1
|
Selvaraj S, Amaral JM, Murty VR. Kinetics and antimicrobial activity of gallic acid by novel bacterial co-culture system using Taguchi's method and submerged fermentation. Arch Microbiol 2022; 204:584. [PMID: 36048277 PMCID: PMC9436867 DOI: 10.1007/s00203-022-03168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
A tannase-positive Bacillus gottheilii M2S2 and Bacillus cereus M1GT were co-cultivated for the production of gallic acid using tannic acid as the sole carbon source through submerged fermentation. Taguchi orthogonal array of design of experimental methodology was used to estimate the influence and significance of tannic acid concentration, glucose concentration, agitation speed, and inoculum size on the gallic acid production in a shake flask. Among all the factors, agitation speed contributed the highest for gallic acid production (28.28%), followed by glucose concentration (21.59%), inoculum size (19.6%), tannic acid concentration (19.54%), and pH (11.09%). Validation experiments were executed at the found optimized conditions which resulted in a 6.36-fold increase in gallic acid yield compared to unoptimized conditions. Further, the kinetics of growth, tannic acid degradation, and gallic acid yield were evaluated at the optimized conditions. The kinetic parameters Y x/s, Y p/s, and Y p/x were determined as 0.292 mg of cells/mg of tannic acid, 22.2 µg of gallic acid/mg of tannic acid, and 70.76 µg of gallic acid/mg of cells with a growth rate of 0.273 h -1 after 24 h of fermentation. Finally, the antimicrobial activity of the product gallic acid was investigated against food-borne pathogenic E. coli, S. aureus, and Serriatia marcescens and showed a zone of inhibition of 2 cm, 1.6 cm, and 1.3 cm, respectively, using the agar disc diffusion technique. Thus, the cost-effective bioproduct gallic acid proved to be potentially effective to control food poisoning diseases and preserve foodstuff.
Collapse
Affiliation(s)
- Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Julia Moraes Amaral
- School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Vytla Ramachandra Murty
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
2
|
Carranza-Méndez R, Chávez-González M, Sepúlveda-Torre L, Aguilar C, Govea-Salas M, Ramos-González R. Production of single cell protein from orange peel residues by Candida utilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Application of Lactic Acid Bacteria in Fermentation Processes to Obtain Tannases Using Agro-Industrial Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria have been used in the food industry to produce flavors, dyes, thickeners, and to increase food value, because bacterial fermentations favor the obtention of different metabolites such as tannins and different nutritional compounds in food. Lactiplantibacillus plantarum was one the first species to be studied for industrial purposes, and its efficacy to obtaining tannins using fermentation processes. Bacterial fermentation helps to obtain a product with an added value of better quality and without the need to use strong solvents that can reduce their quality and safety. To release tannins, it is necessary to subject the substrate to different conditions to activate the enzyme tannin acyl hydrolase (tannase). The tannase-released compounds can have beneficial effects on health such as antioxidant, anticancer and cardioprotective properties, among others. Therefore, this review analyzes tannase release and other metabolites by fermentation processes.
Collapse
|
4
|
Contributions of protein microenvironment in tannase industrial applicability: An in-silico comparative study of pathogenic and non-pathogenic bacterial tannase. Heliyon 2020; 6:e05359. [PMID: 33241136 PMCID: PMC7672291 DOI: 10.1016/j.heliyon.2020.e05359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Tannase is an inducible industrially important enzyme, produced by several microorganisms. A large number of bacteria have reported as tannase producers; however, some of them are pathogenic in nature. Therefore, it is quite uncertain whether the application of these tannase enzymes from such pathogenic bacteria is suitable for industries and human welfare. Till date, there is no clear evidence regarding which group of bacteria (non-pathogenic or pathogenic) is better suited for their application in the edge of industries with particular reference to the food industry. The present study is following the findings of the above queries. In this study, a large number of tannase protein sequences have been retrieved from the databases, including both non-pathogenic and pathogenic bacterial species. Physiochemical and evolutionary properties of those sequences have been evaluated. Results have shown that non-pathogenic bacterial tannase possesses a high number of acidic and basic amino acid residues as compared to their pathogenic counterparts. The acidic and basic amino acid residues of tannase provide unique microenvironment to it. In the other hand, the numbers of disorder forming residues are higher in tannase sequences of pathogenic bacteria. The study of tannase microenvironment leads in the formation of salt bridges, which finally favoring the stability and proper functioning of tannase. This is the first report of such observation on tannase enzyme using in silico approach. Study of the microenvironment concept will be helpful in protein engineering.
