1
|
Wang X, Sun L, Zhang S, Guo Y, Chen L, Gong K, Liu K. Effects of different additives on fermentation quality, mycotoxin concentrations, and microbial communities in high-moisture corn kernels during wet storage. Front Microbiol 2024; 15:1508842. [PMID: 39697647 PMCID: PMC11652497 DOI: 10.3389/fmicb.2024.1508842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The moisture content of corn kernels at harvest in China is relatively high, and wet storage effectively preserves high-moisture corn kernels. However, ensuring effective fermentation during storage is crucial. Methods To address this, we systematically investigated the variations in fermentation quality, mycotoxin concentrations, and microbial community composition under different additive treatments. The treatments included CK (control, deionized water), LAB homo- and hetero-lactic acid bacteria: Lactiplantibacillus plantarum and Weissella confusa MF01, and EN (cellulase), followed by 60 and 90 days of fermentation. Results The results indicated that both LAB and EN treatments significantly reduced the concentrations of deoxynivalenol (DON), aflatoxin B1 (AFB1), and zearalenone (ZEN) compared to CK during the wet storage of high-moisture corn kernels. LAB treatment notably increased lactic and acetic acid levels, decreased pH and NH3-N content, and improved crude protein (CP, 8.24% DM) and starch content (73.01% DM) compared to CK. LAB treatment also reduced water-soluble carbohydrate (WSC) content (5.05% DM). Microbial diversity was reduced in the LAB treatment, as evidenced by decreases in both common and unique operational taxonomic units, while the relative abundance of Weissella increased after 60 days compared to CK. In contrast, despite higher lactic and acetic acid levels in the EN treatment, the pH did not decrease significantly due to higher NH3-N content. Overall, the LAB treatment outperformed other treatments by achieving lower mycotoxin concentrations, better fermentation quality, and superior preservation of nutritional components. Discussion This study provides valuable theoretical support and practical guidance for improving the wet storage of high-moisture corn kernels and enhancing their safety and nutritional value during storage.
Collapse
Affiliation(s)
- Xingya Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Linlin Sun
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoumei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqiu Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lirong Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kuijie Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaichang Liu
- Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Javed A, Ajmal M, Hanif NQ, Akram A. Effects of inoculation of corn silage with Saccharomyces cerevisiae on silage fermentation characteristics, nutrient digestibility, mycoflora and aflatoxin production. Nat Prod Res 2024; 38:3488-3497. [PMID: 37647099 DOI: 10.1080/14786419.2023.2252154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In the present study, fresh whole corn plants along with half milk kernels line were treated with live and hydrolysed yeast with different concentrations before ensiling and kept in airtight bags and then into mini silos in order to achieve anaerobic conditions for proper fermentation. The buckets were opened after different time intervals to characterise the material, quick acidification, dry matter recovery, and aerobic stability of silage respectively. Moreover, mycoflora and aflatoxin contamination were also analysed. The overall result reported that the silage quality was improved by the application of live and hydrolysed yeast. The best result was reported by the application of live yeast (T2: 10 g/kg) which significantly improved the fermentative, proximate, and digestibility parameters and reduced the mycoflora and aflatoxin contamination. Our results present promising new options for the use of natural compounds that may help to improve silage quality and reduce aflatoxin contamination.
Collapse
Affiliation(s)
- Anum Javed
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Maryam Ajmal
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi
| | - Nafeesa Qudsia Hanif
- AgriPak Labs, Rawalpindi, Pakistan
- University Institute of Biochemistry & Biotechnology (UIBB) - PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi
| |
Collapse
|
3
|
Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal 2024; 18 Suppl 2:101280. [PMID: 39129068 DOI: 10.1016/j.animal.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy.
| | - A Catellani
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - M Lapris
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - C Mastroeni
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| |
Collapse
|
4
|
Ventura M, Holland ME, Smith MB, Chaparro JM, Prenni J, Patz JA, Paskewitz S, Weir TL, Stull VJ. Suitability of maize crop residue fermented by Pleurotus ostreatus as feed for edible crickets: growth performance, micronutrient content, and iron bioavailability. Front Nutr 2023; 10:1157811. [PMID: 37497060 PMCID: PMC10368478 DOI: 10.3389/fnut.2023.1157811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Small-scale farming of edible insects could help combat public health challenges such as protein energy malnutrition and anemia, but reliable low-cost feeds for insects are needed. In resource-limited contexts, where grains such as maize are prohibitively costly for use as insect feed, the feasibility of insect farming may depend on finding alternatives. Here, we explore the potential to modify plentiful maize crop residue with edible mushroom mycelium to generate a low-cost feed adjunct for the farmed two-spotted cricket, Gryllus bimaculatus. Mushroom farming, like insect agriculture, is versatile; it can yield nutritious food while increasing system circularity by utilizing lignocellulosic residues from row crops as inputs. Pleurotus ostreatus, is an edible basidiomycete capable of being cultivated on corn stover (Zea mays). Mushroom harvest results in abundant "spent" substrate, which we investigated as a candidate feed ingredient. We created six cricket feeds containing fermented Pleurotus substrate plus an unfermented control, measuring cricket mass, mortality, and maturation weekly to evaluate cricket growth performance impacts of both fungal fermentation duration and mushroom formation. Pasteurized corn stover was inoculated with P. ostreatus mycelium and fermented for 0, 2, 3, 4, or 8 weeks. Some 4 and 8-week substrates were induced to produce mushrooms through manipulations of temperature, humidity, and light conditions. Dried fermented stover (40%) was added to a 1:1 corn/soy grain mix and fed to crickets ad libitum for 44 days. The unfermented control group showed higher survivorship compared to several fermented diets. Control group mass yield was higher for 2 out of 6 fermented diets. Little variation in cricket iron content was observed via ICP-spectrometry across feeds, averaging 2.46 mg/100 g. To determine bioavailability, we conducted in vitro Caco-2 human colon epithelial cell absorption assays, showing that iron in crickets fed fruiting-induced substrates was more bioavailable than in unfruited groups. Despite more bioavailable iron in crickets reared on post-fruiting substrates, we conclude that Pleurotus-fermented stover is an unsuitable feed ingredient for G. bimaculatus due to high mortality, variability in growth responses within treatments, and low mass yield.
