1
|
Hong L, Fan L, Wu J, Yang J, Hou D, Yao Y, Zhou S. Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients 2024; 16:1845. [PMID: 38931200 PMCID: PMC11206746 DOI: 10.3390/nu16121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pulses, as an important part of the human diet, can act as a source of high-quality plant proteins. Pulse proteins and their hydrolysates have shown promising results in alleviating metabolic syndrome and modulating the gut microbiome. Their bioactivities have become a focus of research, with many new findings added in recent studies. This paper comprehensively reviews the anti-hypertension, anti-hyperglycemia, anti-dyslipidemia and anti-obesity bioactivities of pulse proteins and their hydrolysates in recent in vitro and in vivo studies, which show great potential for the prevention and treatment of metabolic syndrome. In addition, pulse proteins and their hydrolysates can regulate the gut microbiome, which in turn can have a positive impact on the treatment of metabolic syndrome. Furthermore, the beneficial effects of some pulse proteins and their hydrolysates on metabolic syndrome have been supported by clinical studies. This review might provide a reference for the application of pulse proteins and their hydrolysates in functional foods or nutritional supplements for people with metabolic syndrome.
Collapse
Affiliation(s)
- Lingyu Hong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Linlin Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Junchao Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Jiaqi Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| |
Collapse
|
2
|
Li Y, Wang X, Guo X, Wei L, Cui H, Wei Q, Cai J, Zhao Z, Dong J, Wang J, Liu J, Xia Z, Hu Z. Rapid screening of the novel bioactive peptides with notable α-glucosidase inhibitory activity by UF-LC-MS/MS combined with three-AI-tool from black beans. Int J Biol Macromol 2024; 266:130982. [PMID: 38522693 DOI: 10.1016/j.ijbiomac.2024.130982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
This work aimed to propose a rapid method to screen the bioactive peptides with anti-α-glucosidase activity instead of traditional multiple laborious purification and identification procedures. 242 peptides binding to α-glycosidase were quickly screened and identified by bio-affinity ultrafiltration combined with LC-MS/MS from the double enzymatic hydrolysate of black beans. Top three peptides with notable anti-α-glucosidase activity, NNNPFKF, RADLPGVK and FLKEAFGV were further rapidly screened and ranked by the three artificial intelligence tools (three-AI-tool) BIOPEP database, PeptideRanker and molecular docking from the 242 peptides. Their IC50 values were in order as 4.20 ± 0.11 mg/mL, 2.83 ± 0.03 mg/mL, 1.32 ± 0.09 mg/mL, which was opposite to AI ranking, for the hydrophobicity index of the peptides was not included in the screening criteria. According to the kinetics, FT-IR, CD and ITC analyses, the binding of the three peptides to α-glucosidase is a spontaneous and irreversible endothermic reaction that results from hydrogen bonds and hydrophobic interactions, which mainly changes the α-helix structure of α-glucosidase. The peptide-activity can be evaluated vividly by AFM in vitro. In vivo, the screened FLKEAFGV and RADLPGVK can lower blood sugar levels as effectively as acarbose, they are expected to be an alternative to synthetic drugs for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xumeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Haichen Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Qingkai Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Jingyi Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Zhihui Zhao
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianfang Dong
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jiashu Wang
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianhua Liu
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Zikun Xia
- Hanyin County Inspection and Testing Center, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Villanueva A, Rivero-Pino F, Martin ME, Gonzalez-de la Rosa T, Montserrat-de la Paz S, Millan-Linares MC. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3189-3199. [PMID: 38305180 PMCID: PMC10870759 DOI: 10.1021/acs.jafc.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.
Collapse
Affiliation(s)
- Alvaro Villanueva
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria E. Martin
- Department
of Cell Biology, Faculty of Biology, University
of Seville, Av. Reina
Mercedes s/n, 41012 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria C. Millan-Linares
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
4
|
Fu Y, Liu Z, Wang H, Zhang F, Guo S, Shen Q. Comparison of the generation of α-glucosidase inhibitory peptides derived from prolamins of raw and cooked foxtail millet: In vitro activity, de novo sequencing, and in silico docking. Food Chem 2023; 411:135378. [PMID: 36669338 DOI: 10.1016/j.foodchem.2022.135378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Foxtail millet prolamin has been demonstrated to have anti-diabetic effects. In this study, we compared the generation of anti-α-glucosidase peptides derived from prolamins of raw and cooked foxtail millet (PRFM and PCFM). PRFM and PCFM hydrolysates (PRFMH and PCFMH) both exhibited α-glucosidase inhibitory activity. After ultrafiltration according to molecular weight (Mw), the fraction with Mw < 3 kDa in PCFMH (PCFMH<3) showed higher α-glucosidase inhibitory activity than that in PRFMH (PRFMH<3). The composition of α-glucosidase inhibitory peptides identified by de novo sequencing in PCFMH<3 and PRFMH<3 was compared by virtual screening, combining biological activity, net charge, grand average of hydropathicity (GRAVY), and key hydrophobic amino acids (Met, Pro, Phe, and Leu). We found that the proportion of peptides with excellent α-glucosidase binding force in PCFMH<3 was higher than in PRFMH<3. Overall, cooking may positively affect the generation of peptides that perform well in inhibiting α-glucosidase derived from foxtail millet prolamin.