Collapse
|
5
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Selvaraj S, Vytla RM, Vijay GS, Natarajan K. Modeling and optimization of tannase production with Triphala in packed bed reactor by response surface methodology, genetic algorithm, and artificial neural network. 3 Biotech 2019; 9:259. [PMID: 31192084 DOI: 10.1007/s13205-019-1763-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022] Open
Abstract
In this research, optimization of the production medium to enhance tannase production by Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor was studied. Amount of substrate Triphala, moisture content, aeration rate, and fermentation period was chosen for optimization study. During one variable at a time optimization, the highest tannase activity of 0.226 U/gds was shown with Triphala as a substrate at the fermentation period of 32 h. Furthermore, the optimum conditions predicted by response surface methodology (RSM) and genetic algorithm (GA) were found to be 11.532 g of substrate Triphala, 47.071% of the moisture content, and 1.188 L/min of an aeration rate with uppermost tannase activity of 0.262 U/gds. In addition, the single hidden layer feedforward neural network (SLFNN) and the radial basis function neural network (RBFNN) of an artificial neural network (ANN) were adopted to compare the prediction performances of the RSM and GA. It revealed that the ANN models (SLFNN, R 2 = 0.9930; and RBFNN, R 2 = 0.9949) were better predictors than the RSM (R 2 = 0.9864). Finally, the validation experiment exhibited 0.265 U/gds of tannase activity at the optimized conditions, which is an 11-fold increase compared to unoptimized media in shake flask.
Collapse
|
7
|
Mansor A, Ramli M, Abdul Rashid N, Samat N, Lani M, Sharifudin S, Raseetha S. Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Selvaraj S, Vytla RM. Solid state fermentation of Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor for tannase production. Prep Biochem Biotechnol 2018; 48:799-807. [PMID: 30303763 DOI: 10.1080/10826068.2018.1509086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Production of tannase was performed in packed bed reactor filled with an inert support polyurethane foam (PUF) using Bacillus gottheilii M2S2. The influence of process parameters such as fermentation time (24-72 h), tannic acid concentration (0.5-2.5% w/v), inoculum size (7-12% v/v), and aeration rate (0-0.2 L/min) on tannase production with PUF were analyzed using one variable at a time (OVAT) approach. The outcome of OVAT was optimized by central composite design. Based on the statistical investigation, the proposed mathematical model recommends 1% (w/v) of tannic acid, 10% (v/v) of inoculum size and 0.13 L/min of aeration rate for maximum production (76.57 ± 1.25 U/L). The crude enzyme was purified using ammonium sulfate salt precipitation method followed by dialysis. The biochemical properties of partially purified tannase were analyzed and found the optimum pH (4.0), temperature (40 °C) for activity, and Km (1.077 mM) and Vmax (1.11 µM/min) with methyl gallate as a substrate. Based on the SDS-PAGE analysis, tannase exhibited two bands with molecular weights of 57.5 and 42.3 kDa. Briefly, the partially purified tannase showed 4.2 fold increase (63 ± 1.60 U/L) in comparison to the submerged fermentation and the production of tannase was validated by using NMR spectrometer.
