasotter S, Dhanabalan V, Porayil L, Balange AK, Nayak BB. Extraction, optimization, and functional quality evaluation of carotenoproteins from shrimp processing side streams through enzymatic process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62315-62328. [PMID: 37831258 DOI: 10.1007/s11356-023-30232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The study aimed to develop an effective and eco-friendly enzymatic process to extract carotenoproteins from shrimp waste. The optimization of enzymatic hydrolysis conditions to maximize the degree of deproteinization (DDP) of carotenoprotein from shrimp head waste (SHW) and shrimp shell waste (SSW) was conducted separately using the Box-Behnken design of response surface methodology (RSM). To achieve a maximum DDP of 92.32% for SSW and 96.72% for SHW, the optimal hydrolysis conditions were determined as follows: temperature (SSW: 53.13 °C; SHW: 45.90 °C), pH (SSW: 7.13; SHW: 6.78), time (SSW: 90 min; SHW: 61.18 min), and enzyme/substrate ratio (SSW: 2 g/100 g; SHW: 1.18 g/100 g). The carotenoprotein effluent obtained was subjected to spray drying and subsequently assessed for color, nutritional, and functional characteristics. The carotenoprotein from shrimp shell (CpSS) contained a higher essential amino acid score than carotenoprotein from shrimp head (CpSH). CpSS had a higher whiteness index of 82.05, while CpSH had 64.04. Both CpSS and CpSH showed good functional properties viz solubility, emulsion, and foaming properties. The maximum solubility of CpSH and CpSS was determined to be 92.94% and 96.48% at pH 10.0, respectively. The highest emulsion capacity (CpSH: 81.33%, CpSS: 70.13%) and stability (CpSH: 57.06%, CpSS: 63.05%) were observed at 3% carotenoprotein concentration. Similarly, the highest values of foaming capacity (CpSH: 27.66%, CpSS: 105.5%) and stability (CpSH: 23.83%, CpSS: 105.33%) were also found at the same 3% carotenoprotein concentration. In conclusion, the carotenoproteins obtained from shrimp waste showed favorable attributes in terms of color, amino acid composition, and functional properties. These findings strongly suggest the potential applicability of CpSS and CpSH as valuable resources in various domains. CpSS, with its higher whiteness index, greater amino acid content, and superior functional characteristics, may find suitability as functional ingredients in human food products. Conversely, CpSH could be considered for incorporation into animal feed formulations.
Collapse
Affiliation(s)
- Bandela Dayakar
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Martin Xavier
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India.
| | - Soibam Ngasotter
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Vignaesh Dhanabalan
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Layana Porayil
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | | | - Binaya Bhusan Nayak
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
3
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
4
|
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int J Biol Macromol 2023; 253:126492. [PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
Collapse
Affiliation(s)
- Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India.
| | - Norhayati Mohamed Noor
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia; UTM Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81310 Johor Bahru, Johor, Malaysia
| | - Zaitul Iffa Abd Rasid
- UTM Research Ethics Committee, Department of Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B 5025, Awka, Nigeria; Department of Industrial Engineering, Clemson University 29631, South Carolina USA
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
5
|
Roy VC, Islam MR, Sadia S, Yeasmin M, Park JS, Lee HJ, Chun BS. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar Drugs 2023; 21:485. [PMID: 37755098 PMCID: PMC10532690 DOI: 10.3390/md21090485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries' economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin-chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world.
Collapse
Affiliation(s)
- Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Rakibul Islam
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Sultana Sadia
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Momota Yeasmin
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| |
Collapse
|
6
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
7
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
8
|
Rebouças Júnior JSA, Martins VG, Prentice-Hernández C, Monsserrat JM, Tesser MB, Latorres JM. Enzymatic Hydrolysis of Pacific White Shrimp Residue ( Litopenaeus vannamei) with Ultrasound Aid. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- José Stênio Aragão Rebouças Júnior
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice-Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - José Maria Monsserrat
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Institute of Biological Sciences (ICB), Federal University of Rio Grande. Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Dayakar B, Xavier KM, Ngasotter S, Layana P, Balange AK, Priyadarshini B, Nayak BB. Characterization of spray-dried carotenoprotein powder from Pacific white shrimp (Litopenaeus vannamei) shells and head waste extracted using papain: Antioxidant, spectroscopic, and microstructural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
11
|
Application of extreme halophilic archaea as biocatalyst for chitin isolation from shrimp shell waste. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Seafood Processing Chitin Waste for Electricity Generation in a Microbial Fuel Cell Using Halotolerant Catalyst Oceanisphaera arctica YHY1. SUSTAINABILITY 2021. [DOI: 10.3390/su13158508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, a newly isolated halotolerant strain Oceanisphaera arctica YHY1, capable of hydrolyzing seafood processing waste chitin biomass, is reported. Microbial fuel cells fed with 1% chitin and 40 g L−1 as the optimum salt concentration demonstrated stable electricity generation until 216 h (0.228 mA/cm2). N-acetyl-D-glucosamine (GlcNAc) was the main by-product in the chitin degradation, reaching a maximum concentration of 192.01 mg g−1 chitin at 120 h, whereas lactate, acetate, propionate, and butyrate were the major metabolites detected in the chitin degradation. O. arctica YHY1 utilized the produced GlcNAc, lactate, acetate, and propionate as the electron donors to generate the electric current. Cyclic voltammetry (CV) investigation revealed the participation of outer membrane-bound cytochromes, with extracellular redox mediators partly involved in the electron transfer mechanism. Furthermore, the changes in structural and functional groups in chitin after degradation were analyzed using FTIR and XRD. Therefore, the ability of O. arctica YHY1 to utilize waste chitin biomass under high salinities can be explored to treat seafood processing brine or high salt wastewater containing chitin with concurrent electricity generation.
