1
|
Maharjan S, Isaksson JM, Krupova M, Rämä T, Hansen KØ, Hammer Andersen J, Hansen EH. Metabolomics-Guided Discovery of Bipolarolides H-O, New Ophiobolin-Type Sesterterpenes with Antibacterial Activity from the Marine-Derived Fungus Uzbekistanica storfjordensis sp. nov. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 39883606 DOI: 10.1021/acs.jnatprod.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A marine-derived Pleosporales fungus, Uzbekistanica storfjordensis, was isolated from driftwood and described as a new species. The fungus was cultivated in liquid media and a molecular networking-driven approach was used to identify potential new secondary metabolites. The targeted compounds were isolated using preparative HPLC-MS, and through extensive spectroscopic analysis, eight new ophiobolin-type sesterterpenes, bipolarolides H-O (1-8), were identified. The absolute configurations of the compounds were determined by ECD assessment. Bipolarolide L (5), M (6), and O (8) exhibited inhibitory activity against Streptococcus agalactiae with MIC values of 86, 66, and 64 μM, respectively.
Collapse
Affiliation(s)
- Sailesh Maharjan
- Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Johan Mattias Isaksson
- Department of Pharmacy (IFA), Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø 9037, Norway
- Department of Chemistry (IK), Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Monika Krupova
- Department of Chemistry (IK), Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø 9037, Norway
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry (IK), Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Teppo Rämä
- Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Kine Østnes Hansen
- Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Jeanette Hammer Andersen
- Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| | - Espen Holst Hansen
- Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
2
|
González-Troncoso MP, Landeta-Salgado C, Munizaga J, Hornedo-Ortega R, García-Parrilla MDC, Lienqueo ME. Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus Asteromyces cruciatus. J Fungi (Basel) 2024; 11:3. [PMID: 39852423 PMCID: PMC11766682 DOI: 10.3390/jof11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as Asteromyces cruciatus, are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of A. cruciatus grown on different carbon sources: glucose, Durvillaea spp., and Macrocystis pyrifera. Crude extracts of fungal biomass were analyzed for total phenolic content (TPC), antioxidant capacity (TAC), toxicity, and phenolic compound identification using ultra-high-performance liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (UHPLC-MS/MS). The analysis revealed the presence of anthraquinone compounds, including emodin (0.36 ± 0.08 mg/g DW biomass) and citrereosein in glucose medium and citrereosein and endocrocin in M. pyrifera medium. No such compounds were detected in Durvillaea spp. medium. The glucose-grown extract exhibited the highest TPC (3.09 ± 0.04 mg GAE/g DW) and TAC (39.70 ± 1.0 µmol TEq/g biomass). Additionally, no detrimental effects were observed on a neuronal cell line. These findings highlight the influence of carbon sources on the production of bioactive metabolites and their functional properties, providing valuable insights into the biotechnological potential of A. cruciatus.
Collapse
Affiliation(s)
- María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María del Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| |
Collapse
|
3
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
4
|
Rajakaruna O, Wijayawardene NN, Udagedara S, Jayasinghe PK, Gunasekara SS, Boonyuen N, Bamunuarachchige TC, Ariyawansa KGSU. Exploring Fungal Diversity in Seagrass Ecosystems for Pharmaceutical and Ecological Insights. J Fungi (Basel) 2024; 10:627. [PMID: 39330387 PMCID: PMC11433010 DOI: 10.3390/jof10090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Marine ecosystems are important in discovering novel fungi with interesting metabolites that have shown great potential in pharmaceutical and biotechnological industries. Seagrasses, the sole submerged marine angiosperm, host diverse fungal taxa with mostly unknown metabolic capabilities. They are considered to be one of the least studied marine fungal habitats in the world. This review gathers and analyzes data from studies related to seagrasses-associated fungi, including taxonomy and biogeography, and highlights existing research gaps. The significance of the seagrass-fungal associations remains largely unknown, and current understanding of fungal diversity is limited to specific geographical regions such as the Tropical Atlantic, Mediterranean, and Indo-Pacific. Our survey yielded 29 culture-dependent studies on seagrass-associated endophytic and epiphytic fungi, and 13 miscellaneous studies, as well as 11 meta-studies, with no pathogenic true fungi described. There is a significant opportunity to expand existing studies and conduct multidisciplinary research into novel species and their potential applications, especially from understudied geographical locations. Future research should prioritize high-throughput sequencing and mycobiome studies, utilizing both culture-dependent and -independent approaches to effectively identify novel seagrass-associated fungal taxa.
Collapse
Affiliation(s)
- Oshadi Rajakaruna
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (O.R.); (N.N.W.)
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (O.R.); (N.N.W.)
- Tropical Microbiology Research Foundation, Pannipitiya 10230, Sri Lanka
| | | | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 01500, Sri Lanka; (P.K.J.); (S.S.G.)
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 01500, Sri Lanka; (P.K.J.); (S.S.G.)
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka
| | | |
Collapse
|
5
|
Cho Y, Park KH, Kim E, Kim S, Wang W, Choi H, Kang H. Talaromides A-C, Bioactive Cyclic Heptapeptides from Talaromyces siglerae Isolated from a Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2024; 87:1230-1234. [PMID: 38626456 DOI: 10.1021/acs.jnatprod.3c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.
