1
|
Yang J, Shi J, Zhou Y, Zou Y, Xu W, Xia X, Wang D. Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood. Foods 2024; 13:2368. [PMID: 39123559 PMCID: PMC11311274 DOI: 10.3390/foods13152368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Calcium-binding peptides have gained significant attention due to their potential applications in various fields. In this study, we aimed to prepare, characterize, and evaluate the stability of calcium-binding peptides derived from chicken blood. Chicken hemoglobin peptides (CPs) were obtained by protease hydrolysis and were applied to prepare chicken hemoglobin peptide-calcium chelate (CP-Ca). The preparation conditions were optimized, and the characteristics and stability of CP-Ca were analyzed. The optimal chelating conditions were determined by single-factor and response surface tests, and the maximum calcium ion chelating rate was 77.54%. Amino acid analysis indicated that glutamic acid and aspartic acid motifs played an important role in the chelation of the calcium ions and CP. According to the characterization analysis, CP-Ca was a different substance compared with CP; calcium ions chelated CPs via the sites of carbonyl oxygen, carboxyl oxygen, and amino nitrogen groups; and after the chelation, the structure changed from a smooth homogeneous plate to compact granular. The stability analysis showed that CP-Ca was stable at different temperatures, pH, and gastrointestinal conditions. The study indicates that chicken blood is a promising source of peptide-calcium chelates, providing a theoretical basis for application in functional foods and improving the utilization value of chicken blood.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China;
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| | - Jing Shi
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| | - Ying Zhou
- College of Food Science, Xizang University of Agriculture and Animal Husbandry, Nyingchi 860000, China;
| | - Ye Zou
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| | - Weimin Xu
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| | - Xiudong Xia
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China;
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.); (Y.Z.); (W.X.)
| |
Collapse
|
2
|
Xiong Y, Li JR, Peng PZ, Liu B, Zhao LN. Positive effect of peptide-calcium chelates from Grifola frondosa on a mouse model of senile osteoporosis. J Food Sci 2024; 89:3816-3828. [PMID: 38685878 DOI: 10.1111/1750-3841.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Calcium supplementation has been shown to be efficacious in mitigating the progression of senile osteoporosis (SOP) and reducing the incidence of osteoporotic fractures resulting from prolonged calcium shortage. In this study, Grifola frondosa (GF) peptides-calcium chelate were synthesized through the interaction between peptide from GF and CaCl2. The chelation reaction was shown to involve the participation of the amino and carboxyl groups in the peptide, as revealed by scanning electron microscope, Fourier-transform infrared, and ultraviolet spectrophotometry. Furthermore, a mouse model of (SOP) induced by d-galactose was established (SCXK-2018-0004). Results demonstrated that low dosage of low-molecular weight GF peptides-calcium chelates (LLgps-Ca) could significantly improve serum index and pathological features of bone tissue and reduce bone injury. Further research suggested that LLgps-Ca could ameliorate SOP by modulating the disrupted metabolic pathway, which includes focal adhesion, extracellular matrix receptor interaction, and PI3K-Akt signaling pathway. Using Western blot, the differentially expressed proteins were further confirmed. Thus, calciumchelating peptides from GF could serve as functional calcium agents to alleviate SOP.
Collapse
Affiliation(s)
- Yu Xiong
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing-Ru Li
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Pei-Zhi Peng
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Na Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Jiang B, Yue H, Fu X, Wang J, Feng Y, Li D, Liu C, Feng Z. One-step high efficiency separation of prolyl endopeptidase from Aspergillus niger and its application. Int J Biol Macromol 2024; 271:132582. [PMID: 38801849 DOI: 10.1016/j.ijbiomac.2024.132582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Prolyl endopeptidase from Aspergillus niger (An-PEP) is an enzyme that recognizes C-terminal peptide bonds of amino acid chains and cleaves them by hydrolysis. An aqueous two-phase system (ATPS) was used to separate An-PEP from fermentation broth. Through single factor experiments, the ATPS containing 16 % (w/w) PEG2000 and 15 % (w/w) (NH4)2SO4 at pH 6.0 obtained the recovery of 79.74 ± 0.16 % and the purification coefficient of 7.64 ± 0.08. It was then used to produce soy protein isolate peptide (SPIP) by hydrolysis of soy protein isolate (SPI), and SPIP-Ferrous chelate (SPIP-Fe) was prepared with SPIP and Fe2+. The chelation conditions were optimized by RSM, as the chelation time was 30 min, chelation temperature was 25 °C, SPIP mass to VC mass was two to one and pH was 6.0. The obtained chelation rate was 82.56 ± 2.30 %. The change in the structures and functional features of SPIP before and after chelation were investigated. The FTIR and UV-Vis results indicated that the chelation of Fe2+ and SPIP depended mainly on the formation of amide bonds. The fluorescence, SEM and amino acid composition analysis results indicated that Fe2+ could induce and stabilize the surface conformation and change the amino acid distribution on the surfaces of SPIP. The chelation of SPIP and Fe2+ resulted in the enhancement of radical scavenging activities and ACE inhibitory activities. This work provided a new perspective for the further development of peptide-Fe chelates for iron supplement.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hongshen Yue
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinhao Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jiaming Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Liu W, Ren J, Qin X, Zhang X, Wu H, Han LJ. Structural identification and combination mechanism of iron (II)-chelating Atlantic salmon ( Salmo salar L.) skin active peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:340-352. [PMID: 38196720 PMCID: PMC10772038 DOI: 10.1007/s13197-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 μg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.