Collapse
Affiliation(s)
- Martin Ventura
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - M Elizabeth Holland
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | | | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Jessica Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Jonathan A Patz
- Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, United States
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - Valerie J Stull
- Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Farm-to-fork risk assessment of aflatoxin M1 in milk under climate change scenarios – A comparative study of France and Ireland. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Adelusi OA, Gbashi S, Adebiyi JA, Makhuvele R, Aasa AO, Oladeji OM, Khoza M, Okoth S, Njobeh PB. Seasonal Diversity and Occurrence of Filamentous Fungi in Smallholder Dairy Cattle Feeds and Feedstuffs in South Africa. J Fungi (Basel) 2022; 8:jof8111192. [PMID: 36422014 PMCID: PMC9696519 DOI: 10.3390/jof8111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated 65 (35 in summer and 30 in winter) smallholder dairy cattle feeds from Free State and Limpopo provinces in South Africa from 2018 to 2019 for fungal contamination and assessed the impacts of seasonal variation on fungal contamination levels, isolation frequency, and diversity. Samples were examined for fungal contamination using macro- and microscopic approaches, and their identities were confirmed by molecular means. A total of 217 fungal isolates from 14 genera, including Aspergillus, Fusarium, and Penicillium, were recovered from feeds from both seasons. The most prevalent fungal species recovered were A. fumigatus and P. crustosum. Mycological analyses showed that 97% of samples were contaminated with one or more fungal isolates, with the summer fungal mean level (6.1 × 103 to 3.0 × 106 CFU/g) higher than that of feeds sampled during winter (mean level: 1.1 × 103 to 4.1 × 105 CFU/g). Independent sample t-test revealed that the isolation frequencies of the genera Aspergillus and Fusarium were significantly (p ≤ 0.05) higher in summer than winter, while Penicillium prevalence in both seasons was not statistically (p > 0.05) different. Furthermore, the Shannon−Weiner diversity index (H′) revealed a higher fungal diversity in summer (H′ = 2.8) than in winter (H′ = 2.1). This study on fungal contamination could be used for future fungal control and mycotoxin risk management in South Africa.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
- Correspondence: (O.A.A.); (P.B.N.)
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Adeola Oluwakemi Aasa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Oluwaseun Mary Oladeji
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Minenhle Khoza
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
| | - Sheila Okoth
- Department of Biological sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg P.O. Box 17011, South Africa
- Correspondence: (O.A.A.); (P.B.N.)
| |
Collapse
|
8
|
Zhang D, Zhao L, Chen Y, Gao H, Hua Y, Yuan X, Yang H. Mycotoxins in Maize Silage from China in 2019. Toxins (Basel) 2022; 14:toxins14040241. [PMID: 35448850 PMCID: PMC9027405 DOI: 10.3390/toxins14040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Animal feed (including forage and silage) can be contaminated with mycotoxins. Here, 200 maize silage samples from around China were collected in 2019 and analyzed for regulated mycotoxins, masked mycotoxins (deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, and deoxynivalenol-3-glucoside), and emerging mycotoxins (beauvericin, enniatins, moniliformin, and alternariol). Deoxynivalenol and zearalenone were detected in 99.5% and 79.5% of the samples, respectively. Other regulated mycotoxins were detected in fewer samples. The highest deoxynivalenol and zearalenone concentrations were 3600 and 830 μg/kg, respectively. The most commonly detected masked mycotoxin was 15-acetyldeoxynivalenol, which was detected in 68.5% of the samples and had median and maximum concentrations of 61.3 and 410 μg/kg, respectively. The emerging mycotoxins beauvericin, alternariol, enniatin A, enniatin B1, and moniliformin were detected in 99.5%, 85%, 80.5%, 72.5%, and 44.5%, respectively, of the samples but at low concentrations (medians <25 μg/kg). The samples tended to contain multiple mycotoxins, e.g., the correlation coefficients for the relationships between the concentrations of beauvericin and deoxynivalenol, deoxynivalenol and zearalenone, and zearalenone and beauvericin were 1.0, 0.995, and 0.995, respectively. The results indicated that there needs to be more awareness of the presence of one or more masked and emerging mycotoxins in maize silage in China.