Collapse
Affiliation(s)
- Youbin Cho
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Eunhee Kim
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Seungjin Kim
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Heonjoong Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea
| |
Collapse
|
6
|
Lv F, Zeng Y. Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021-2023). Mar Drugs 2024; 22:191. [PMID: 38786582 PMCID: PMC11122844 DOI: 10.3390/md22050191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.
Collapse
Affiliation(s)
- Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Yanbo Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
7
|
Wong Chin JM, Puchooa D, Bahorun T, Alrefaei AF, Neergheen VS, Jeewon R. Multigene phylogeny, bioactive properties, enzymatic and dye decolorization potential of selected marine fungi from brown algae and sponges of Mauritius. Heliyon 2024; 10:e28955. [PMID: 38623192 PMCID: PMC11016617 DOI: 10.1016/j.heliyon.2024.e28955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Marine fungi represent an important proportion of the microbial diversity in the oceans. They are attractive candidates for biotechnological purposes and industrial applications. Despite an increasing interest in mycology, marine fungi associated with sponges and algae have been poorly studied in Mauritius. The objectives of this study were to: 1) use multigene phylogenetic analyses to identify isolated marine fungi; 2) determine the differences in the antimicrobial and antioxidant properties of the fungal extracts; and 3) assess their enzyme activities and dye decolorization potential. Five fungal isolates viz Aspergillus chevalieri, Aspergillus iizukae, Aspergillus ochraceus, Exserohilum rostratum and Biatriospora sp. were identified based on phylogenetic analyses. There was no significant difference in the antimicrobial properties of the liquid and solid media extracts unlike the antioxidant properties (p < 0.05). The solid media extract of Aspergillus chevalieri (F2-SF) had a minimum inhibitory concentration of 0.156 mg/ml against Staphylococcus aureus while Aspergillus ochraceus (F25-SF) had a minimum inhibitory concentration of 0.313 and 2.5 mg/ml against Enterococcus faecalis and Salmonella typhi. The solid media extract of Biatriospora sp. (F34-SF) had a minimum inhibitory concentration of 0.195 and 1.563 mg/ml against Bacillus cereus, Escherichia coli and Enterobacter cloacae. An IC50 of 78.92 ± 4.71 μg/ml in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, ferric reducing antioxidant power (FRAP) value of 11.17 ± 0.20 mM Fe2+/g dry weight extract (DWE) and total phenolic content 360.35 ± 10.31 mg GAE/g DWE was obtained with the solid media extract of Aspergillus chevalieri (F2-SF). Aspergillus ochraceus (F25-SF) and Biatriospora sp. (F34-SF) solid media extracts showed lower IC50 values in the DPPH assay and higher total phenolic content as compared to the liquid media extracts. Aspergillus chevalieri was a good producer of the enzymes DNAse and lipase and had maximum percentage dye decolorization of 79.40 ± 17.72% on Congo red. An enzymatic index ≥ 2 was found for the DNAse and lipase and the maximum percentage dye decolorization of 87.18 ± 3.80% was observed with Aspergillus ochraceus on Methylene blue. Regarding Biatriospora sp., it was a moderate producer of the three enzymes amylase, DNAse and protease and had a maximum dye decolorization potential of 56.29 ± 6.51% on Crystal violet. This study demonstrates that Mauritian marine fungi possess good bioactive properties, enzymatic and dye decolorization potentials, that can potentially be considered for use in pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Jessica Mélanie Wong Chin
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Theeshan Bahorun
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Rajesh Jeewon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
8
|
Yang KL, Lin JY, Li GM, Yang ZL. Mushrooms Adapted to Seawater: Two New Species of Candolleomyces (Basidiomycota, Agaricales) from China. J Fungi (Basel) 2023; 9:1204. [PMID: 38132805 PMCID: PMC10744817 DOI: 10.3390/jof9121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Marine fungi have been studied for a long history in many realms, but there are few reports on marine mushrooms. In this study, marine fungi with conspicuous subglobose sequestrate basidioma were discovered from mangrove forests in South China. They grow on the deadwood of mangroves in the intertidal zone, periodically submerging into seawater due to the tide. Some marine animals were observed to nest in their basidiomata or consume them as food. The pileus-gleba-inner veil complex (PGI) of the basidioma was observed to be detached from the stipe and transferred into seawater by external forces, and drifting on sea to spread spores after maturity. The detachment mechanism of their PGIs was revealed through detailed microscopic observations. The contrast culturing experiment using freshwater and seawater potato dextrose agar media showed they have probably obligately adapted to the marine environment. Based on morphological and molecular phylogenetic evidence, two new species of Candolleomyces (Basidiomycota, Agaricales), namely C. brunneovagabundus and C. albovagabundus, were described. They are similar and close to each other, but can be distinguished by the size and color of the basidioma, and the size of the basidiospores.
