1
|
Bisson G, Melchior S, Comuzzi C, Andreatta F, Rondinella A, Zanocco M, Calligaris S, Marino M. Unrevealing the potentialities in food formulations of a low-branched dextran from Leuconostoc mesenteroides. Food Chem 2024; 460:140718. [PMID: 39106808 DOI: 10.1016/j.foodchem.2024.140718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
The search for novel exopolysaccharides (EPS) with targeted functionalities is currently a topic of great interest. This study aimed to investigate the chemical characteristics and technological properties of a novel EPS (named EPS_O) from Leuconostoc mesenteroides. EPS_O was a high-molecular-weight dextran (>6.68 × 105 g/mol) characterized by high water-holding capacity (785 ± 73%) and high water solubility index (about 99%). EPS_O in water (<30 mg/mL) formed viscous solutions, whereas at concentrations >30 mg/mL, it formed weak gels. Notably, lower concentrations (4-5 mg/mL) exhibited antimicrobial activity against various foodborne pathogens, antibiofilm activity against Listeria monocytogenes, and radical-scavenging activity. These properties are significant for maintaining food quality and promoting health. Based on these findings, EPS_O presents itself as a promising food ingredient that could elevate food quality and confer health benefits to consumers.
Collapse
Affiliation(s)
- Giulia Bisson
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Sofia Melchior
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Clara Comuzzi
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Francesco Andreatta
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Alfredo Rondinella
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Matteo Zanocco
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Sonia Calligaris
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Marilena Marino
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy.
| |
Collapse
|
2
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
de Brito LP, da Silva EC, Lins LF, Severo de Medeiros R, Silva FCO, Pastrana L, Cavalcanti IDL, de Britto Lira-Nogueira MC, Cavalcanti MTH, Porto ALF. Optimization, structural characterization, and biological applications of exopolysaccharide produced by Enterococcus faecium KT990028. Int J Biol Macromol 2024; 282:136926. [PMID: 39486715 DOI: 10.1016/j.ijbiomac.2024.136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The aim of this study was to select the best exopolysaccharide (EPS) producer among the Enterococcus strains to optimize, characterize, and evaluate its biological properties. Among the eleven strains, Enterococcus faecium KT990028 was selected, and the production conditions were optimized: 16.3 % (w/v) sucrose, 0.70 % (w/v) yeast extract, 8.3 % (w/v) reconstituted skimmed milk, at 38 °C in 15 h of incubation, producing 2.880 g/L of EPS. High performance anion exchange chromatography (HPAEC) analysis revealed that the molecular weight was 166.98 kDa. HPAEC, spectroscopy (FTIR), and nuclear magnetic resonance (1H NMR) analyses revealed that the EPS was a heteropolysaccharide composed of galactose (37.74 %), rhamnose (19.79 %), arabinose (17.71 %), glucose (9.50 %), fucose (7.93 %), and mannose (7.33 %). Scanning electron microscopy showed a three-dimensional microstructure in the form of decompressed plates, with wrinkles, and pores. By means of dynamic light scattering (DLS), the EPS showed an average size varying from 135.25 ± 10.56 nm and 410.60 ± 45.20 nm, as the concentration was increased from 0.5 mg/mL to 2.0 mg/mL, respectively. X-ray diffraction revealed that the EPS has an amorphous and crystalline nature, while thermogravimetric analysis indicated stability up to 400 °C. The antioxidant effect (5 mg/mL) against DPPH, ABTS, OH, and O2 was 64.50 ± 0.71 %, 47.50 ± 0.10 %, 68.36 ± 0.59 %, and 44.83 ± 0.86 %, respectively. It was also able to inhibit and biofilm disruption of Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 6057 and had an antimicrobial effect from 50 mg/mL for the strains of against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Listeria monocytogenes ATCC 19117, Staphylococcus aureus ATCC 6538, and Enterococcus faecalis ATCC 6057. Cell cytotoxicity carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the EPS was safe and promoted the proliferation of Vero cells. Thus, the results indicated that the EPS from E. faecium KT990028 is a promising functional biopolymer for possible applications in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Leandro Paes de Brito
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil.