Collapse
Affiliation(s)
- Subbalaxmi Selvaraj
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| | - Ramachandra Murty Vytla
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
9
|
Dhiman S, Mukherjee G, Singh AK. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. Int Microbiol 2018; 21:175-195. [DOI: 10.1007/s10123-018-0027-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
10
|
Ahmad ZS, Munaim MSA. Effect of time, moisture content, and substrate amount on sorbitol production using entrapment of Lactobacillus plantarum (BAA-793) in sodium alginate beads. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
S.A. Z, A.M.M. S. Production of sorbitol by repeated batch fermentation using immobilized of Lactobacillus plantarum Strain (BAA-793) via Solid State Fermentation. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.5.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim SK. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:125-148. [PMID: 28215322 DOI: 10.1016/bs.afnr.2016.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually.
Collapse
Affiliation(s)
- S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, India
| | - J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
13
|
Kumar M, Singh A, Beniwal V, Salar RK. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Express 2016; 6:46. [PMID: 27411334 PMCID: PMC4943918 DOI: 10.1186/s13568-016-0217-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/30/2016] [Indexed: 11/11/2022] Open
Abstract
Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.
Collapse
|
14
|
Coghetto CC, Vasconcelos CB, Brinques GB, Ayub MAZ. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue. Braz J Microbiol 2016; 47:941-948. [PMID: 27522926 PMCID: PMC5052335 DOI: 10.1016/j.bjm.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett–Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L−1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L−1, corresponding to a productivity of 1.46 g L−1 h−1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.
Collapse
Affiliation(s)
- Chaline Caren Coghetto
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil
| | - Carolina Bettker Vasconcelos
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil
| | - Graziela Brusch Brinques
- Federal University of Health Sciences of Porto Alegre, Nutrition Department, Porto Alegre, RS, Brazil
| | - Marco Antônio Záchia Ayub
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Subbalaxmi S, Murty VR. Process optimization for tannase production by Bacillus gottheilii M2S2 on inert polyurethane foam support. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yang S, Zhang H. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities. Food Nutr Res 2016; 60:30153. [PMID: 26837497 PMCID: PMC4737716 DOI: 10.3402/fnr.v60.30153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/25/2015] [Accepted: 12/25/2015] [Indexed: 12/16/2022] Open
Abstract
Background Thin stillage was used as the substrate to produce intracellular selenium-enriched polysaccharides (ISPS) from Cordyceps sinensis to increase the value of agricultural coproducts. Methods Fermentation parameters were optimized using response surface methodology (RSM) to improve the production of ISPS. Then, the effects of ISPS on the antioxidant activities in vitro, as well as the glycosylated serum protein concentration, malondialdehyde level, and total antioxidant capacity of streptozotocin-induced diabetic rats were studied. Results The optimized conditions were as follows: sodium selenite concentration, 33.78 µg/L; incubation time, 8.24 days; and incubation temperature, 26.69°C. A maximum yield of 197.35 mg/g ISPS was obtained from the validation experiments, which was quite close to the predicted maximum yield of 198.6839 mg/g. FT-IR spectra indicated that ISPS has been successfully selenylation modified with similar structure to polysaccharide of intracellular polysaccharides. The in vitro scavenging effects of 1.0 mg/mL ISPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals were 74.62±4.05, 71.45±3.63, and 79.48±4.75%, respectively. The reducing power of ISPS was 0.45±0.01 (absorbance at 700 nm). Fasting blood glucose and glycosylated serum protein of group C (rats with diabetes that received drinking water with ISPS) were significantly lower than those of group B (rats with diabetes) (P<0.01) after treatment was administered for 2 and 4 weeks. Serum malonaldehyde content of group C was significantly lower than that of group B at 4 weeks (P<0.01). At 4 weeks, malonaldehyde contents in heart, liver, and kidney tissues of group C were significantly lower than those of group B; however, malonaldehyde content in pancreas tissue of group C was not significantly different. Total antioxidant capacities in liver, pancreas and kidney tissues of group C were significantly higher than those of group B, but total antioxidant capacity in heart tissue was not significantly different. Serum total antioxidant capacity was also increased compared with that of group B. Conclusion The result of these experiments indicated that RSM is a promising method for the optimization of ISPS production, and the ISPS of C. sinensis can reduce blood glucose level and improve antioxidant capacity of rats with diabetes induced by streptozotocin.
