1
|
Ma J, Ye Y, He R, Xiong Y, Xiao R, Wang K, Zhang Y, Wu X. Enrichment of deoxynojirimycin in mulberry using cation exchange resin: Adsorption/desorption characteristics and process optimization. Food Chem 2025; 463:141281. [PMID: 39288465 DOI: 10.1016/j.foodchem.2024.141281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Deoxynojirimycin (DNJ) is an α-glucosidase inhibitor with high food values. However, the complex and costly enrichment processes have greatly prevented its application. Herein, this study aimed to propose a simple and efficient enrichment process for DNJ from Morus alba L. extracts using cation exchange resins. The LSI and D113 resins were chosen due to their excellent adsorption and desorption properties. The adsorption characteristics agreed with the pseudo-first-order kinetic model and the Langmuir isotherm model. This adsorption was chemisorption, spontaneous, endothermic and entropy-driven. Furthermore, the concentration and pH of the extracts, desorption solvent, breakthrough and elution curves, sample loading and elution rate were investigated to optimize the enrichment process by resin column chromatography. The results also showed that the purity of DNJ was improved to 44.00 % with a total recovery of 78.21 % using the LSI-D113 combination strategy. This research demonstrated the industrial feasibility of DNJ enrichment using cation exchange resins.
Collapse
Affiliation(s)
- Jilong Ma
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yiqian Ye
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rushi He
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yan Xiong
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Ruqi Xiao
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Kang Wang
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Youfa Zhang
- Hunan Jiecui Biotechnology Co., Ltd, Xiangtan 412007, China
| | - Xuewen Wu
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Zhang X, Yang J, Liu F, Mo M, Farooq M, Li J, Yao C, Wei W. Antiviral activity of Morus alba L. extract against pseudorabies virus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118719. [PMID: 39179057 DOI: 10.1016/j.jep.2024.118719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. are widely used as ethnomedicine and functional food in China, Japan, Korea and other Asian countries. Morus alba L. have a variety of pharmacological activity such as antiviral, antioxidation, anti-cholesterol, anticancer, hypoglycemia, and neuroprotection. Morus alba L. has demonstrated antiviral efficacy against influenza viruses, SARS-CoV-2 and so on, but its potential activity against pseudorabies virus (PRV) remains uncertain. AIM OF THE STUDY This study endeavors to delve into the anti-pseudorabies virus (PRV) potential of the ethanol extract of Morus alba L. leaves (MLE), while simultaneously elucidating its underlying mechanism of action. MATERIALS AND METHODS The anti-PRV activities of Morus alba L. extracts at different concentrations were evaluated by qPCR and immunoblotting. The inhibitory effects of MLE on PRV replication in three distinct treatment modes (pretreatment, co-treatment, and post-treatment) were detected by qPCR and indirect immunofluorescence assays. qPCR was used to investigate the effects of MLE on PRV attachment, entrance, and cytokine expression in PRV-infected cells. The chemical components in MLE were analyzed by UPLC-MS/MS. RESULTS MLE significantly inhibits PRV replication and protein expression in a dose-dependent manner. MLE displays inhibitory effects against PRV at three different modes of treatment. The most significant inhibitory effect of MLE was observed when used in co-treatment mode, resulting in an inhibition rate of 99.42%. MLE inhibits PRV infection in the early stage. MLE inhibits PRV infection by affecting viral attachment and viral entry. Furthermore, MLE exerts its inhibition on PRV replication by mitigating the heightened expression of cytokines (TNF-α and IFN-α) triggered by PRV. Analysis of its chemical composition highlights phenolic acids and flavonoids as the principal constituents of MLE. CONCLUSION The results illustrate that MLE effectively impedes PRV infection by suppressing viral adsorption and entry, while also curbing the expression of antiviral cytokines. Therefore, MLE may be a potential resource for creating new medications to treat human and animal PRV infections.
Collapse
Affiliation(s)
- Xiaoai Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Jian Yang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Fan Liu
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Minying Mo
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Muhammad Farooq
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Jianbo Li
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Chunpeng Yao
- Vegetable Research Institute of Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, PR China.
| | - Wenkang Wei
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| |
Collapse
|
3
|
Lei T, Qin Z, Liu L, Tan Z. A salt/salt aqueous two-phase system based on pH-switchable deep eutectic solvent for the extraction and separation of mulberry polysaccharides. Food Chem 2025; 462:141024. [PMID: 39217751 DOI: 10.1016/j.foodchem.2024.141024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
With the aim of expanding the potential application scope of mulberries, eleven pH-switchable deep eutectic solvents were screened for the ultrasonic-assisted extraction of mulberry polysaccharides, and a salt/salt aqueous two-phase system was constructed for the efficient separation of mulberry polysaccharides by regulating the system pH. DES-9 (tetraethylammonium chloride: octanoic acid molar ratio = 1: 2) with a critical response pH value of approximately 6.1 was concluded to be the best extraction solvent for extracting mulberry polysaccharides. A maximum polysaccharide extraction yield of 270.71 mg/g was obtained under the optimal conditions. The maximum polysaccharide extraction efficiency was 78.09 % for the pH-driven tetraethylammonium chloride/K2HPO4 aqueous two-phase system. An acidic β-pyran mulberry polysaccharide with a low-molecular weight of 9.26 kDa and a confirmed monosaccharide composition were obtained. This efficient and environmentally friendly polysaccharide separation method offers a new approach for the efficient extraction and utilization of other plant polysaccharides.