| | - Elaine Cristina da Silva
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Leandro Fragoso Lins
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Rosália Severo de Medeiros
- Federal University of Campina Grande, Av. Universitária, s/n - Santa Cecilia, 58708-110, Patos, Paraíba, Brazil
| | | | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330, Braga, Portugal
| | - Iago Dillion Lima Cavalcanti
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | | | | | - Ana Lúcia Figueiredo Porto
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil; Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|
4
|
Jamdar SN, Krishnan R, Rather SA, Sudesh, N M, Dhotare B. Identification and characterisation of dextran produced by a novel high yielding Weissella cibaria Fiplydextran strain. Int J Biol Macromol 2024; 282:136658. [PMID: 39442848 DOI: 10.1016/j.ijbiomac.2024.136658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
An exopolysaccharide (EPS)-producing bacterial strain was isolated from fermented soy milk and identified as Weissella cibaria strain Fiplydextran through morphological, biochemical and 16S rDNA sequence analysis. Here, we report the optimisation of cultural conditions for the organism to achieve maximum EPS production, along with its molecular characterisation, functional properties, and prebiotic potential. The exceptionally high EPS yield (0.61 g per g of sucrose) was obtained from the optimised medium (200 g/L of sucrose, 15 g/L of yeast extract) at 30 °C after 48 h. HPAEC-PAD analysis revealed that the EPS is homopolymer of glucose having Mw as 3.23 × 107 Da determined using viscosity method. Methylation analysis and NMR results confirmed the EPS as dextran with α (1 → 6)-linkage (96.5 %) as main chain and α (1 → 3)- as branch chain linkage (3.5 %). Thermogravimetric analysis exhibited higher thermal stability of EPS. The EPS was observed to support the growth of Bacteroides spp. in pure culture form but not that of Lactobacillus or Bifidobacterium spp. However, a low level of bifidogenic activity was observed upon use of mixed culture of B. fragilis and B. longum. The research implies industrial applications of W. cibaria Fiplydextran for the production of high molecular weight dextran with better yield.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India.
| | - Rateesh Krishnan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sarver Ahmed Rather
- ApSD, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Mallikarjunan N
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Bhaskar Dhotare
- Bio-organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
5
|
Zhou B, Wang C, Yang Y, Yu W, Bin X, Song G, Du R. Structural Characterization and Biological Properties Analysis of Exopolysaccharides Produced by Weisella cibaria HDL-4. Polymers (Basel) 2024; 16:2314. [PMID: 39204534 PMCID: PMC11360005 DOI: 10.3390/polym16162314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
An exopolysaccharide (EPS)-producing strain, identified as Weissella cibaria HDL-4, was isolated from litchi. After separation and purification, the structure and properties of HDL-4 EPS were characterized. The molecular weight of HDL-4 EPS was determined to be 1.9 × 10⁶ Da, with glucose as its monosaccharide component. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analyses indicated that HDL-4 EPS was a D-glucan with α-(1→6) and α-(1→4) glycosidic bonds. X-ray diffraction (XRD) analysis revealed that HDL-4 EPS was amorphous. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations showed that HDL-4 EPS possesses pores, irregular protrusions, and a smooth layered structure. Additionally, HDL-4 EPS demonstrated significant thermal stability, remaining stable below 288 °C. It exhibited a strong metal ion adsorption activity, emulsification activity, antioxidant activity, and water-retaining property. Therefore, HDL-4 EPS can be extensively utilized in the food and pharmaceutical industries as an additive and prebiotic.
Collapse
Affiliation(s)
- Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Changli Wang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China; (C.W.); (X.B.)
| | - Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Wenna Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China; (C.W.); (X.B.)