Collapse
Affiliation(s)
- Dawei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214101, China;
| | - Liansheng Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (Y.C.)
| | - Yakun Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (Y.C.)
| | - Heyang Gao
- Romer Labs Analytical Service (Wuxi) Ltd., No.6-1 Chunyu Road, Xishan District, Wuxi 214101, China; (H.G.); (Y.H.)
| | - Yu Hua
- Romer Labs Analytical Service (Wuxi) Ltd., No.6-1 Chunyu Road, Xishan District, Wuxi 214101, China; (H.G.); (Y.H.)
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China;
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214101, China;
- Correspondence: ; Tel.: +86-510-8591-8119
| |
Collapse
|
9
|
Penagos-Tabares F, Khiaosa-Ard R, Schmidt M, Pacífico C, Faas J, Jenkins T, Nagl V, Sulyok M, Labuda R, Zebeli Q. Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycotoxin Res 2022; 38:117-136. [PMID: 35347677 PMCID: PMC9038934 DOI: 10.1007/s12550-022-00453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Fungi and mycotoxins in silage can have detrimental consequences for both cattle and human health. This pilot study identified, via the routinary direct plating method, the dominant cultivable fungi in mouldy grass silages (GS) (n = 19) and maize silages (MS) (n = 28) from Austria. The profiles of regulated, modified, and emerging mycotoxins together with other fungal metabolites were analysed via LC-(ESI)MS/MS. Penicillium roqueforti, Saccharomyces spp., Geotrichum candidum, Aspergillus fumigatus and Monascus ruber were the most frequent fungal organisms identified. Other species including Mucor circinelloides, Fusarium spp. and Paecilomyces niveus were detected at lower frequencies. The presence of complex mixtures of toxic and potentially toxic compounds was evidenced by high levels and occurrences (≥ 50%) of Penicillium-produced compounds such as mycophenolic acid (MPA), roquefortines (ROCs), andrastins (ANDs) and marcfortine A. Mouldy silages contained toxins commonly produced by genus Fusarium (e.g. zearalenone (ZEN) and trichothecenes), Alternaria (like tenuazonic acid (TeA) and alternariol (AHO)) and Aspergillus (such as sterigmatocystin (STC)). Compared to those in GS, mouldy spots in MS presented significantly higher fungal counts and more diverse toxin profiles, in addition to superior levels of Fusarium spp., Penicillium spp. and total fungal metabolites. Generally, no correlation between mould counts and corresponding metabolites was detected, except for the counts of P. roqueforti, which were positively correlated with Penicillium spp. metabolites in mouldy MS. This study represents a first assessment of the fungal diversity in mouldy silage in Austria and highlights its potential role as a substantial contributor to contamination with complex mycotoxin mixtures in cattle diets.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Ratchaneewan Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Cátia Pacífico
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Timothy Jenkins
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenzstrasse 20, 3430, Tulln, Austria
| | - Roman Labuda
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), 3430, Tulln a.d. Donau, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
10
|
Kamle M, Mahato DK, Gupta A, Pandhi S, Sharma N, Sharma B, Mishra S, Arora S, Selvakumar R, Saurabh V, Dhakane-Lad J, Kumar M, Barua S, Kumar A, Gamlath S, Kumar P. Citrinin Mycotoxin Contamination in Food and Feed: Impact on Agriculture, Human Health, and Detection and Management Strategies. Toxins (Basel) 2022; 14:toxins14020085. [PMID: 35202113 PMCID: PMC8874403 DOI: 10.3390/toxins14020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Citrinin (CIT) is a mycotoxin produced by different species of Aspergillus, Penicillium, and Monascus. CIT can contaminate a wide range of foods and feeds at any time during the pre-harvest, harvest, and post-harvest stages. CIT can be usually found in beans, fruits, fruit and vegetable juices, herbs and spices, and dairy products, as well as red mold rice. CIT exerts nephrotoxic and genotoxic effects in both humans and animals, thereby raising concerns regarding the consumption of CIT-contaminated food and feed. Hence, to minimize the risk of CIT contamination in food and feed, understanding the incidence of CIT occurrence, its sources, and biosynthetic pathways could assist in the effective implementation of detection and mitigation measures. Therefore, this review aims to shed light on sources of CIT, its prevalence in food and feed, biosynthetic pathways, and genes involved, with a major focus on detection and management strategies to ensure the safety and security of food and feed.
Collapse
Affiliation(s)
- Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia; (D.K.M.); (S.G.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Nitya Sharma
- Food Customization Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Vivek Saurabh
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Jyoti Dhakane-Lad
- Technology Transfer Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Sreejani Barua
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia; (D.K.M.); (S.G.)
| | - Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
- Correspondence:
| |
Collapse
|
11
|
Sadhasivam S, Marshi R, Barda O, Zakin V, Britzi M, Gamliel A, Sionov E. Ensiling process and pomegranate peel extract as a natural additive in potential prevention of fungal and mycotoxin contamination in silage. Toxicol Rep 2022; 9:1557-1565. [PMID: 35936058 PMCID: PMC9347003 DOI: 10.1016/j.toxrep.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
A study was conducted on six animal feed centers in Israel where fungal and mycotoxin presence was examined in maize and wheat silages. Fumonisin mycotoxins FB1 and FB2 were present in every maize silage sample analyzed. Interestingly, no correlation was found between the occurrence of specific mycotoxins and the presence of the fungal species that might produce them in maize and wheat silages. We further investigated the effect of pomegranate peel extract (PPE) on Fusarium infection and fumonisin biosynthesis in laboratory-prepared maize silage. PPE had an inhibitory effect on FB1 and FB2 biosynthesis by Fusarium proliferatum, which resulted in up to 90 % reduction of fumonisin production in silage samples compared to untreated controls. This finding was supported by qRT-PCR analysis, showing downregulation of key genes involved in the fumonisin-biosynthesis pathway under PPE treatment. Our results present promising new options for the use of natural compounds that may help reduce fungal and mycotoxin contamination in agricultural foodstuff, and potentially replace traditionally used synthetic chemicals. The mycotoxins fumonisin B1 and B2 were detected in all analyzed maize silage samples. No correlation was found between mycotoxins and their fungal sources in silages. Treatment with PPE demonstrated strong anti-mycotoxigenic activity in silages samples.