Collapse
|
14
|
de Silva MKS, Senaarachchi W. Efficiency of biotransformation of shellfish waste to carotenoprotein by autolysis and crab-shrimp endo-enzymes. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1900967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M.P. Kumudu S.K. de Silva
- University of Ruhuna Ringgold Standard Institution - Department of Zoology, University of Ruhuna, Matara, Sri Lanka
| | - W.A.R.K. Senaarachchi
- University of Ruhuna Ringgold Standard Institution - Department of Zoology, University of Ruhuna, Matara, Sri Lanka
| |
Collapse
|
15
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
16
|
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, Ashraf W, Yang F, Karim A, Khaliq A, Xia W. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1828452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sohail Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Fangshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahem Yar Khan, Pakistan
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Pan C, Liang X, Chen S, Tao F, Yang X, Cen J. Red color-related proteins from the shell of red swamp crayfish (Procambarus clarkii): Isolation, identification and bioinformatic analysis. Food Chem 2020; 327:127079. [PMID: 32446028 DOI: 10.1016/j.foodchem.2020.127079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/20/2023]
Abstract
Two water-soluble red color-related proteins with the molecular masses of 24 and 73 kDa were purified from the shell of Procambarus clarkii. Initial color changes of these two proteins were detected at 30 °C and the large amount of red precipitate were obtained at 80 °C. PAGE analysis showed that the 24 kDa protein was the monomer, while the 73 kDa protein was the trimer. Identification revealed that these two proteins belonged to the hemocyanin subunit 2 family. With respect to the amino acid sequence similarity, the red color-related proteins shared the highest sequence identity with the hemocyanin derived from giant freshwater prawn (Macrobrachium rosenbergii). The phylogenetic tree analysis also clearly supported this finding. The shell-derived red color-related proteins show potential use as the edible thermal-sensitive indicator in food processing field.
Collapse
Affiliation(s)
- Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaoling Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Feiyan Tao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jianwei Cen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
18
|
|
19
|
Hamdi M, Nasri R, Li S, Nasri M. Design of blue crab chitosan responsive nanoparticles as controlled-release nanocarrier: Physicochemical features, thermal stability and in vitro pH-dependent delivery properties. Int J Biol Macromol 2020; 145:1140-1154. [DOI: 10.1016/j.ijbiomac.2019.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
|
20
|
Olatunde OO, Benjakul S. Antioxidants from Crustaceans: A Panacea for Lipid Oxidation in Marine-Based Foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oladipupo Odunayo Olatunde
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
21
|
Hamdi M, Nasri R, Dridi N, Li S, Nasri M. Development of novel high-selective extraction approach of carotenoproteins from blue crab (Portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chem 2020; 302:125334. [DOI: 10.1016/j.foodchem.2019.125334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
22
|
Balitaan JNI, Yeh JM, Santiago KS. Marine waste to a functional biomaterial: Green facile synthesis of modified-β-chitin from Uroteuthis duvauceli pens (gladius). Int J Biol Macromol 2019; 154:1565-1575. [PMID: 31706816 DOI: 10.1016/j.ijbiomac.2019.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022]
Abstract
Chitin is the second most abundant biomass on earth but exploited the least. In this study, wastes from Uroteuthis duvauceli was utilized to extract 38.79 ± 1.38% dry weight of β-chitin using a new combination of decolorization, demineralization, and deproteinization processes. β-chitin was then derivatized with acrylamide in an efficient and green aqueous 8 wt% NaOH/4 wt% urea solvent via one-pot etherification. The success of carbamoylethyl ether of chitin and carboxyethyl chitin synthesis was confirmed by FTIR, 1H NMR, 13C NMR, XRD, SEM, TGA, and DSC. The synthesized acrylamide-modified β-chitin derivatives were shown to exhibit water solubility and lower decomposition temperatures, which are primarily due to the disruption of the crystalline structure of β-chitin upon its dissolution and modification. In this era of climate change, this desirable strategy of harnessing β-chitin from wastes and converting it to value-added products is highly sought to mitigate the continuing ecological and economical imbalance brought about by marine-food wastes. To the best of our knowledge, this novel contribution is the first to report biorefinery of squid pens from this particular species and functionalizing it with acrylamide in a facile manner, thus, offering greater potential for future development to biocompatible chitin-based biomaterials intended for industrial, pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Jolleen Natalie I Balitaan
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, 32023, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, 32023, Taiwan, ROC
| | - Karen S Santiago
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines.