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Garcia-Muchart E, Martínez-Avila O, Mejias L, Gilles E, Bluteau C, Lavergne L, Ponsá S. Novel biostimulant bacterial exopolysaccharides production via solid-state fermentation as a valorisation strategy for agri-food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34435-y. [PMID: 39044054 DOI: 10.1007/s11356-024-34435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Bacterial exopolysaccharides (EPS) are extracellular polymer-based substances recently defined as potential plant biostimulants, as they can increase nutrient uptake, water retention, and resistance to abiotic stress. As sugar-based substances, the bacteria producing them need to grow in a sugar-rich substrate. Hence, some agri-food by-products could be used as suitable carbon sources for EPS production as a cost-effective and more sustainable alternative to conventional substrates. Thus, this study aimed to produce EPS from specific bacterial strains through solid-state fermentation (SSF) using agri-food waste as a low-cost substrate. Six residues and five bacterial strains were tested in a lab-scale SSF system. From the assessed substrate-strain combinations, Burkholderia cepacia with ginger juice waste (GJW) resulted in the most promising considering several process parameters (EPS production, cumulative oxygen consumption, biomass growth, reducing sugars consumption). Also, dynamic monitoring of the system allowed for establishing 5 days as a suitable fermentation time. Then, using response surface methodology (Box-Behnken design), the process was optimised based on airflow rate (AF), inoculum size (IS), and micronutrient concentration (MN). In this stage, the best conditions found were at 0.049 (± 0.014) L h-1 per gram of dry matter (DM) for AF, 8.4 (± 0.9) E + 09 CFU g-1 DM for IS, and 0.07 (± 0.01) mL g-1 DM for MN, reaching up to 71.1 (± 3.2) mg crude EPS g-1 DM. Results show the potential of this approach to provide a new perspective on the value chain for the agri-food industry by introducing it to a circular economy framework.
Collapse
Affiliation(s)
- Enric Garcia-Muchart
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Oscar Martínez-Avila
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain.
| | - Laura Mejias
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Eline Gilles
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Chloé Bluteau
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Lucie Lavergne
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Sergio Ponsá
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| |
Collapse
|
7
|
Tarique M, Ali AH, Kizhakkayil J, Liu SQ, Oz F, Dertli E, Kamal-Eldin A, Ayyash M. Exopolysaccharides from Enterococcus faecium and Streptococcus thermophilus: Bioactivities, gut microbiome effects, and fermented milk rheology. Food Chem X 2024; 21:101073. [PMID: 38235344 PMCID: PMC10792183 DOI: 10.1016/j.fochx.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers that can be produced from probiotic bacteria. This study characterized the EPSs from Enterococcus faecium (EPS-LB13) and Streptococcus thermophilus (EPS-MLB10) and evaluated their biological and technological potential. The EPSs had high molecular weight and different monosaccharide compositions. The EPSs exhibited various biological activities at 250 mg/L, such as scavenging free radicals (10 % to 88.8 %), enhancing antioxidant capacity (714 to 2848 µg/mL), inhibiting pathogens (53 % to 74 %), and suppressing enzymes and cancer cells (2 % to 83 %), etc. The EPSs supported the growth of beneficial gut bacteria from Proteobacteria, Bacteroidetes, Firmicutes, and Acinetobacter in fecal fermentation with total Short-chain fatty acids production from 5548 to 6023 PPM. Moreover, the EPSs reduced the gelation time of fermented skimmed bovine milk by more than half. These results suggest that the EPSs from LB13 and MLB10 have promising applications in the dairy and pharmaceutical industries.