Collapse
Affiliation(s)
- Wen–Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xiu–Yuan Qin
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xin–Xue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Han–Shuo Wu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Lu-Jia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
5
|
Tang T, Lv Y, Su Y, Li J, Gu L, Yang Y, Chang C. The differential non-covalent binding of epicatechin and chlorogenic acid to ovotransferrin and the enhancing efficiency of immunomodulatory activity. Int J Biol Macromol 2024; 259:129298. [PMID: 38199555 DOI: 10.1016/j.ijbiomac.2024.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable β-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), β-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Zhang F, Huang W, Zhao L. Regulatory Effects of Ganoderma lucidum, Grifola frondosa, and American ginseng Extract Formulation on Gut Microbiota and Fecal Metabolomics in Mice. Foods 2023; 12:3804. [PMID: 37893697 PMCID: PMC10606397 DOI: 10.3390/foods12203804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The bioactivities of Ganoderma lucidum, Grifola frondosa, and American ginseng have been extensively studied and documented. However, the effects of their complexes on the structural properties of intestinal microbiota and fecal metabolism remain unclear. Therefore, this paper aims to present a preliminary study to shed light on this aspect. In this study, an immunocompromised mouse model was induced using cyclophosphamide, and Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation (referred to as JGGA) were administered via gavage to investigate their modulatory effects on gut microbiota and fecal metabolism in mice. The effects of JGGA on immune enhancement were explored using serum test kits, hematoxylin-eosin staining, 16SrDNA high-throughput sequencing, and UHPLC-QE-MS metabolomics. The findings revealed potential mechanisms underlying the immune-enhancing effects of JGGA. Specifically, JGGA administration resulted in an improved body weight, thymic index, splenic index, carbon scavenging ability, hypersensitivity, and cellular inflammatory factor expression levels in mice. Further analysis demonstrated that JGGA reduced the abundance of Firmicutes, Proteobacteria, and Actinobacteria, while increasing the abundance of Bacteroidetes. Additionally, JGGA modulated the levels of 30 fecal metabolites. These results suggest that the immune enhancement observed with JGGA may be attributed to the targeted modulation of gut microbiota and fecal metabolism, thus promoting increased immunity in the body.
Collapse
Affiliation(s)
- Fengli Zhang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqi Huang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lina Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
| |
Collapse
|
7
|
Du Y, Hong J, Xu S, Wang Y, Wang X, Yan J, Lai B, Wu H. Iron‐chelating activity of large yellow croaker (
Pseudosciaena crocea
) roe hydrolysates. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yi‐Nan Du
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Jia‐Nan Hong
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Shi‐Qi Xu
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Yu‐Qiao Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Xue‐Chen Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Jia‐Nan Yan
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Bin Lai
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Liaoning China
| | - Hai‐Tao Wu
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Liaoning China
| |
Collapse
|
8
|
A Step for the Valorization of Spent Yeast through Production of Iron–Peptide Complexes—A Process Optimization Study. Processes (Basel) 2022. [DOI: 10.3390/pr10081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Given the importance of iron in human nutrition and the significance of waste and by-product valorisation in a circular economy environment, we investigated the effects of protein and iron concentration on the production yield of iron–peptide complexes from spent Saccharomyces cerevisiae. For this purpose, different amounts of protein and iron were used in the complexation process. The results have shown that higher concentrations, although permitting a faster and larger scale process, provide a significantly lower complexation yield, which deems the process less feasible. This is corroborated by fluorescence analysis, which shows a lower degree of complexation with higher protein concentration. In addition, varying the concentration of iron does not change the quality of formed complexes, as evidenced by Fourier transform infrared spectroscopy (FT-IR) analysis. The morphology of all samples was also evaluated using scanning electron microscopy (SEM). Therefore, further studies are needed to optimize the process and to evaluate the best conditions for an economically sound valorization process for iron–peptide complexes. Nonetheless, current results in the development of a new process for the valorisation of spent yeast, in the form of iron-peptide complexes, look promising.