Collapse
Affiliation(s)
- Kun L. Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Jia Y. Lin
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Guang-Mei Li
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zhu L. Yang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
9
|
Zhang T, Ji Z, Chen X, Yu L. Shotgun metagenomics reveals a diverse mycobiome in the seawater from a High Arctic fjord (Kongsfjorden, Svalbard). ENVIRONMENTAL RESEARCH 2023; 233:116437. [PMID: 37331553 DOI: 10.1016/j.envres.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
In the Arctic fjords, the marine mycobiome experiences significant changes under environmental conditions driven by climate change. However, research on the ecological roles and the adaptive mechanisms of marine mycobiome in the Arctic fjord remains insufficiently explored. The present study employed shotgun metagenomics to comprehensively characterize the mycobiome in 24 seawater samples from Kongsfjorden, a High Arctic fjord situated in Svalbard. It revealed the presence of a diverse mycobiome with eight phyla, 34 classes, 71 orders, 152 families, 214 genera, and 293 species. The taxonomic and functional composition of the mycobiome differed significantly among the three layers, i.e., upper layer (depth of 0 m), middle layer (depths of 30-100 m), and lower layer (depths of 150-200 m). Several taxonomic groups (e.g., phylum Ascomycota, class Eurotiomycetes, order Eurotiales, family Aspergillaceae, and genus Aspergillus) and KOs (e.g., K03236/EIF1A, K03306/TC.PIT, K08852/ERN1, and K03119/tauD) were significantly distinct among the three layers. Among the measured environmental parameters, depth, NO2-, and PO43- were identified as the key factors influencing the mycobiome composition. Conclusively, our findings revealed that the mycobiome was diverse in the Arctic seawater and significantly impacted by the variability of environmental conditions in the High Arctic fjord. These results will assist future studies in exploring the ecological and adaptive responses towards the changes within the Arctic ecosystems.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Xiufei Chen
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
10
|
Breyer E, Baltar F. The largely neglected ecological role of oceanic pelagic fungi. Trends Ecol Evol 2023; 38:870-888. [PMID: 37246083 DOI: 10.1016/j.tree.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Most investigations into ocean ecology and biogeochemistry have tended to focus on marine bacteria, archaea, and protists, while pelagic fungi (mycoplankton) have traditionally been neglected and considered to reside only in association with benthic solid substrates. Nevertheless, recent studies have revealed that pelagic fungi are distributed ubiquitously throughout the water column in every ocean basin and play an active role in the degradation of organic matter and the cycling of nutrients. We review the current status of knowledge on the ecology of mycoplankton and highlight knowledge gaps and challenges. These findings underscore the need to recognize this neglected kingdom as significant contributors to the organic matter cycling and ecology of the oceans.
Collapse
Affiliation(s)
- Eva Breyer
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
11
|
Adams SJ, Walker AK. Diversity of fungi from marine inundated wood from the Bay of Fundy, Nova Scotia, Canada. BOTANICA MARINA 2023; 66:319-329. [PMID: 39711846 PMCID: PMC11661551 DOI: 10.1515/bot-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 12/24/2024]
Abstract
Marine fungi play an integral role in the decomposition of intertidal organic substrata but remain understudied in cold-water habitats including Atlantic Canada. Marine inundated wood from the intertidal zone was sampled from 30 sites along the Bay of Fundy coastline in Nova Scotia, Canada. Wood types studied included attached and loose intertidal wood, and driftwood. Emergent fungi were cultured and identified using ITS (internal transcribed spacers) rDNA barcoding. Two hundred and twenty cultures representing 86 fungi are reported. Sixty-one fungi were new records for the Bay of Fundy, 41 are first records from the marine environment, and 19 fungi are potentially new to science. Fungi identified included eight obligate marine fungi, with the remaining fungi being facultatively marine. Eight ascomycetes were soft rot fungi; this ecological strategy for decaying woody material in cold-water marine environments is discussed. Historical records and roles of wood type and site on fungal colonization are discussed.
Collapse
Affiliation(s)
- Sarah J. Adams
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| | - Allison K. Walker
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| |
Collapse
|
12
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
13
|
Deng L, Zhong M, Li Y, Hu G, Zhang C, Peng Q, Zhang Z, Fang J, Yu X. High hydrostatic pressure harnesses the biosynthesis of secondary metabolites via the regulation of polyketide synthesis genes of hadal sediment-derived fungi. Front Microbiol 2023; 14:1207252. [PMID: 37383634 PMCID: PMC10293889 DOI: 10.3389/fmicb.2023.1207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Deep-sea fungi have evolved extreme environmental adaptation and possess huge biosynthetic potential of bioactive compounds. However, not much is known about the biosynthesis and regulation of secondary metabolites of deep-sea fungi under extreme environments. Here, we presented the isolation of 15 individual fungal strains from the sediments of the Mariana Trench, which were identified by internal transcribed spacer (ITS) sequence analysis as belonging to 8 different fungal species. High hydrostatic pressure (HHP) assays were performed to identify the piezo-tolerance of the hadal fungi. Among these fungi, Aspergillus sydowii SYX6 was selected as the representative due to the excellent tolerance of HHP and biosynthetic potential of antimicrobial compounds. Vegetative growth and sporulation of A. sydowii SYX6 were affected by HHP. Natural product analysis with different pressure conditions was also performed. Based on bioactivity-guided fractionation, diorcinol was purified and characterized as the bioactive compound, showing significant antimicrobial and antitumor activity. The core functional gene associated with the biosynthetic gene cluster (BGC) of diorcinol was identified in A. sydowii SYX6, named as AspksD. The expression of AspksD was apparently regulated by the HHP treatment, correlated with the regulation of diorcinol production. Based on the effect of the HHP tested here, high pressure affected the fungal development and metabolite production, as well as the expression level of biosynthetic genes which revealed the adaptive relationship between the metabolic pathway and the high-pressure environment at the molecular level.