Collapse
Affiliation(s)
- Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdelmoneim H. Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, İstanbul, Turkey
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Pramudito TE, Desai K, Voigt C, Smid EJ, Schols HA. Dextran and levan exopolysaccharides from tempeh-associated lactic acid bacteria with bioactivity against enterotoxigenic Escherichia coli (ETEC). Carbohydr Polym 2024; 328:121700. [PMID: 38220337 DOI: 10.1016/j.carbpol.2023.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Soybean tempeh contains bioactive carbohydrate that can reduce the severity of diarrhea by inhibiting enterotoxigenic Escherichia coli (ETEC) adhesion to mammalian epithelial cells. Lactic acid bacteria (LAB) are known to be present abundantly in soybean tempeh. Some LAB species can produce exopolysaccharides (EPS) with anti-adhesion bioactivity against ETEC but there has been no report of anti-adhesion bioactive EPS from tempeh-associated LAB. We isolated EPS-producing LAB from tempeh-related sources, identified them, unambiguously elucidated their EPS structure and assessed the bioactivity of their EPS against ETEC. Pediococcus pentosaceus TL, Leuconostoc mesenteroides WA and L. mesenteroides WN produced both dextran (α-1,6 linked glucan; >1000 kDa) and levan (β-2,6 linked fructan; 650-760 kDa) in varying amounts and Leuconostoc citreum TR produced gel-forming α-1,6-mixed linkage dextran (829 kDa). All four isolates produced EPS that could adhere to ETEC cells and inhibit auto-aggregation of ETEC. EPS-PpTL, EPS-LmWA and EPS-LmWN were more bioactive towards pig-associated ETEC K88 while EPS-LcTR was more bioactive against human-associated ETEC H10407. Our finding is the first to report on the bioactivity of dextran against ETEC. Tempeh is a promising source of LAB isolates that can produce bioactive EPS against ETEC adhesion and aggregation.
Collapse
Affiliation(s)
- Theodorus Eko Pramudito
- Laboratory of Food Chemistry, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Krishna Desai
- Laboratory of Food Chemistry, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Marie Curie Early Stage Researcher, NutriLeads B.V., the Netherlands
| | - Camiel Voigt
- Food Microbiology, Wageningen University & Research, the Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
9
|
Dikmen H, Goktas H, Demirbas F, Kayacan S, Ispirli H, Arici M, Turker M, Sagdic O, Dertli E. Multilocus sequence typing of L. bulgaricus and S. thermophilus strains from Turkish traditional yoghurts and characterisation of their techno-functional roles. Food Sci Biotechnol 2024; 33:625-635. [PMID: 38274192 PMCID: PMC10805743 DOI: 10.1007/s10068-023-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, Streptococcus thermophilus and Lactobacillus bulgaricus strains from traditional Turkish yoghurts were isolated, identified by 16S rRNA sequencing and genotypically 14 S. thermophilus and 6 L. bulgaricus strains were obtained as distinct strains by MLST analysis. Lactic acid production levels of the L. bulgaricus strains were higher than S. thermophilus strains. HPLC analysis showed that EPS monosaccharide composition of the strains mainly consisted of glucose and galactose. In general, all strains were found to be susceptible for antibiotics, except some strains were resistance to gentamicin and kanamycin. Apart from two strains of S. thermophilus, all strains displayed strong auto-aggregation level greater than 95% at 24 h incubation. S. thermophilus strains showed higher cell surface hydrophobicity than L. bulgaricus strains. This study demonstrated the isolation, identification, genotypic discrimination and techno-functional features of wild type yoghurt starter cultures which can potentially find place in industrial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01366-2.