Collapse
|
12
|
Quantitative risk assessment for aflatoxin M 1 associated with the consumption of milk and traditional dairy products in Argentina. Mycotoxin Res 2021; 37:315-325. [PMID: 34625918 DOI: 10.1007/s12550-021-00444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
A quantitative risk assessment for exposure to aflatoxin M1 (AFM1) related to the consumption of milk and traditional dairy products of Argentina was developed. The frequency and concentration of AFM1 was modelled at various stages through the milk processes, considering Argentinean practices. Concentration of AFM1 (0.046 μg/l, 95%CI = 0.002-0.264 μg/l) in raw milk was estimated. The AFM1 concentration in milk was sensitive to the carry-over rate (r = 0.80), and milk yield in the first third of lactation during the spring-summer season (r = 0.11). AFB1 levels in silage (r = 0.22), pasture during the spring-summer season (r = 0.11), concentrate (r = 0.08), and cotton seed (r = 0.05) were the factors most correlated with AFM1 concentrations. Although the results showed that MoE values for the mean and median exposure to AFM1 were < 10,000 in infants, toddlers, and other children, the additional cancer risk due to exposure to AFM1 in infants, toddlers, and other children was 0.007, 0.005, and 0.0009 additional cases per year per 100,000 individuals, respectively, which indicates no health concern. In addition, the percentages of the population exceeding HI values (HI > 1) for exposure to AFM1 for infants, toddlers, and other children were 45%, 49.1%, and 40.6%, respectively. Under this scenario, the most susceptible population at risk was children < 10 years old; therefore, it is necessary to establish measures to prevent contamination of AFM1 in milk and milk products.
Collapse
|
13
|
Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ensiling is one of the essential processes to preserve fodder with high nutrients and microbiological quality. The forages before ensiling have a limited number of bacteria associated with the controlled fermentation process. Undesirable microbes can grow in silages when there is not efficient fermentation. Such kinds of microbes might cause pathogenic or toxic compounds that affect animal and human health. Therefore, it is necessary to inoculate potent starter cultures. Lactic acid bacteria’s (LABs) have been considered the most prominent microbial additives used to improve the quality of silage. Currently, LABs have been used in modern and sustainable agriculture systems due to their biological potential. Recently, many scientists have increased their focus on developing nutrient-rich animal feed from forages with LAB. This current review focuses on issues related to forage preservation in the form of silages, how undesirable microbes affect the fermentation process, the critical role of LAB in silage production, and the selection of potent LABs to effectively control unwanted microbial growth and promote those which favor animal growth.
Collapse
|
14
|
Vandicke J, De Visschere K, Ameye M, Croubels S, De Saeger S, Audenaert K, Haesaert G. Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins (Basel) 2021; 13:202. [PMID: 33799633 PMCID: PMC7999811 DOI: 10.3390/toxins13030202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Maize silage, which in Europe is the main feed for dairy cattle in winter, can be contaminated by mycotoxins. Mycotoxigenic Fusarium spp. originating from field infections may survive in badly sealed silages or re-infect at the cutting edge during feed-out. In this way, mycotoxins produced in the field may persist during the silage process. In addition, typical silage fungi such as Penicillium spp. and Aspergillus spp. survive in silage conditions and produce mycotoxins. In this research, 56 maize silages in Flanders were sampled over the course of three years (2016-2018). The concentration of 22 different mycotoxins was investigated using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the presence of DNA of three Fusarium spp. (F. graminearum, F. culmorum and F. verticillioides) was analyzed in a selection of these samples using quantitative polymerase chain reaction (qPCR). Every maize silage contained at least two different mycotoxins. Nivalenol (NIV) and deoxynivalenol (DON) were the most prevalent (both in 97.7% of maize silages), followed by ENN B (88.7%). Concentrations often exceeded the EU recommendations for DON and zearalenone (ZEN), especially in 2017 (21.3% and 27.7% of the maize silages, respectively). No correlations were found between fungal DNA and mycotoxin concentrations. Furthermore, by ensiling maize with a known mycotoxin load in a net bag, the mycotoxin contamination could be monitored from seed to feed. Analysis of these net bag samples revealed that the average concentration of all detected mycotoxins decreased after fermentation. We hypothesize that mycotoxins are eluted, degraded, or adsorbed during fermentation, but certain badly preserved silages are prone to additional mycotoxin production during the stable phase due to oxygen ingression, leading to extremely high toxin levels.