Collapse
Affiliation(s)
- Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qingqing Peng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
15
|
Marinobazzanan, a Bazzanane-Type Sesquiterpenoid, Suppresses the Cell Motility and Tumorigenesis in Cancer Cells. Mar Drugs 2023; 21:md21030153. [PMID: 36976200 PMCID: PMC10056982 DOI: 10.3390/md21030153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of NOESY data. The absolute configurations of 1 were determined by the modified Mosher’s method as well as vibrational circular dichroism (VCD) spectra calculation and it was determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below the concentration of 25 μM. However, compound 1 was shown to significantly decrease cancer-cell migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to 5 μM by downregulating the expression level of KITENIN and upregulating the expression level of KAI1. Compound 1 suppressed β-catenin-mediated TOPFLASH activity and its downstream targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft mouse model.
Collapse
|
16
|
Zeng Y, Wang Z, Chang W, Zhao W, Wang H, Chen H, Dai H, Lv F. New Azaphilones from the Marine-Derived Fungus Penicillium sclerotiorum E23Y-1A with Their Anti-Inflammatory and Antitumor Activities. Mar Drugs 2023; 21:md21020075. [PMID: 36827116 PMCID: PMC9961037 DOI: 10.3390/md21020075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Nine new azaphilones, including penicilazaphilones I-N (1, 2 and 6-9), epi-geumsanol D (3) and penidioxolanes C (4) and D (5) were isolated from the culture of the marine-derived fungus Penicillium sclerotiorum E23Y-1A. The structures of the isolates were deduced from extensive spectroscopic data (1D and 2D NMR), high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. All the azaphilones from P. sclerotiorum E23Y-1A were tested for their anti-inflammatory and antitumor activities. Penicilazaphilone N (9) showed moderate anti-inflammatory activity with an IC50 value of 22.63 ± 2.95 μM, whereas penidioxolane C (4) exhibited moderate inhibition against human myeloid leukemia cells (K562), human liver cancer cells (BEL-7402), human gastric cancer cells (SGC-7901), human non-small cell lung cancer cells (A549), and human hela cervical cancer cells, with IC50 values of 23.94 ± 0.11, 60.66 ± 0.13, 46.17 ± 0.17, 60.16 ± 0.26, and 59.30 ± 0.60 μM, respectively.
Collapse
Affiliation(s)
- Yanbo Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Correspondence: (Y.Z.); (H.D.); (F.L.)
| | - Zhi Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Weibo Zhao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Huiqin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Haofu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Correspondence: (Y.Z.); (H.D.); (F.L.)
| | - Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Y.Z.); (H.D.); (F.L.)
| |
Collapse
|
17
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
18
|
Lee JW, Seo CW, Lee W, Kim JS, Park KH, Cho Y, Lim YW. Diversity and Dynamics of Marine Arenicolous Fungi in Three Seasides of the Korean Peninsula. J Microbiol 2023; 61:63-82. [PMID: 36715871 DOI: 10.1007/s12275-023-00011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Various arenicolous fungal species have been detected from the beach sand in the coastal area. However, little has been revealed regarding their distribution and dynamics. To investigate the overall diversity of marine arenicolous fungi (MAFs) in Korea and whether the composition of MAFs is affected by ocean currents, we isolated and analyzed the fungal community from the western, southern, and eastern seasides of the Korean Peninsula. In total, 603 strains were isolated and identified as 259 species based on appropriate molecular markers for each genus (ITS, BenA, CaM, tef1, and act). The composition of MAFs showed differences among the seasides. Our results indicate that many MAFs inhabit the beach sand on the Korean Peninsula, and the composition of MAFs is also affected by ocean currents flowing along each coast.
Collapse
Affiliation(s)
- Jun Won Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonjun Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Hyeong Park
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonhee Cho
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Affiliation(s)
- Michael Cunliffe
- Marine Biological AssociationPlymouthUK
- School of Biological and Marine SciencesUniversity PlymouthPlymouthUK
| |
Collapse
|
20
|
Screening of Insecticidal and Antifungal Activities of the Culturable Fungi Isolated from the Intertidal Zones of Qingdao, China. J Fungi (Basel) 2022; 8:jof8121240. [PMID: 36547573 PMCID: PMC9783798 DOI: 10.3390/jof8121240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous studies focused on drug discovery perspective have proved the great potential for exploration of marine-derived fungi to seek bioactive chemicals. Yet, marine-derived fungi are less explored compared to their terrestrial counterparts. Here, 181 fungal strains (134 species) isolated from marine algae and sediment in Chinese intertidal zones were screened to reveal bioactivities using brine shrimp, green peach aphid and plant pathogens as targets. Fermentation supernatants of 85 fungal strains exhibited a high lethality (>70%) of brine shrimp at 24 h, and 14 strains appeared to be acute-toxic as featured by more than 75% mortality at 4 h, indicating efficient insecticidal bioactivity. The crude extracts of 34 strains displayed high toxicity to green peach aphid with more than 70% of mortality at 48 h. For the plant pathogens tested, the inhibitory rates of eight fungal strains affiliated with Alternaria (AS3, AS4), Amphichorda (AS7), Aspergillus (AS14), Chaetomium (AS21), Penicillium (AS46), Purpureocillium (AS55) and Trichoderma (AS67) were equal or higher than that of the positive Prochloraz, and five of them (AS7, AS14, AS21, AS55, AS67) were also strongly toxic to brine shrimp or aphid. Our findings indicate broad potential for exploration of marine-derived fungi as candidate resources to pursue bioactive compounds in controlling agricultural pests and pathogens.