Collapse
Affiliation(s)
- Hilal Dikmen
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Hamza Goktas
- Food Technology Programme, Vocational School, Istinye University, Topkapi Campus, Zeytinburnu, Istanbul, Turkey
| | - Fatmanur Demirbas
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Selma Kayacan
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Humeyra Ispirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Muhammet Arici
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | | | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
García-Vicente EJ, Benito-Murcia M, Martín M, Rey-Casero I, Pérez A, González M, Alonso JM, Risco D. Evaluation of the Potential Effect of Postbiotics Obtained from Honey Bees against Varroa destructor and Their Combination with Other Organic Products. INSECTS 2024; 15:67. [PMID: 38249073 PMCID: PMC10816111 DOI: 10.3390/insects15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The Varroa destructor mite infests Apis mellifera colonies and causes significant harm. Traditional treatments have become less effective because of mite resistance development and can also generate residues inside beehives. This study aimed to gauge the efficacy of a beehive-derived postbiotic in reducing V. destructor viability and to explore its synergies with organic compounds. Four lactic acid bacteria (LAB) species, Leuconostoc mesenteroides, Lactobacillus helsingborgensis, Bacillus velezensis, and Apilactobacillus kunkeei, were isolated and tested in a postbiotic form (preparations of inanimate microorganisms and/or their components) via bioassays. L. mesenteroides, L. helsingborgensis, and B. velezensis notably reduced the mite viability compared to the control, and they were further tested together as a single postbiotic product (POS). Further bioassays were performed to assess the impact of the POS and its combinations with oxalic acid and oregano essential oil. The simple products and combinations (POS/Oregano, POS/Oxalic, Oregano/Oxalic, and POS/Oregano/Oxalic) decreased the mite viability. The most effective were the oxalic acid combinations (POS/Oregano/Oxalic, Oxalic/Oregano, POS/Oxalic), showing significant improvements compared to the individual products. These findings highlight the potential of combining organic products as a vital strategy for controlling V. destructor infection. This study suggests that these combinations could serve as essential tools for combating the impact of mites on bee colonies.
Collapse
Affiliation(s)
- Eduardo José García-Vicente
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| | - María Benito-Murcia
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - María Martín
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Ismael Rey-Casero
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Ana Pérez
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - María González
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Juan Manuel Alonso
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| | - David Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| |
Collapse
|
11
|
İspirli H, Korkmaz K, Arioglu-Tuncil S, Bozkurt F, Sağdıç O, Tunçil YE, Narbad A, Dertli E. Utilisation of an active branching sucrase from Lactobacillus kunkeei AP-37 to produce techno-functional poly-oligosaccharides. Int J Biol Macromol 2023; 236:123967. [PMID: 36906201 DOI: 10.1016/j.ijbiomac.2023.123967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Glucansucrase AP-37 was extracted from the culture supernatant of Lactobacillus kunkeei AP-37 and characteristics of the glucan produced by the active glucansucrase in terms of structural and functional roles were determined in this study. A molecular weight around 300 kDa was observed for glucansucrase AP-37 and its acceptor reactions with maltose, melibiose and mannose were also conducted to unveil the prebiotic potential of the poly-oligosaccharides formed via these reactions. The core structure of glucan AP-37 was determined by 1H and 13C NMR and GC/MS analysis which revealed that glucan AP-37 was a highly branched dextran composing of high levels of (1 → 3)-linked α-d-glucose units with low levels of (1 → 2)-linked α-d-glucose units. The structural features of the glucan formed, demonstrated that glucansucrase AP-37 was an α-(1 → 3) branching sucrase. Dextran AP-37 was further characterised by FTIR analysis and XRD analysis demonstrated its amorphous nature. A fibrous compact morphology was observed for dextran AP-37 with SEM analysis whereas TGA and DSC analysis revealed its high stability as no degradation was observed up to 312 °C. Finally, the prebiotic potential of the dextran AP-37 and the gluco-oligosaccharides produced with the acceptor reaction of α-(1 → 3) branching sucrase AP-37 were determined and promising results were found for the gluco-oligosaccharides to act as prebiotics.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Kader Korkmaz
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Seda Arioglu-Tuncil
- Nutrition and Dietetics Department, Nezahat Keleşoğlu Health Science Faculty, Necmettin Erbakan University, Konya 42090, Turkey
| | - Fatih Bozkurt
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Osman Sağdıç
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Yunus Emre Tunçil
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkey
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich NR4 7UA, UK
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey.