Collapse
Affiliation(s)
- Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Liu
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fan Zhang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Industrial Technology Research Institute Ltd, Beijing, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Qun Shen
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Rivero-Pino F, Villanueva Á, Montserrat-de-la-Paz S, Sanchez-Fidalgo S, Millán-Linares MC. Evidence of Immunomodulatory Food-Protein Derived Peptides in Human Nutritional Interventions: Review on the Outcomes and Potential Limitations. Nutrients 2023; 15:2681. [PMID: 37375585 DOI: 10.3390/nu15122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The immune system is somehow related to all the metabolic pathways, in a bidirectional way, and the nutritional interventions affecting these pathways might have a relevant impact on the inflammatory status of the individuals. Food-derived peptides have been demonstrated to exert several bioactivities by in vitro or animal studies. Their potential to be used as functional food is promising, considering the simplicity of their production and the high value of the products obtained. However, the number of human studies performed until now to demonstrate effects in vivo is still scarce. Several factors must be taken into consideration to carry out a high-quality human study to demonstrate immunomodulatory-promoting properties of a test item. This review aims to summarize the recent human studies published in which the purpose was to demonstrate bioactivity of protein hydrolysates, highlighting the main results and the limitations that can restrict the relevance of the studies. Results collected are promising, although in some studies, physiological changes could not be observed. When responses were observed, they sometimes did not refer to relevant parameters and the immunomodulatory properties could not be clearly established with the current evidence. Well-designed clinical trials are needed in order to evaluate the role of protein hydrolysates in immunonutrition.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Álvaro Villanueva
- Department of Food & Health, Instituto de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Seville, Spain
| | - Sergio Montserrat-de-la-Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Susana Sanchez-Fidalgo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C Millán-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
6
|
Rezvankhah A, Yarmand MS, Ghanbarzadeh B, Mirzaee H. Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Sci Nutr 2023; 11:2974-2989. [PMID: 37324857 PMCID: PMC10261806 DOI: 10.1002/fsn3.3279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Lentil peptides have shown promising bioactive properties regarding the antioxidant activity and also inhibitory activity of angiotensin-I-converting enzyme (ACE). Sequential hydrolysis of proteins has shown a higher degree of hydrolysis with enhanced antioxidant and ACE-inhibitory activities. The lentil protein concentrate (LPC) was sequentially hydrolyzed using Alcalase and Flavourzyme at 2% w/w. The hydrolysate (LPH) was cross-linked (LPHC) or sonicated (LPHUS) and sequentially cross-linked (LPHUSC). Amino acid profile, molecular weight (MW) distribution, DPPH and ABTS radical scavenging activities (RSA; 7 mg/mL), ACE (0.1-2 mg/mL), α-glucosidase, and α-amylase inhibitory activities (10-500 μg/mL), and umami taste were determined. The highest DPPH RSA was obtained for LPH (68.75%), followed by LPHUSC (67.60%), and LPHUS (67.49%) while the highest ABTS RSA values were obtained for LPHC (97.28%) and LPHUSC (97.20%). Cross-linking and sonication led to the improvement of the ACE-inhibitory activity so that LPHUSC and LPHC had IC50 values of 0.23 and 0.27 mg/mL, respectively. LPHC and LPHUSC also indicated higher α-glucosidase inhibitory activity (IC50 of 1.2 and 1.23 mg/mL) compared to LPH (IC50 of 1.74 mg/mL) and LPHUS (IC50 of 1.75 mg/mL) while the IC50 value of acarbose indicated 0.51 mg/mL. Moreover, LPHC and LPHUSC exhibited higher α-amylase inhibitory activities (IC50 of 1.35 and 1.16 mg/mL) than LPHUS (IC50 of 1.95 mg/mL), and LPH (IC50 of 2.51 mg/mL) while acarbose had an IC50 value of 0.43 mg/mL. Umami taste analysis revealed that LPH and LPHC due to MW of 1.7 and 2.3 kDa and also high umami amino acids could be well considered as representative of meaty and umami analog flavors while indicating stronger antioxidant, antihypertension, and antidiabetic attributes.