Collapse
|
21
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
23
|
Li W, Gao Q, Hu Y, Shi Y, Yan X, Ding L, He S. Dibetanide, a new benzofuran derivative with the rare conjugated triene side chain from a sponge-associated fungus Aspergillus species. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Knowles SL, Raja HA, Roberts CD, Oberlies NH. Fungal-fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 2022; 39:1557-1573. [PMID: 35137758 PMCID: PMC9384855 DOI: 10.1039/d1np00070e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 01/25/2023]
Abstract
Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
25
|
Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A. Anthraquinones and Their Analogues from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2022; 20:474. [PMID: 35892942 PMCID: PMC9394430 DOI: 10.3390/md20080474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones are an interesting chemical class of polyketides since they not only exhibit a myriad of biological activities but also contribute to managing ecological roles. In this review article, we provide a current knowledge on the anthraquinoids reported from marine-derived fungi, isolated from various resources in both shallow waters such as mangrove plants and sediments of the mangrove habitat, coral reef, algae, sponges, and deep sea. This review also tentatively categorizes anthraquinone metabolites from the simplest to the most complicated scaffolds such as conjugated xanthone-anthraquinone derivatives and bianthraquinones, which have been isolated from marine-derived fungi, especially from the genera Apergillus, Penicillium, Eurotium, Altenaria, Fusarium, Stemphylium, Trichoderma, Acremonium, and other fungal strains. The present review, covering a range from 2000 to 2021, was elaborated through a comprehensive literature search using the following databases: ACS publications, Elsevier, Taylor and Francis, Wiley Online Library, MDPI, Springer, and Thieme. Thereupon, we have summarized and categorized 296 anthraquinones and their derivatives, some of which showed a variety of biological properties such as enzyme inhibition, antibacterial, antifungal, antiviral, antitubercular (against Mycobacterium tuberculosis), cytotoxic, anti-inflammatory, antifouling, and antioxidant activities. In addition, proposed biogenetic pathways of some anthraquinone derivatives are also discussed.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
- Medicinal Plant Breeding & Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Cank KB, Shepherd RA, Knowles SL, Rangel-Grimaldo M, Raja HA, Bunch ZL, Cech NB, Rice CA, Kyle DE, Falkinham JO, Burdette JE, Oberlies NH. Polychlorinated cyclopentenes from a marine derived Periconia sp. (strain G1144). PHYTOCHEMISTRY 2022; 199:113200. [PMID: 35421431 PMCID: PMC9173697 DOI: 10.1016/j.phytochem.2022.113200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Studies on an organic extract of a marine fungus, Periconia sp. (strain G1144), led to the isolation of three halogenated cyclopentenes along with the known and recently reported rhytidhyester D; a series of spectrometric and spectroscopic techniques were used to elucidate these structures. Interestingly, two of these compounds represent tri-halogenated cyclopentene derivatives, which have been observed only rarely from Nature. The relative and absolute configurations of the compounds were established via mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, Mosher's esters method, optical rotation and GIAO NMR calculations, including correlation coefficient calculations and the use of both DP4+ and dJ DP4 analyses. Several of the isolated compounds were tested for activity in anti-parasitic, antimicrobial, quorum sensing inhibition, and cytotoxicity assays and were shown to be inactive.
Collapse
Affiliation(s)
- Kristóf B Cank
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Robert A Shepherd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Zoie L Bunch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Christopher A Rice
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, 724 Biological Sciences Building, University of Georgia, Athens, GA, 30602-2607, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech Center for Drug Discovery, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, 333 PHARM, MC 781, Chicago, IL, 60612, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
27
|
Velez P, Walker AK, González MC, Subash S. Narayanan S, Nakagiri A. In depth review of the ecology of arenicolous marine fungi. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Tian Y, Li Y. A Review on Bioactive Compounds from Marine-Derived Chaetomium Species. J Microbiol Biotechnol 2022; 32:541-550. [PMID: 35586928 PMCID: PMC9628867 DOI: 10.4014/jmb.2201.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,Corresponding authors Yuan Tian E-mail:
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,
Yanling Li E-mail:
| |
Collapse
|
29
|
Chen Y, Liu C, Kumaravel K, Nan L, Tian Y. Two New Sulfate-Modified Dibenzopyrones With Anti-foodborne Bacteria Activity From Sponge-Derived Fungus Alternaria sp. SCSIOS02F49. Front Microbiol 2022; 13:879674. [PMID: 35620099 PMCID: PMC9128073 DOI: 10.3389/fmicb.2022.879674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
At present, foodborne diseases (FBDs) caused by bacteria are gradually increasing every year, and the development of new antibiotics is an urgent necessity for human beings. To find novel antibacterial compounds, three sponge-derived fungal strains (SCSIOS02F40, F46, and F49) were investigated. As a result, Alternaria sp. SCSIOS02F49 was selected for investigation on its secondary metabolites because its ethyl acetate (EtOAc) extract of potato dextrose broth (PDB) culture showed rich metabolites and strong antibacterial activity. Two new dibenzopyrones with rare sulfate group (1–2), together with 10 known compounds (3–12), were isolated from the Alternaria sp. SCSIOS02F49. Their structures were confirmed by nuclear magnetic resonance (NMR), mass spectrometry (MS) data, and comparison with data from the relevant literature. Almost all compounds showed moderate inhibitory activity against eight foodborne bacteria (FBB) with minimum inhibitory concentration (MIC) values in the range of 15.6–250 μg/ml, and minimum bactericidal concentration (MBC) values in the range of 31.3–250 μg/ml. The antibacterial mechanism of compound 1 was preliminarily investigated using growth curves, scanning electron microscopy (SEM), and flow cytometry (FCM), which revealed that compound 1 altered the external structure of Staphylococcus aureus and caused the rupture or deformation of the cell membranes. This research provides lead compounds for the development of new antibiotics or microbial preservatives.