| |
Collapse
|
12
|
Yilmaz MT, İspirli H, Alidrisi H, Taylan O, Dertli E. Characterisation of dextran AP-27 produced by bee pollen isolate Lactobacillus kunkeei AP-27. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
13
|
Wang B, Sun X, Xu M, Wang F, Liu W, Wu B. Structural characterization and partial properties of dextran produced by Leuconostoc mesenteroides RSG7 from pepino. Front Microbiol 2023; 14:1108120. [PMID: 36819025 PMCID: PMC9933128 DOI: 10.3389/fmicb.2023.1108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria possess various bioactivities and potential attractions for scientific exploration and commercial development. An EPS-producing bacterial strain, RSG7, was previously isolated from the pepino and identified as Leuconostoc mesenteroides. Based on the analyses of high-performance size exclusion chromatography, high-performance ion chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and methylation, the RSG7 EPS was identified as a dextran with a molecular weight of 5.47 × 106 Da and consisted of α-(1→6) glycosidic linkages as backbone and α-(1→2), α-(1→3), α-(1→4), and α-(1→6) glycosidic linkages as side chains. Scanning electron microscopy observed a honeycomb-like porous structure of RSG7 dextran, and this dextran formed aggregations with irregular hill-shaped lumps according to atomic force microscopy analysis. Physical-chemical investigations suggested that RSG7 dextran possessed excellent viscosity at high concentration, low temperature, and high pH; showed a superior emulsifying capacity of tested vegetable oils than that of hydrocarbons; and owned the maximal flocculating activity (10.74 ± 0.23) and flocculating rate (93.46 ± 0.07%) in the suspended solid of activated carbon. In addition, the dextran could coagulate sucrose-supplemented milk and implied potential probiotics in vitro. Together, these results collectively describe a valuable dextran with unique characteristics for exploitation in food applications.
Collapse
Affiliation(s)
- Binbin Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xiaoling Sun
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fengyi Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Weizhong Liu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,Weizhong Liu,
| | - Baomei Wu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,*Correspondence: Baomei Wu,
| |
Collapse
|
14
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
15
|
Yalmanci D, İspirli H, Dertli E. Identification of Lactic Acid Bacteria (LAB) from pre-fermented liquids of selected cereals and legumes and characterization of their exopolysaccharides (EPS). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Bisson G, Comuzzi C, Giordani E, Poletti D, Boaro M, Marino M. An exopolysaccharide from Leuconostoc mesenteroides showing interesting bioactivities versus foodborne microbial targets. Carbohydr Polym 2022; 301:120363. [DOI: 10.1016/j.carbpol.2022.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
17
|
Rahman SSA, Pasupathi S, Karuppiah S. Conventional optimization and characterization of microbial dextran using treated sugarcane molasses. Int J Biol Macromol 2022; 220:775-787. [PMID: 35987362 DOI: 10.1016/j.ijbiomac.2022.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
This study focuses the comparison on yield of microbial dextran using treated sugarcane molasses (SCM) as a feed stock from different treatment methods. The suitable method for treatment of SCM was identified on the basis of microbial dextran production. The different factors namely the concentrations of total sugars, nitrogen sources, inoculum size, shaking speed, initial medium pH, and phosphate sources influencing the production of microbial dextran were studied. The maximum yield of dextran was obtained to be 17.18 ± 0.08 g L-1 using the conventional optimization. The structural analysis of produced dextran from SCM with various treatment techniques was compared using Fourier-transform infra-red analysis and nuclear magnetic resonance spectroscopy. Later, the rheological behavior of produced microbial dextran was examined and found to be a non-Newtonian. To the best of our knowledge, the comparison on the production of microbial dextran through fermentation using SCM with various treatment strategies has not been performed yet.