Collapse
Affiliation(s)
- Jonas Vandicke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Katrien De Visschere
- Biosciences and Food Sciences Department, Faculty Science and Technology, University College Ghent, Research Station HoGent-UGent, Diepestraat 1, 9820 Bottelare, Belgium;
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| |
Collapse
|
15
|
Zhang H, Ahima J, Yang Q, Zhao L, Zhang X, Zheng X. A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food Res Int 2021; 141:110075. [DOI: 10.1016/j.foodres.2020.110075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
|
16
|
Birr T, Jensen T, Preußke N, Sönnichsen FD, De Boevre M, De Saeger S, Hasler M, Verreet JA, Klink H. Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars. Toxins (Basel) 2021; 13:toxins13020110. [PMID: 33540691 PMCID: PMC7913079 DOI: 10.3390/toxins13020110] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023] Open
Abstract
Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms.
Collapse
Affiliation(s)
- Tim Birr
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
- Correspondence: ; Tel.: +49-431-880-4574
| | - Tolke Jensen
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Nils Preußke
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany;
| | - Joseph-Alexander Verreet
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Holger Klink
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| |
Collapse
|
17
|
Kapustová M, Granata G, Napoli E, Puškárová A, Bučková M, Pangallo D, Geraci C. Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics (Basel) 2021; 10:antibiotics10010031. [PMID: 33401404 PMCID: PMC7824627 DOI: 10.3390/antibiotics10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.
Collapse
Affiliation(s)
- Magdaléna Kapustová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; (M.K.); (A.P.); (M.B.)
| | - Giuseppe Granata
- Istituto Chimica Biomolecolare–Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (E.N.)
| | - Edoardo Napoli
- Istituto Chimica Biomolecolare–Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (E.N.)
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; (M.K.); (A.P.); (M.B.)
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; (M.K.); (A.P.); (M.B.)
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; (M.K.); (A.P.); (M.B.)
- Correspondence: (D.P.); (C.G.); Tel.: +421-2-5930-7443 (D.P.); +39-095-733-8318 (C.G.)
| | - Corrada Geraci
- Istituto Chimica Biomolecolare–Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (E.N.)
- Correspondence: (D.P.); (C.G.); Tel.: +421-2-5930-7443 (D.P.); +39-095-733-8318 (C.G.)
| |
Collapse
|
18
|
Lanier C, Garon D, Heutte N, Kientz V, André V. Comparative Toxigenicity and Associated Mutagenicity of Aspergillus fumigatus and Aspergillus flavus Group Isolates Collected from the Agricultural Environment. Toxins (Basel) 2020; 12:E458. [PMID: 32709162 PMCID: PMC7404940 DOI: 10.3390/toxins12070458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The mutagenic patterns of A. flavus, A. parasiticus and A. fumigatus extracts were evaluated. These strains of toxigenic Aspergillus were collected from the agricultural environment. The Ames test was performed on Salmonella typhimurium strains TA98, TA100 and TA102, without and with S9mix (exogenous metabolic activation system). These data were compared with the mutagenicity of the corresponding pure mycotoxins tested alone or in reconstituted mixtures with equivalent concentrations, in order to investigate the potential interactions between these molecules and/or other natural metabolites. At least 3 mechanisms are involved in the mutagenic response of these aflatoxins: firstly, the formation of AFB1-8,9-epoxide upon addition of S9mix, secondly the likely formation of oxidative damage as indicated by significant responses in TA102, and thirdly, a direct mutagenicity observed for higher doses of some extracts or associated mycotoxins, which does not therefore involve exogenously activated intermediates. Besides the identified mycotoxins (AFB1, AFB2 and AFM1), additional "natural" compounds contribute to the global mutagenicity of the extracts. On the other hand, AFB2 and AFM1 modulate negatively the mutagenicity of AFB1 when mixed in binary or tertiary mixtures. Thus, the evaluation of the mutagenicity of "natural" mixtures is an integrated parameter that better reflects the potential impact of exposure to toxigenic Aspergilli.
Collapse
Affiliation(s)
- Caroline Lanier
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| | - David Garon
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| | - Natacha Heutte
- Faculty of Sports, Normandie University, UNIROUEN, CETAPS EA3832, 76821 Mont Saint Aignan CEDEX, France;
| | - Valérie Kientz
- Laboratoire LABEO, Route de Rosel, 14280 Saint-Contest, France;
| | - Véronique André
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| |
Collapse
|
19
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
20
|
Vandicke J, De Visschere K, Croubels S, De Saeger S, Audenaert K, Haesaert G. Mycotoxins in Flanders' Fields: Occurrence and Correlations with Fusarium Species in Whole-Plant Harvested Maize. Microorganisms 2019; 7:E571. [PMID: 31752071 PMCID: PMC6920824 DOI: 10.3390/microorganisms7110571] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Mycotoxins are well-known contaminants of several food- and feedstuffs, including silage maize for dairy cattle. Climate change and year-to-year variations in climatic conditions may cause a shift in the fungal populations infecting maize, and therefore alter the mycotoxin load. In this research, 257 maize samples were taken from fields across Flanders, Belgium, over the course of three years (2016-2018) and analyzed for 22 different mycotoxins using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. DNA of Fusarium graminearum, F. culmorum and F. verticillioides was quantified using the quantitative polymerase chain reaction (qPCR). Multi-mycotoxin contamination occurred frequently, with 47% of samples containing five or more mycotoxins. Nivalenol (NIV) was the most prevalent mycotoxin, being present in 99% of the samples, followed by deoxynivalenol (DON) in 86% and zearalenone (ZEN) in 50% of the samples. Fumonisins (FUMs) were found in only 2% of the samples in the wet, cold year of 2016, but in 61% in the extremely hot and dry year of 2018. Positive correlations were found between DON and NIV and between F. graminearum and F. culmorum, among others. FUM concentrations were not correlated with any other mycotoxin, nor with any Fusarium sp., except F. verticillioides. These results show that changing weather conditions can influence fungal populations and the corresponding mycotoxin contamination of maize significantly, and that multi-mycotoxin contamination increases the risk of mycotoxicosis in dairy cattle.