Collapse
|
9
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
10
|
Health benefits of Grifola frondosa polysaccharide on intestinal microbiota in type 2 diabetic mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Lu X, Ma R, Qiu H, Sun C, Tian Y. Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. Int J Biol Macromol 2021; 193:311-318. [PMID: 34699891 DOI: 10.1016/j.ijbiomac.2021.10.140] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The role of endogenous/exogenous rice protein and its hydrolysates in the enzymatic hydrolysis resistance of rice starch was investigated. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR) results showed that different types of rice endogenous proteins retarded the digestion of rice starch by the same way. Exogenous addition of protein hydrolysates was more effective than protein for impeding starch digestion. FTIR results indicated that rice protein hydrolysates were bound to starch granules through hydrogen bonds, and their interaction strengthened the ordered structure of the starch. Further, the intensity of the starch V- type peak was enhanced after the addition of protein hydrolysates, indicating that some peptides or free amino acids released by the protein formed complexes with the starch, thereby contributing to high slowly-digestible starch content. These findings provide a theoretical basis for the preparation of low glycemic index starch-based foods.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hongwei Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
12
|
Qiao F, Yu X, Tie S, Chen Y, Hou S, Tan M. Zinc delivery system constructed from food-borne nanoparticles derived from Undaria pinnatifida. Food Funct 2021; 12:8626-8634. [PMID: 34346455 DOI: 10.1039/d1fo01852c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food-borne nanoparticles from Undaria pinnatifida (UPFNs) were prepared and successfully applied as nanocarriers for microelement zinc delivery. UPFNs were spherical nanoparticles with average sizes of about 4.07 ± 1.09 nm, which chelated with zinc ions through amino nitrogen and carboxyl oxygen atoms as characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermodynamic analysis revealed that the overall chelation process between UPFNs and zinc ions was a spontaneous enthalpy-driven endothermic reaction. Compared to zinc sulfate, UPFN-Zn2+ showed higher solubility both in phytic acid solution and the process of gastrointestinal digestion. Meanwhile, no obvious cytotoxicity was found in UPFNs and UPFN-Zn2+. Specifically, UPFN-Zn2+ could successfully rescue cell viability, DNA replication activity and restore cell proliferation ability in zinc-deficient cells induced by a specific zinc chelator TPEN. Overall, UPFNs might serve as efficient, stable, and safe nanocarriers for zinc delivery.
Collapse
Affiliation(s)
- Fengzhi Qiao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Tie
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shuai Hou
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
13
|
Yuanqing H, Pengyao Y, Yangyang D, Min C, Rui G, Yuqing D, Haihui Z, Haile M. The Preparation, Antioxidant Activity Evaluation, and Iron-Deficient Anemic Improvement of Oat ( Avena sativa L.) Peptides-Ferrous Chelate. Front Nutr 2021; 8:687133. [PMID: 34235170 PMCID: PMC8256796 DOI: 10.3389/fnut.2021.687133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Iron-chelating peptides have been widely considered as one of the best iron supplements to alleviate the iron deficiency. In this study, a novel oat peptides-ferrous (OP-Fe2+) chelate was prepared from antioxidant oat peptides obtained in the laboratory of the authors. The optimal preparation condition was obtained through the single-factor and response surface methodology, and the chelating rate could reach up to 62.6%. After chelation, the OP-Fe2+ chelate exhibited a significantly higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity than oat peptides. It was discovered that the hemoglobin concentration and the number of red blood cell levels in OP-Fe2+-treated iron-deficient anemic (IDA) rats were significantly higher than untreated IDA rats. The OP-Fe2+ chelate could also improve the hypertrophy of the spleen, serum iron (SI), total iron and binding capacity, and serum ferritin levels in the IDA rats. In addition, the OP-Fe2+ treatment significantly increased the antioxidant activities of super oxidase and glutathione in the liver homogenate of the IDA rats. Therefore, the OP-Fe2+ chelate is an effective type of iron supplement for IDA rats, which could be a promising source with anti-anemia and antioxidant activity.
Collapse
Affiliation(s)
- He Yuanqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yang Pengyao
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ding Yangyang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Min
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guo Rui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Haihui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ma Haile
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|