Collapse
Affiliation(s)
- Sameeha Syed Abdul Rahman
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - Saroja Pasupathi
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - Sugumaran Karuppiah
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
18
|
Li Y, Xiao L, Tian J, Wang X, Zhang X, Fang Y, Li W. Structural Characterization, Rheological Properties and Protection of Oxidative Damage of an Exopolysaccharide from Leuconostoc citreum 1.2461 Fermented in Soybean Whey. Foods 2022; 11:2283. [PMID: 35954049 PMCID: PMC9368711 DOI: 10.3390/foods11152283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Soybean whey is a kind of agricultural by-product enriched with nutritional value but with low utilization. The extracellular polysaccharides secreted by lactic acid bacteria during the fermentation possess a variety of structural characteristics and beneficial properties. In this study, an exopolysaccharide (EPS) was isolated from Leuconostoc citreum 1.2461 after fermentation in optimized soybean whey-enriched 10% sucrose at 37 °C for 24 h. The water-soluble EPS-1 was obtained by DEAE-52 anion exchange chromatography, and the structural characterization of EPS-1 was investigated. The EPS-1 was homogeneous with an average molecular weight of 4.712 × 106 Da and consisted mainly of glucose. Nuclear magnetic resonance (NMR) spectrum and flourier transform infrared (FT-IR) spectrum indicated that the EPS-1 contained →3)-α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ residues. The rheological properties of EPS-1 under the conditions of changing shear rate, concentration, temperature and coexisting ions showed its pseudoplastic fluid behaviors. In addition, the EPS-1 exhibited certain scavenging activity on the ABTS radical and chelating activity on metal ions at relatively high concentrations. Furthermore, EPS-1 with a certain concentration was confirmed to have significant protective effects on yeast cell injury induced by hydrogen peroxide. This study reported the structural characteristics of exopolysaccharide from Lc. citreum 1.2461 and provides a basis for its potential application in the field of functional foods.
Collapse
Affiliation(s)
- Yingying Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| | - Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economic, Nanjing 210023, China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (L.X.); (J.T.); (X.W.); (X.Z.)
| |
Collapse
|
19
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Chipakwe V, Karlkvist T, Rosenkranz J, Chelgani SC. Beneficial effects of a polysaccharide-based grinding aid on magnetite flotation: a green approach. Sci Rep 2022; 12:6502. [PMID: 35444247 PMCID: PMC9021246 DOI: 10.1038/s41598-022-10304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Grinding is the most energy-intensive step in mineral beneficiation processes. The use of grinding aids (GAs) could be an innovative solution to reduce the high energy consumption associated with size reduction. Surprisingly, little is known about the effects of GAs on downstream mineral beneficiation processes, such as flotation separation. The use of ecofriendly GAs such as polysaccharide-based materials would help multiply the reduction of environmental issues in mineral processing plants. As a practical approach, this work explored the effects of a novel polysaccharide-based grinding aid (PGA) on magnetite's grinding and its reverse flotation. Batch grinding tests indicated that PGA improved grinding performance by reducing energy consumption, narrowing particle size distribution of products, and increasing their surface area compared to grinding without PGA. Flotation tests on pure samples illustrated that PGA has beneficial effects on magnetite depression (with negligible effect on quartz floatability) through reverse flotation separation. Flotation of the artificial mixture ground sample in the presence of PGA confirmed the benefits, giving a maximum Fe recovery and grade of 84.4 and 62.5%, respectively. In the absence of starch (depressant), PGA resulted in a separation efficiency of 56.1% compared to 43.7% without PGA. The PGA adsorption mechanism was mainly via physical interaction based on UV-vis spectra, zeta potential tests, Fourier transform infrared spectroscopy (FT-IR), and stability analyses. In general, the feasibility of using PGA, a natural green polymer, was beneficial for both grinding and reverse flotation separation performance.
Collapse
Affiliation(s)
- Vitalis Chipakwe
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Tommy Karlkvist
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jan Rosenkranz
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Saeed Chehreh Chelgani
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|