Collapse
Affiliation(s)
- Jonas Vandicke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium;
| | - Katrien De Visschere
- Biosciences and Food Sciences Department, Faculty Science and Technology, University College Ghent, Research Station HoGent-UGent, Diepestraat 1, 9820 Bottelare, Belgium;
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium;
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium;
| |
Collapse
|
21
|
Hassan ZU, Al Thani R, Balmas V, Migheli Q, Jaoua S. Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World J Microbiol Biotechnol 2019; 35:76. [PMID: 31054017 PMCID: PMC6499736 DOI: 10.1007/s11274-019-2649-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022]
Abstract
Ensiling is one of the best known method to preserve fodder. The forage before ensiling intended for silages usually contains a low number of lactic acid bacteria (LAB), so it is necessary to apply starter cultures of selected strains. Traditionally, LAB starter cultures were applied to lower the pH by producing lactic acid and to inhibit the growth of undesirable epiphytic microorganisms by competing for nutrients. Nowadays, LAB inoculants have become an effective tool for creating microbial quality of silages by selecting species with extraordinary features. Epiphytic microflora characteristic of plant material used for the production of silages and the sources of undesirable microflora in the ensiling process are discussed. This review focuses on the most frequently studied issues related to the microbial silage quality and the recent trends in increasing the quality by LAB inoculants, with respect to recent directions for selecting types of modern LAB for inoculation. Among them, the main trends described were prevention of the growth of filamentous fungi and detoxification of mycotoxins by LAB inoculants, inhibition of yeast growth by LAB present in preparations and limiting the development of pathogenic bacterial microflora through controlled fermentation with the participation of LAB and the presence of their metabolites.
Collapse
|
23
|
Funnell-Harris DL, Graybosch RA, O'Neill PM, Duray ZT, Wegulo SN. Amylose-Free (" waxy") Wheat Colonization by Fusarium spp. and Response to Fusarium Head Blight. PLANT DISEASE 2019; 103:972-983. [PMID: 30840842 DOI: 10.1094/pdis-05-18-0726-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hexaploid waxy wheat (Triticum aestivum L.) has null mutations in Wx genes and grain lacking amylose with increased digestibility and usability for specialty foods. The waxy cultivar Mattern is susceptible to Fusarium head blight (FHB) caused by Fusarium graminearum species complex, which produces the mycotoxin deoxynivalenol (DON). In experiment 1, conducted during low natural FHB, grain from waxy breeding lines, Mattern, and wild-type breeding lines and cultivars were assessed for Fusarium infection and DON concentration. Nine Fusarium species and species complexes were detected from internally infected (disinfested) grain; F. graminearum infections were not different between waxy and wild-type. Surface- and internally infected grain (nondisinfested) had greater numbers of Fusarium isolates across waxy versus wild-type, but F. graminearum-like infections were similar; however, DON levels were higher in waxy. In experiment 2, conducted during a timely epidemic, disease severity, Fusarium-damaged kernels (FDK), and DON were assessed for waxy breeding lines, Mattern, and wild-type cultivars. Disease severity and FDK were not significantly different from wild-type, but DON was higher in waxy than wild-type lines. Across both experiments, waxy breeding lines, Plant Introductions 677876 and 677877, responded similarly to FHB as moderately resistant wild-type cultivar Overland, showing promise for breeding advanced waxy cultivars with reduced FHB susceptibility.
Collapse
Affiliation(s)
- Deanna L Funnell-Harris
- 1 Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- 2 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583; and
| | - Robert A Graybosch
- 1 Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- 3 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Patrick M O'Neill
- 1 Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- 2 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583; and
| | - Zachary T Duray
- 1 Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- 2 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583; and
| | - Stephen N Wegulo
- 2 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583; and
| |
Collapse
|
24
|
Husnan LA, Kahtani MA, Farag RM. Bioinformatics analysis of aflatoxins produced by Aspregillus sp. in basic consumer grain (corn and rice) in Saudi Arabia. POTRAVINARSTVO 2019. [DOI: 10.5219/1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food contaminants by aflatoxins are inevitable even when all precautions and good agricultural practices are applied. Samples of white rice and corn (yellow, red) grains were collected from different local markets and houses. Three Aspergillus flavus strain isolated were identified using molecular characterization of AFLR (aflR) toxin gene. DNA genome of the three A. flavus isolates (namely A. flavus _ YC; A. flavus _ RC; A. flavus _ Rice) which corresponds to isolates from, yellow corn, red corn and white rice respectively were used as a template for PCR to amplify Aspergillus flavus AFLR (aflR) toxin gene. Partially sequenced was amplified using a specific primer set to confirm its identity, phylogenetic relationships between the three isolates as well as determination of the corresponding antigenic determinants. The epitope prediction analysis demonstrated that there were 1, 2, 3 and 4 epitopes whose score were equal 1 in A. flavus _ YC; A. flavus _ RC; A. flavus _ Rice, respectively. Interestingly, there were great dissimilarity in the epitope sequences among the three isolates except in RLQEGGDDAAGIPA, SPPPPVETQGLGGD, RPSESLPSARSEQG and PAHNTYSTPHAHTQ were found to be similar between all isolates. This work articulates that the molecular identification and characterization of three A. flavus using Aspergillus flavus AFLR (aflR) toxin gene and the unique antigenic determinants that could be used for design of a broad-spectrum antibody for rapid detection of A. flavus in foods and support quality system of food safety.