Collapse
Affiliation(s)
- Yaping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chuanna Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | - Lihong Nan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
30
|
Sen K, Sen B, Wang G. Diversity, Abundance, and Ecological Roles of Planktonic Fungi in Marine Environments. J Fungi (Basel) 2022; 8:jof8050491. [PMID: 35628747 PMCID: PMC9147564 DOI: 10.3390/jof8050491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Fungi are considered terrestrial and oceans are a “fungal desert”. However, with the considerable progress made over past decades, fungi have emerged as morphologically, phylogenetically, and functionally diverse components of the marine water column. Although their communities are influenced by a plethora of environmental factors, the most influential include salinity, temperature, nutrients, and dissolved oxygen, suggesting that fungi respond to local environmental gradients. The biomass carbon of planktonic fungi exhibits spatiotemporal dynamics and can reach up to 1 μg CL−1 of seawater, rivaling bacteria on some occasions, which suggests their active and important role in the water column. In the nutrient-rich coastal water column, there is increasing evidence for their contribution to biogeochemical cycling and food web dynamics on account of their saprotrophic, parasitic, hyper-parasitic, and pathogenic attributes. Conversely, relatively little is known about their function in the open-ocean water column. Interestingly, methodological advances in sequencing and omics approach, the standardization of sequence data analysis tools, and integration of data through network analyses are enhancing our current understanding of the ecological roles of these multifarious and enigmatic members of the marine water column. This review summarizes the current knowledge of the diversity and abundance of planktonic fungi in the world’s oceans and provides an integrated and holistic view of their ecological roles.
Collapse
Affiliation(s)
- Kalyani Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Zhuravleva OI, Oleinikova GK, Antonov AS, Kirichuk NN, Pelageev DN, Rasin AB, Menshov AS, Popov RS, Kim NY, Chingizova EA, Chingizov AR, Volchkova OO, von Amsberg G, Dyshlovoy SA, Yurchenko EA, Guzhova IV, Yurchenko AN. New Antibacterial Chloro-Containing Polyketides from the Alga-Derived Fungus Asteromyces cruciatus KMM 4696. J Fungi (Basel) 2022; 8:jof8050454. [PMID: 35628710 PMCID: PMC9147975 DOI: 10.3390/jof8050454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Six new polyketides acrucipentyns A–F (1–6) were isolated from the alga-derived fungus Asteromyces cruciatus KMM 4696. Their structures were established based on spectroscopic methods. The absolute configurations of acrucipentyn A was assigned by the modified Mosher’s method and ROESY data analysis. Acrucipentyns A–E were identified to be the very first examples of chlorine-containing asperpentyn-like compounds. The cytotoxic and antimicrobial activities of the isolated compounds were examined. Acrucipentyns A–F were found as antimicrobial agents, which inhibited sortase A enzyme activity, bacterial growth and biofilm formation of Staphylococcus aureus and decreased LDH release from human keratinocytes HaCaT in S. aureus skin infection in an in vitro model.