| |
Collapse
|
23
|
Abreu ADS, De Souza MM, Da Rocha M, Wasielesky WF, Prentice C. Functional Properties of White Shrimp ( Litopenaeus vannamei) By-Products Protein Recovered by Isoelectric Solubilization/Precipitation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1628151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adriana De Souza Abreu
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Michele Moraes De Souza
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Meritaine Da Rocha
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Wilson Francisco Wasielesky
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
24
|
Hamdi M, Nasri R, Li S, Nasri M. Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Klomklao S. Albacore tuna spleen trypsin: Potential application as laundry detergent additive and in carotenoprotein extraction from Pacific white shrimp shells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Sinthusamran S, Benjakul S, Kijroongrojana K, Prodpran T, Agustini TW. Yield and chemical composition of lipids extracted from solid residues of protein hydrolysis of Pacific white shrimp cephalothorax using ultrasound-assisted extraction. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Idowu AT, Benjakul S, Sinthusamran S, Sookchoo P, Kishimura H. Protein hydrolysate from salmon frames: Production, characteristics and antioxidative activity. J Food Biochem 2018; 43:e12734. [PMID: 31353651 DOI: 10.1111/jfbc.12734] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
Protein hydrolysates from two forms of salmon frames named "chunk" and "mince" were produced and characterized. Both samples were subjected to hydrolysis using alcalase and papain at 1%-3% (w/w protein) for 0-240 min. Hydrolysate prepared with either protease at 3% for 180 min had the solid yield of 24.05%-26.39%. Hydrolysates contained 79.20%-82.01% proteins, 6.03%-6.34% fat, 9.81%-11.09% ash, and 4.02%-5.80% moisture. Amino acid profile showed that all hydrolysates had glutamic acid/glutamine (113.45-117.56 mg/g sample), glycine (77.86-86.18 mg/g sample), aspartic acid/asparagine (76.04-78.67 mg/g sample), lysine (61.97-65.99 mg/g sample), and leucine (54.30-57.31 mg/g sample) as the predominant amino acids. The size distributions determined by gel filtration chromatography varied, depending on proteases and the form of frame used for the hydrolysis. Different hydrolysates showed varying antioxidant capacities. Thus, protein hydrolysates from salmon frame could be used as a nutritive supplement in the protein deficient foods. PRACTICAL APPLICATIONS: Frames of salmon are by-products from salmon fish processing industries. The frames contained the remaining meat, hence they can be used for the preparation of protein hydrolysates. Generally, hydrolysates from fish by-products have been regarded as a promising food supplement, because they are rich in amino acids. Additionally, hydrolysates possess antioxidant activity, which is of health benefit. To produce the hydrolysate with less time consumption, the use of frame chunk instead of minced frame can be of better choice. Thus, frame of salmon, especially in chunk form, could be used as a raw material for production of protein hydrolysate using alcalase. The hydrolysate produced from salmon frame could serve as an alternative nutritive supplement to tackle the nutrition inadequacies in foods.