Collapse
|
25
|
Ferrero F, Prencipe S, Spadaro D, Gullino ML, Cavallarin L, Piano S, Tabacco E, Borreani G. Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inocula. J Dairy Sci 2019; 102:1176-1193. [DOI: 10.3168/jds.2018-15468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
|
26
|
Lee SS, Lee HJ, Paradhipta DHV, Joo YH, Kim SB, Kim DH, Kim SC. Temperature and microbial changes of corn silage during aerobic exposure. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:988-995. [PMID: 30477293 PMCID: PMC6601061 DOI: 10.5713/ajas.18.0566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 12/02/2022]
Abstract
Objective This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. Methods Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at 1.2×105 colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a 2×2 (hybrid×inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. Results The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. Conclusion The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.
Collapse
Affiliation(s)
- Seong Shin Lee
- Division of Applied Life Science (BK21Plus, Institute of Agriculture & Life Sciences), Gyeongsang National University, Jinju 52828, Korea
| | - Hyuk Jun Lee
- Division of Applied Life Science (BK21Plus, Institute of Agriculture & Life Sciences), Gyeongsang National University, Jinju 52828, Korea
| | - Dimas Hand Vidya Paradhipta
- Division of Applied Life Science (BK21Plus, Institute of Agriculture & Life Sciences), Gyeongsang National University, Jinju 52828, Korea.,Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Young Ho Joo
- Division of Applied Life Science (BK21Plus, Institute of Agriculture & Life Sciences), Gyeongsang National University, Jinju 52828, Korea
| | - Sang Bum Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Korea
| | - Dong Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Korea.,Department of Animal Sciences, IFAS, University of Florida, Gainesville, FL 32608, USA
| | - Sam Churl Kim
- Division of Applied Life Science (BK21Plus, Institute of Agriculture & Life Sciences), Gyeongsang National University, Jinju 52828, Korea.,Department of Animal Sciences, IFAS, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
27
|
Quevedo‐Garza PA, Amador‐Espejo GG, Cantú‐Martínez PC, Trujillo‐Mesa JA. Aflatoxin M
1
occurrence in fluid milk commercialized in Monterrey, Mexico. J Food Saf 2018. [DOI: 10.1111/jfs.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patricia Amanda Quevedo‐Garza
- Laboratorio de Salud Ambiental del Centro de Investigación en Nutrición y Salud Pública de la Facultad de Salud Pública y NutriciónUniversidad Autónoma de Nuevo León Nuevo León Mexico
- Departamento de Ciencia Animal y de los Alimentos, Universitat Autònoma de BarcelonaCentro de Innovación, Investigación y Transferencia en Tecnología de los Alimentos (CIRTTA), XaRTA, TECNIO España
| | - Genaro Gustavo Amador‐Espejo
- CONACYT – Centro de Investigación en Biotecnología Aplicada‐IPNEx‐Hacienda San Juan Molino Carretera Estatal Tecuexcomac Tlaxcala Mexico
| | - Pedro Cesar Cantú‐Martínez
- Laboratorio de Salud Ambiental del Centro de Investigación en Nutrición y Salud Pública de la Facultad de Salud Pública y NutriciónUniversidad Autónoma de Nuevo León Nuevo León Mexico
| | - José Antonio Trujillo‐Mesa
- Departamento de Ciencia Animal y de los Alimentos, Universitat Autònoma de BarcelonaCentro de Innovación, Investigación y Transferencia en Tecnología de los Alimentos (CIRTTA), XaRTA, TECNIO España
| |
Collapse
|
28
|
Wambacq E, Audenaert K, Höfte M, De Saeger S, Haesaert G. Bacillus velezensis as antagonist towards Penicillium roqueforti s.l. in silage: in vitro and in vivo evaluation. J Appl Microbiol 2018; 125:986-996. [PMID: 29873155 DOI: 10.1111/jam.13944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
Abstract
AIMS The present study was conducted to evaluate the antagonistic effect of Bacillus velezensisNRRL B-23189 towards Penicillium roqueforti s.s. and Penicillium paneum (designated together as P. roqueforti s.l.) in silage conditions. METHODS AND RESULTS Corn silage conditions were simulated in vitro, and the impact of B. velezensis culture supernatant or cell suspension on P. roqueforti s.l. growth and roquefortine C production was evaluated. The antagonism was promising, but growth of B. velezensis in corn silage infusion was poor. Additionally, an in vivo experiment was carried out with mini-silos containing a mixture of perennial ryegrass and white clover inoculated with P. roqueforti s.l. The applied B. velezensis cell suspension was unsuccessful in reducing P. roqueforti s.l. numbers, but did not compromise the silage acidification. CONCLUSIONS Although the antagonism observed in vitro was promising, the applied B. velezensis cell suspension could not live up to the expectations in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, the present study is the first one evaluating the antagonistic properties of B. velezensis towards toxigenic moulds in silage conditions, offering a good base for further research.