Collapse
Affiliation(s)
- Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China;
| | - Hui Zhang
- Zhejiang Institute of Quality Inspection Science, Hangzhou, People's Republic of China;
| |
Collapse
|
17
|
Aguilar-Zarate P, Cruz-Hernandez MA, Montañez JC, Belmares-Cerda RE, Aguilar CN. Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor. Bioprocess Biosyst Eng 2014; 37:2305-16. [PMID: 24861311 DOI: 10.1007/s00449-014-1208-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/26/2014] [Indexed: 11/29/2022]
Abstract
The optimization of tannase production by Lactobacillus plantarum CIR1 was carried out following the Taguchi methodology. The orthogonal array employed was L18 (2(1) × 3(5)) considering six important factors (pH and temperature, also phosphate, nitrogen, magnesium, and carbon sources) for tannase biosynthesis. The experimental results obtained from 18 trials were processed using the software Statistical version 7.1 using the character higher the better. Optimal culture conditions were pH, 6; temperature, 40 °C; tannic acid, 15.0 g/L; KH2PO4, 1.5 g/L; NH4Cl, 7.0 g/L; and MgSO4, 1.5 g/L which were obtained and further validated resulting in an enhance tannase yield of 2.52-fold compared with unoptimized conditions. Tannase production was further carried out in a 1-L gas-lift bioreactor where two nitrogen flows (0.5 and 1.0 vvm) were used to provide anaerobic conditions. Taguchi methodology allowed obtaining the optimal culture conditions for the production of tannase by L. plantarum CIR1. At the gas-lift bioreactor the tannase productivity yields increase 5.17 and 8.08-fold for the flow rates of 0.5 and 1.0 vvm, respectively. Lactobacillus plantarum CIR1 has the capability to produce tannase at laboratory-scale. This is the first report for bacterial tannase production using a gas-lift bioreactor.
Collapse
Affiliation(s)
- Pedro Aguilar-Zarate
- Departments of Food Research and Chemical Engineering, School of Chemistry, Universidad Autonoma de Coahuila, Venustiano Carranza S/N Col. República Oriente, 25280, Saltillo, Coahuila, Mexico
| | | | | | | | | |
Collapse
|
18
|
Jana A, Halder SK, Banerjee A, Paul T, Pati BR, Mondal KC, Das Mohapatra PK. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. BIORESOURCE TECHNOLOGY 2014; 157:327-40. [PMID: 24613317 DOI: 10.1016/j.biortech.2014.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 05/22/2023]
Abstract
Tannin-rich materials are abundantly generated as wastes from several agroindustrial activities. Therefore, tannase is an interesting hydrolase, for bioconversion of tannin-rich materials into value added products by catalyzing the hydrolysis of ester and depside bonds and unlocked a new prospect in different industrial sectors like food, beverages, pharmaceuticals, etc. Microorganisms, particularly bacteria are one of the major sources of tannase. In the last decade, cloning and heterologous expression of novel tannase genes and structural study has gained momentum. In this article, we have emphasized critically on bacterial tannase that have gained worldwide research interest for their diverse properties. The present paper delineate the developments that have taken place in understanding the role of tannase action, microbial sources, various cultivation aspects, downstream processing, salient biochemical properties, structure and active sites, immobilization, efforts in cloning and overexpression and with special emphasis on recent molecular and biotechnological achievements.
Collapse
Affiliation(s)
- Arijit Jana
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Amrita Banerjee
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Tanmay Paul
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Bikash Ranjan Pati
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | | |
Collapse
|
19
|
Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2013.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Srivastava PK, Kapoor M. Extracellular endo-mannanase from Bacillus sp. CFR1601: Economical production using response surface methodology and downstream processing using aqueous two phase system. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2013.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|