Collapse
Affiliation(s)
- Anthony Temitope Idowu
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Sittichoke Sinthusamran
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Pornsatit Sookchoo
- Faculty of Agro-Industry, Department of Material Product Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Science Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
28
|
Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Isolation and cDNA cloning of a novel red colour-related pigment-binding protein derived from the shell of the shrimp, Litopenaeus vannamei. Food Chem 2018; 241:104-112. [DOI: 10.1016/j.foodchem.2017.08.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 01/13/2023]
|
30
|
da Silva CP, Bezerra RS, Santos ACOD, Messias JB, de Castro CROB, Carvalho Junior LB. Biological value of shrimp protein hydrolysate by-product produced by autolysis. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Hamdi M, Hammami A, Hajji S, Jridi M, Nasri M, Nasri R. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int J Biol Macromol 2017; 101:455-463. [PMID: 28336276 DOI: 10.1016/j.ijbiomac.2017.02.103] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Abstract
Since chitin is closely associated with proteins, deproteinization is a crucial step in the process of extracting chitin. Thus, this research aimed to extract chitin from Portunus segnis and Penaeus kerathurus shells by means of crude digestive alkaline proteases from the viscera of P. segnis, regarding deproteinization step, as an alternative to chemical treatment. Casein zymography revealed that five caseinolytic proteases bands exist, suggesting the presence of at least five different major proteases. The optimum pH and temperature for protease activity were pH 8.0 and 60°C, respectively, using casein as a substrate. The crude enzymes extract was highly stable at low temperatures and over a wide range of pH from 6.0 to 12.0. The crude alkaline protease extract was found to be effective in the deproteinization of blue crab and shrimp shells, to produce chitin. The best efficiency in deproteinization (84.69±0.65% for blue crab shells and 91.06±1.40% for shrimp shells) was achieved with an E/S ratio of 5U/mg of proteins after 3h incubation at 50°C. These results suggest that enzymatic deproteinization of crab and shrimp wastes by fish endogenous alkaline proteases could be a potential alternative in the chitin production process.
Collapse
Affiliation(s)
- Marwa Hamdi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Amal Hammami
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Sawssen Hajji
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| |
Collapse
|
32
|
Hamzeh A, Benjakul S, Senphan T. Comparative study on antioxidant activity of hydrolysates from splendid squid ( Loligo formosana) gelatin and protein isolate prepared using protease from hepatopancreas of Pacific white shrimp ( Litopenaeus vannamei). Journal of Food Science and Technology 2016; 53:3615-3623. [PMID: 27777469 DOI: 10.1007/s13197-016-2348-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
Antioxidative activities of splendid squid gelatin hydrolysate (SGH) and squid mantle protein isolate hydrolysate (SMPIH) with different DHs (10-50 %) prepared using crude protease from hepatopancreas of Pacific white shrimp were comparatively studied. At the same DH, SGH had higher FRAP and metal chelating activity and SMPIH showed higher ABTS radical scavenging activities. However, SMPIH had higher ABTS radical scavenging activity than SGH at all DHs tested. SMPIH showed higher DPPH radical scavenging activities than SGH when DHs were up to 30 % DH. However, the former had the lower activity as DHs were 40 and 50 %. ABTS radical scavenging activity of SGH and SMPIH with 50 % DH in gastrointestinal model system increased in the duodenal condition, while SGH showed higher activity in stomach condition than SMPIH. SGH and SMPIH (500, 1000 and 2000 mg/L) could retard lipid oxidation in a lecithin liposome system in a dose dependent manner. Based on Sephadex G-25 column chromatography, the fraction with ABTS radical scavenging activity had MW of 283 and 1381 Da, respectively. Therefore, both hydrolysates from squid gelatin and mantle protein isolate could be used as the alternative natural antioxidants.
Collapse
Affiliation(s)
- Ali Hamzeh
- Department of Seafood Science and Technology, Tarbiat Modares University, Noor, 64414-356 Iran
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand
| | - Theeraphol Senphan
- Faculty of Engineering and Agro-Industry, Maejo University, Sansai, Chiangmai, 50290 Thailand
| |
Collapse
|
33
|
Ketnawa S, Martínez-Alvarez O, Gómez-Estaca J, del Carmen Gómez-Guillén M, Benjakul S, Rawdkuen S. Obtaining of functional components from cooked shrimp (Penaeus vannamei) by enzymatic hydrolysis. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2016.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Fernandes P. Enzymes in Fish and Seafood Processing. Front Bioeng Biotechnol 2016; 4:59. [PMID: 27458583 PMCID: PMC4935696 DOI: 10.3389/fbioe.2016.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 11/15/2022] Open
Abstract
Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested.
Collapse
Affiliation(s)
- Pedro Fernandes
- Department of Bioengineering, Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
35
|
Arancibia M, López-Caballero M, Gómez-Guillén M, Montero P. Chitosan coatings enriched with active shrimp waste for shrimp preservation. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Nasri R, Abed H, Karra-châabouni M, Nasri M, Bougatef A. Digestive alkaline proteinases from Serranus scriba viscera: Characteristics, application in the extraction of carotenoproteins from shrimp waste, and evaluation in laundry commercial detergents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|