Collapse
Affiliation(s)
- Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
- Correspondence: ; Tel.: +7-423-231-1168
| | - Galina K. Oleinikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Natalia N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Dmitry N. Pelageev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Olga O. Volchkova
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Irina V. Guzhova
- Institute of Cytology Russian Academy of Sciences, Tikhoretskiy Ave. 4, 194064 St. Petersburg, Russia;
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| |
Collapse
|
32
|
Metabolic activity on Biolog FF MicroPlate suggests organic substrate decomposition by Aspergillus terreus NTOU4989 isolated from Kueishan Island Hydrothermal Vent Field, Taiwan. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Jones EBG, Ramakrishna S, Vikineswary S, Das D, Bahkali AH, Guo SY, Pang KL. How Do Fungi Survive in the Sea and Respond to Climate Change? J Fungi (Basel) 2022; 8:jof8030291. [PMID: 35330293 PMCID: PMC8949214 DOI: 10.3390/jof8030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
With the over 2000 marine fungi and fungal-like organisms documented so far, some have adapted fully to life in the sea, while some have the ability to tolerate environmental conditions in the marine milieu. These organisms have evolved various mechanisms for growth in the marine environment, especially against salinity gradients. This review highlights the response of marine fungi, fungal-like organisms and terrestrial fungi (for comparison) towards salinity variations in terms of their growth, spore germination, sporulation, physiology, and genetic adaptability. Marine, freshwater and terrestrial fungi and fungal-like organisms vary greatly in their response to salinity. Generally, terrestrial and freshwater fungi grow, germinate and sporulate better at lower salinities, while marine fungi do so over a wide range of salinities. Zoosporic fungal-like organisms are more sensitive to salinity than true fungi, especially Ascomycota and Basidiomycota. Labyrinthulomycota and marine Oomycota are more salinity tolerant than saprolegniaceous organisms in terms of growth and reproduction. Wide adaptability to saline conditions in marine or marine-related habitats requires mechanisms for maintaining accumulation of ions in the vacuoles, the exclusion of high levels of sodium chloride, the maintenance of turgor in the mycelium, optimal growth at alkaline pH, a broad temperature growth range from polar to tropical waters, and growth at depths and often under anoxic conditions, and these properties may allow marine fungi to positively respond to the challenges that climate change will bring. Other related topics will also be discussed in this article, such as the effect of salinity on secondary metabolite production by marine fungi, their evolution in the sea, and marine endophytes.
Collapse
Affiliation(s)
- E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sundari Ramakrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Sabaratnam Vikineswary
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Diptosh Das
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sheng-Yu Guo
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
- Correspondence:
| |
Collapse
|
34
|
Effects of Marine Antagonistic Fungi against Plant Pathogens and Rice Growth Promotion Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten marine-derived fungi crude extracts, namely Emericella stellatus KUFA0208, Eupenicillium parvum KUFA0237, Neosartorya siamensis KUFA0514, N. spinosa KUFA 0528, Talaromyces flavus KUFA 0119, T. macrosporus KUFA 0135, T. trachyspermus KUFA0304, Trichoderma asperellum KUFA 0559, T. asperellum KUFA 0559 and T. harzianum KUFA 0631 were determined for their fungicidal activity against five rice pathogens in vitro. The results showed that the extracts of E. stellatus KUFA0208 and N. siamensis KUFA0514 exhibited the best antifungal activity, causing complete cessation of the mycelial growth of Alternaria padwickii, Bipalaris oryzae, Fusarium semitectum, Pyricularia oryzae and Rhizoctonia solani at 10 g/L. The N. siamensis KUFA0514 extract was fractioned and antifungal compounds were found in the fractions derived from petroleum-ether and chloroform (7: 3) evidenced by inhibition zones against the mycelial growth of A. padwickii around the disc containing each fraction. Moreover, in rice growth promotion tests, diluted cultural broth of T. asperellum KUFA 0559 and T. harzianum KUFA 0631 were found to strongly promote rice shoot and root elongation; however, higher concentrations of all marine fungal broths resulted in significantly reduced rice seedling growth rather than promotion. Meanwhile, Trichoderma showed great indole-3-acetic acid (IAA) production leading to the optimum IAA values of 45.38 and 52.30 µg/ml at 11 and 13 days after inoculation, respectively. The results of this study indicated that marine fungi are promising agents having antagonistic mechanisms involving antibiosis production and plant growth promotion and may be developed as novel biocontrol agents for rice disease management.
Collapse
|
35
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
36
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
37
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
38
|
Pham TT, Dinh KV, Nguyen VD. Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam. MYCOBIOLOGY 2021; 49:559-581. [PMID: 35035248 PMCID: PMC8725946 DOI: 10.1080/12298093.2021.2008103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.
Collapse
Affiliation(s)
- Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Khuong V. Dinh
- Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| |
Collapse
|
39
|
Pang KL, Hassett BT, Shaumi A, Guo SY, Sakayaroj J, Chiang MWL, Yang CH, Jones EG. Pathogenic fungi of marine animals: A taxonomic perspective. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
41
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
42
|
High-throughput amplicon sequencing of fungi and microbial eukaryotes associated with the seagrass Halophila stipulacea (Forssk.) Asch. from Al-Leith mangroves, Saudi Arabia. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Kim S, Lee CW, Park SY, Asolkar RN, Kim H, Kim GJ, Oh SJ, Kim Y, Lee EY, Oh DC, Yang I, Paik MJ, Choi H, Kim H, Nam SJ, Fenical W. Acremonamide, a Cyclic Pentadepsipeptide with Wound-Healing Properties Isolated from a Marine-Derived Fungus of the Genus Acremonium. JOURNAL OF NATURAL PRODUCTS 2021; 84:2249-2255. [PMID: 34387477 DOI: 10.1021/acs.jnatprod.1c00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acremonamide (1) was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was established using MS, UV, and NMR spectroscopic data analyses. Acremonamide (1) was found to contain N-Me-Phe, N-Me-Ala, Val, Phe, and 2-hydroxyisovaleric acid. The absolute configurations of the four aforementioned amino acids were determined through acid hydrolysis followed by the advanced Marfey's method, whereas the absolute configuration of 2-hydroxyisovaleric acid was determined through GC-MS analysis after formation of the O-pentafluoropropionylated derivative of the (-)-menthyl ester of 2-hydroxyisovaleric acid. As an intrinsic biological activity, acremonamide (1) did not exert cytotoxicity to cancer and noncancer cells and increased the migration and invasion. Based on these activities, the wound healing properties of acremonamide (1) were confirmed in vitro and in vivo.