Collapse
Affiliation(s)
- Amir Rezvankhah
- Department of Food Science and Technology, Razi Food Chemistry LabCollege of Agriculture and Natural Resources, University of TehranKarajIran
| | - Mohammad Saeid Yarmand
- Department of Food Science and Technology, Razi Food Chemistry LabCollege of Agriculture and Natural Resources, University of TehranKarajIran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Homaira Mirzaee
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Rivero-Pino F, Leon MJ, Millan-Linares MC, Montserrat-de la Paz S. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Nutritional composition, ultrastructural characterization, and peptidome profile of antioxidant hemp protein hydrolysates. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Zhu Q, Xue J, Wang P, Wang X, Zhang J, Fang X, He Z, Wu F. Identification of a Novel ACE Inhibitory Hexapeptide from Camellia Seed Cake and Evaluation of Its Stability. Foods 2023; 12:foods12030501. [PMID: 36766030 PMCID: PMC9914026 DOI: 10.3390/foods12030501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 μmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.
Collapse
Affiliation(s)
- Qiaonan Zhu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawen Xue
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xianbo Wang
- Zhejiang Feixiangyuan Food Co., Ltd., Lishui 323400, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xuezhi Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| | - Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| |
Collapse
|
10
|
Ma X, Fan X, Wang D, Li X, Wang X, Yang J, Qiu C, Liu X, Pang G, Abra R, Wang L. Study on preparation of chickpea peptide and its effect on blood glucose. Front Nutr 2022; 9:988628. [PMID: 36185665 PMCID: PMC9523602 DOI: 10.3389/fnut.2022.988628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chickpeas are the third largest bean in the world and are rich in protein. In this study, chickpea peptides were prepared by the enzyme-bacteria synergy method. Taking the peptide yield as the index, we first screened 8 strains suitable for the fermentation of chickpea peptides from 16 strains, carried out sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then screened 4 strains with the best decomposition effect of chickpea protein. The molecular weight, amino acid content, and α-glucosidase inhibitory activity of the chickpea peptides fermented by these four strains were detected. Finally, the strains with the best α-glucosidase inhibitory activity were obtained, and the inhibitory activities of the different molecular weight components of the chickpea peptides fermented by the strains with the best α-glucosidase inhibitory were detected. It was found that Bifidobacterium species had the best fermentation effect, and the highest peptide yield was 52.99 ± 0.88%. Lactobacillus thermophilus had the worst fermentation effect, and the highest peptide yield was 43.22 ± 0.47%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that Bifidobacterium species, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus paracasei have a better effect on the decomposition of chickpea protein in the fermentation process, and the molecular weight of their fermented peptides is basically below 20 KDa. Among the four strains, the α-glycosidase inhibition of chickpea peptide fermented by Lactobacillus acidophilus was the best, which was 58.22 ± 1.10% when the peptide concentration was 5.0 mg/ml. In chickpea peptide fermented by Lactobacillus acidophilus, the influence of molecular weight on the inhibitory activity is not obvious when the molecular weight is <10 kD, and the molecular weight range of the best inhibitory effect is 3–10 kD, and the inhibitory rate of α-glucosidase is 37 ± 1.32% at 2.0 mg/ml. This study provides a theoretical basis for the study of a new preparation method for chickpea peptide and its hypoglycemic effect.
Collapse
Affiliation(s)
- Xuemei Ma
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xing Fan
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Deping Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xianai Li
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Xiaoyun Wang
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Jiangyong Yang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Chenggong Qiu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaolu Liu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guangxian Pang
- Shenxin Science and Technology Cooperation Base Co. LTD, Urumqi, China
| | - Redili Abra
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
- Redili Abra
| | - Liang Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Liang Wang
| |
Collapse
|
11
|
Rezvankhah A, Yarmand MS, Ghanbarzadeh B. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Optimization, identification, and comparison of peptides from germinated chickpea (Cicer arietinum) protein hydrolysates using either papain or ficin and their relationship with markers of type 2 diabetes. Food Chem 2021; 374:131717. [PMID: 34920404 DOI: 10.1016/j.foodchem.2021.131717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
The objective was to optimize and compare the production of antidiabetic peptides from germinated chickpea isolated protein using either papain or ficin. Kabuli chickpeas were germinated for 2, 4 and 6 days. Proteins were isolated, and peptides were produced based on a central composite design selecting human dipeptidyl peptidase (DPP-IV) inhibition as a response. Peptide sequencing was performed to identify and evaluate the physiochemical, biochemical and bitterness properties. DPP-IV inhibition using papain was 84.66 ± 8.72%, with ficin being 72.05 ± 1.20%. The optimum hydrolysate conditions were 6 days germination, 1:10 E/S, and 30 min ficin hydrolysis; SPGAGKG, GLAR, and STSA were identified. Pure SPGAGKG had relatively high affinity for DPP-IV (-7.2 kcal/mol) and α-glucosidase inhibition (-5.9 kcal/mol), with an IC50 of 0.27 mg/mL for DPP-IV inhibition. Peptides in the chickpea hydrolysate inhibited markers of T2D, indicating that the optimal conditions could be used to prepare a functional food ingredient.
Collapse
|