Collapse
Affiliation(s)
- Tian Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zongkui Qin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Leilei Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
4
|
Wang H, Huang G. Extraction, purification, structural modification, activities and application of polysaccharides from different parts of mulberry. Food Funct 2024; 15:3939-3958. [PMID: 38536669 DOI: 10.1039/d3fo05747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mulberry plant is a member of the Moraceae family and belongs to the Morus genus. Its entire body is a treasure, with mulberries, mulberry leaves, and mulberry branches all suitable for medicinal use. The main active ingredient in mulberries is mulberry polysaccharide. Studies have shown that polysaccharides from different parts of mulberry exhibit antioxidant, antidiabetic, antibacterial, anti-inflammatory, and blood pressure-lowering properties. There are more studies on the biological activities, extraction methods, and structural characterization of polysaccharides from different parts of mulberry. However, the structural characterization of mulberry polysaccharides is mostly confined to the types and proportions of monosaccharides and the molecular weights of polysaccharides, and there are fewer systematic studies on polysaccharides from different parts of mulberry. In order to better understand the bioactive structure of mulberry polysaccharides, this article discusses the recent research progress in the extraction, separation, purification, bioactivity, structural modification, and application of polysaccharides from different parts of mulberry (mulberry leaves, mulberry fruits, and mulberry branches). It also delves into the pharmacological mechanisms of action of mulberry polysaccharides to provide a theoretical basis for further research on mulberry polysaccharides with a view to their deeper application in the fields of feed and nutraceuticals.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
5
|
Huang Y, Xie W, Tang T, Chen H, Zhou X. Structural characteristics, antioxidant and hypoglycemic activities of polysaccharides from Mori Fructus based on different extraction methods. Front Nutr 2023; 10:1125831. [PMID: 37090772 PMCID: PMC10117789 DOI: 10.3389/fnut.2023.1125831] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
The mulberry (Mori Fructus), which is rich in many nutrients needed by the human body, serves as both food and medicine. Polysaccharides, which are considered to be important pharmacological components of mulberry, have received a lot of study for their structure and biological activity. In this study, six mulberry fruit polysaccharides (MFPs) were extracted by different extraction methods, and their physicochemical structures, antioxidant, and hypoglycemic biological activities were investigated and compared. According to the findings, MFP-III exhibited the best α-glucosidase and α-amylase inhibition, whereas MFP-IV had the strongest scavenging activity against DPPH and ABTS. Scanner electron microscopy (SEM) and high-performance liquid chromatography (HPLC) analysis showed that the apparent morphology and monosaccharide content of MFP were significantly impacted by the different extraction techniques. The results of experiments using Congo red, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), and the Congo red experiment showed that the MFP functional groups, glycosidic bonds, triple helix structure, and thermal stability were not significantly different between the extraction methods. According to the aforementioned research, various extraction methods had different effects on the chemical composition and biological activity of mulberry polysaccharides. This information can provide a scientific basis for selecting suitable extraction methods to obtain mulberry polysaccharides with ideal biological activity.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
| | - Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
| | - Ting Tang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
- Huaguo Chen,
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
- *Correspondence: Xin Zhou,
| |
Collapse
|
6
|
Ebada D, Hefnawy HT, Gomaa A, Alghamdi AM, Alharbi AA, Almuhayawi MS, Alharbi MT, Awad A, Al Jaouni SK, Selim S, Eldeeb GS, Namir M. Characterization of Delonix regia Flowers’ Pigment and Polysaccharides: Evaluating Their Antibacterial, Anticancer, and Antioxidant Activities and Their Application as a Natural Colorant and Sweetener in Beverages. Molecules 2023; 28:molecules28073243. [PMID: 37050006 PMCID: PMC10096959 DOI: 10.3390/molecules28073243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30–90 μg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.
Collapse
Affiliation(s)
- Doaa Ebada
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hefnawy T. Hefnawy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Gomaa
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Ahmed Awad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Gehad S. Eldeeb
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41511, Egypt
| | - Mohammad Namir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Li M, Liu Y, Zhang H, Liu Y, Wang W, You S, Hu X, Song M, Wu R, Wu J. Anti-cancer Potential of Polysaccharide Extracted From Polygonatum sibiricum on HepG2 Cells via Cell Cycle Arrest and Apoptosis. Front Nutr 2022; 9:938290. [PMID: 35903453 PMCID: PMC9320318 DOI: 10.3389/fnut.2022.938290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 01/20/2023] Open
Abstract
Polygonatum sibiricum is one of the most widely used traditional Chinese medicine in China. Polygonatum sibiricum polysaccharide (PSP) is the main functional component of Polygonatum sibiricum. In this study, a water-soluble polysaccharide (PSP-1) was first isolated from Polygonatum sibiricum with a molecular weight of 38.65 kDa. Structural analysis was performed via methylation and FT-IR spectroscopy analyses, which in combination with NMR spectroscopy, revealed that PSP-1 has a → 4-α-D-Glcp-1 → backbone with the substitution at O-6 with the β-D-Glcp-1 → residues. Furthermore, PSP-1 exhibited potent and concentration-dependent anticancer effects, inducing HepG2 cell apoptosis and arresting the cell cycle at the G1 phase. Moreover, PSP-1 also decreased the mitochondrial membrane potential, damaged the nucleus of HepG2 cells, and increased the activity of caspase-9 and−3 in the intrinsic apoptotic pathways to induce HepG2 cell apoptosis. To conclude, PSP-1 might be a good candidate for the treatment of liver cancer, and this work provides important information for understanding the relationship between structure and antitumor activity of PSP-1, which is relevant for the treatment of hepatocellular carcinoma in clinic.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shengbo You
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- *Correspondence: Rina Wu
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- Junrui Wu
| |
Collapse
|
8
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|