Collapse
Affiliation(s)
- Sojeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Wook Lee
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Ratnakar N Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| | - Haerin Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Song Jin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Yang
- Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| |
Collapse
|
44
|
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021; 12:719000. [PMID: 34512597 PMCID: PMC8430337 DOI: 10.3389/fmicb.2021.719000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
Collapse
Affiliation(s)
- Vinit Kumar
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | | | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
45
|
Keeler E, Burgaud G, Teske A, Beaudoin D, Mehiri M, Dayras M, Cassand J, Edgcomb V. Deep-sea hydrothermal vent sediments reveal diverse fungi with antibacterial activities. FEMS Microbiol Ecol 2021; 97:6318858. [PMID: 34245561 DOI: 10.1093/femsec/fiab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, β-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites.
Collapse
Affiliation(s)
- Emma Keeler
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, EA 3882, Technopôle Brest-Iroise, Plouzané, France
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Murray Hall 3117B, Chapel Hill, NC 27599, USA
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Mohamed Mehiri
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Marie Dayras
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Jacquelin Cassand
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| |
Collapse
|
46
|
Martins T, Schinke C, Queiroz SCN, de C Braga PA, Silva FSP, Melo IS, Reyes FGR. Role of bioactive metabolites from Acremonium camptosporum associated with the marine sponge Aplysina fulva. CHEMOSPHERE 2021; 274:129753. [PMID: 33540315 DOI: 10.1016/j.chemosphere.2021.129753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Acremonium camptosporum, a fungus associated with the marine sponge Aplysina fulva, was collected from the isolated mid-Atlantic Saint Peter and Saint Paul Archipelago, Brazil, and was found to produce secondary metabolites that displayed antibacterial activities. Mass spectra data obtained by UPLC-ESI-MS/MS analyses of these extracts were compared to several databases and revealed the presence of several different cytotoxic acremonidins and acremoxanthones. The close association between the sponge and the fungi with its compounds could be of strategic importance in defending both from the high predation pressure and spatial competition in the warm-water scarps of the islands.
Collapse
Affiliation(s)
- Thamires Martins
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Claudia Schinke
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Sonia C N Queiroz
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Patrícia A de C Braga
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Fábio S P Silva
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Itamar S Melo
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, SP, 13820-000, Brazil.
| | - Felix G R Reyes
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
47
|
Marine Anthraquinones: Pharmacological and Toxicological Issues. Mar Drugs 2021; 19:md19050272. [PMID: 34068184 PMCID: PMC8152984 DOI: 10.3390/md19050272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.
Collapse
|
48
|
El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater Fungi as a Source of Chemical Diversity: A Review. JOURNAL OF NATURAL PRODUCTS 2021; 84:898-916. [PMID: 33662206 PMCID: PMC8127292 DOI: 10.1021/acs.jnatprod.0c01340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As their name indicates, freshwater fungi occur on submerged substrates in fresh water habitats. This review brings together the chemical diversity and biological activity of 199 of the 280 known freshwater fungal metabolites published from 1992 to 2020, representing at least seven structural classes, including polyketides, phenylpropanoids, terpenoids, meroterpenoids, alkaloids, polypeptides, and monosaccharides. In addition to describing what they are, where they are found, and what they do, we also discuss strategies for the collection, isolation, and identification of fungi from freshwater habitats, with the goal of enhancing chemists' knowledge of several mycological principles. We anticipate that this review will provide a springboard for future natural products studies from this fascinating but underexplored group of Ascomycota.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rick L. Bunch
- Department of Geography, Environment, and Sustainability, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
49
|
Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico. Sci Rep 2021; 11:3889. [PMID: 33594106 PMCID: PMC7886894 DOI: 10.1038/s41598-021-81688-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Fungi are an important and understudied component of coastal biomes including sand beaches. Basic biogeographic diversity data are lacking for marine fungi in most parts of the world, despite their important role in decomposition. We examined intertidal fungal communities at several United States (US) Gulf of Mexico sand beach sites using morphology and ITS rDNA terminal restriction fragment length polymorphism (T-RFLP) analyses. Fungal biogeographical patterns from sand beach detritus (wood, emergent plant [mangrove/ saltmarsh], or marine [algae, seagrass]) from Florida, Mississippi, and Texas were investigated using diversity indices and multivariate analyses. Fungal diversity increased with decreasing latitude at our study sites. Substrate type strongly influenced fungal community structure in this region, with different fungal communities on detrital marine versus emergent substrates, as well as detrital marine versus wood substrates. Thirty-five fungi were identified morphologically, including new regional and host records. Of these, 86% were unique to an individual collection (i.e., sampled once from one site). Rarefaction curves from pooled morphological data from all sites estimate the number of samples required to characterize the mycota of each substrate. As sampling occurred before the Deepwater Horizon oil spill (April-2010), our findings contribute pre-oil spill sand beach biodiversity data and marine fungal distribution trends within this economically important oceanographic region.
Collapse
|
50
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|