Collapse
Affiliation(s)
- E Wambacq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Biosciences and Food Sciences, Faculty of Science and Technology, University College Ghent, Ghent, Belgium
| | - K Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - S De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - G Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Biosciences and Food Sciences, Faculty of Science and Technology, University College Ghent, Ghent, Belgium
| |
Collapse
|
29
|
Oulkar D, Goon A, Dhanshetty M, Khan Z, Satav S, Banerjee K. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:255-260. [PMID: 29278977 DOI: 10.1080/03601234.2017.1410416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs.
Collapse
Affiliation(s)
- Dasharath Oulkar
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Arnab Goon
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Manisha Dhanshetty
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Zareen Khan
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Sagar Satav
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Kaushik Banerjee
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| |
Collapse
|
30
|
Keshri J, Chen Y, Pinto R, Kroupitski Y, Weinberg ZG, Sela S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8903-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Molecular Characterization and Bioinformatics Analysis of ACT-toxin Produced by Alternaria spp. Isolated from Corn and Rice in Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.3.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Ma L, Wang J, Zhang Y. Probing the Characterization of the Interaction of Aflatoxins B1 and G1 with Calf Thymus DNA In Vitro. Toxins (Basel) 2017; 9:E209. [PMID: 28671585 PMCID: PMC5535156 DOI: 10.3390/toxins9070209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022] Open
Abstract
The binding characterization of aflatoxins with calf thymus DNA (ctDNA) under physiological conditions was investigated. Multispectroscopic techniques, ctDNA melting, viscosity measurements, and molecular docking techniques were employed to elucidate the binding mechanism of the aflatoxins with DNA. The fluorescence results indicated that both aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1) bound to the ctDNA, forming complexes through hydrogen bonding. The binding constants of AFB1 and AFG1 with ctDNA reached up to 10³ L·mol-1 and 10⁴ L·mol-1, respectively, and AFG1 exhibited a higher binding propensity than that of AFB1. Furthermore, both AFB1 and AFG1 bound to the ctDNA through groove binding, as evidenced by the results of the spectroscopic, iodide quenching effect, viscosity, and ctDNA melting measurements. Changes in the circular dichroism signal manifested that both AFB1 and AFG1 induced an increase in the right-handed helicity, but only minimally influenced the base stacking of the DNA. A molecular docking study of the aflatoxin's binding with the DNA revealed a groove binding mode, which was driven mainly by hydrogen bonding. This study of aflatoxin-ctDNA interaction may provide novel insights into the toxicological effect of the mycotoxins.
Collapse
Affiliation(s)
- Liang Ma
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China.
| | - Jiaman Wang
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China.
| |
Collapse
|
33
|
Alonso V, Cavaglieri L, Ramos AJ, Torres A, Marin S. Modelling the effect of pH and water activity in the growth of Aspergillus fumigatus isolated from corn silage. J Appl Microbiol 2017; 122:1048-1056. [PMID: 28052586 DOI: 10.1111/jam.13395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
AIMS The aim of this work was to use mathematical kinetic modelling to assess the combined effects of aW, pH, O2 availability and temperature on the growth rate and time to growth of Aspergillus fumigatus strains isolated from corn silage. METHODS AND RESULTS A full factorial design was used in which two factors were assayed: pH and aW . The aW levels assayed were 0·80, 0·85, 0·90, 0·92, 0·94, 0·96, 0·98 and 0·99. The levels of pH assayed were 3·5, 4, 4·5, 5, 6, 7, 7·5 and 8. The assay was performed at normal oxygen tension at 25 and 37°C, and at reduced oxygen tension at 25°C. Two strains of A. fumigatus isolated from corn silage were used. Kinetic models were built to predict growth of the strain under the assayed conditions. The cardinal models gave a good quality fit for radial growth rate data. The results indicate that the environmental conditions which take place during silage production, while limiting the growth of most micro-organisms, would not be able to control A. fumigatus. Moreover, pH levels in silage, far from limiting its growth, are also close to its optimum. Carbon dioxide at 5% in the environment did not significantly affect its growth. CONCLUSIONS A need for a further and controlled acidification of the silage exists, as no growth of A. fumigatus was observed at pH 3·5, as long as the organoleptic characteristics of the silage are not much compromised. SIGNIFICANCE AND IMPACT OF THE STUDY Aspergillus fumigatus is one of the major opportunistic pathogens able to cause illness such as allergic bronchopulmonary aspergillosis, aspergilloma and invasive aspergillosis to rural workers. Exposure of animals to A. fumigatus spores can result in infections, particularly in those organs exposed to external invasion, such as the airways, mammary gland and uterus at birth.
Collapse
Affiliation(s)
- V Alonso
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - L Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - A J Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnic Center, Lleida, Spain
| | - A Torres
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - S Marin
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnic Center, Lleida, Spain
| |
Collapse
|
34
|
Shi W, Tan Y, Wang S, Gardiner DM, De Saeger S, Liao Y, Wang C, Fan Y, Wang Z, Wu A. Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling. Toxins (Basel) 2016; 9:E6. [PMID: 28035973 PMCID: PMC5308239 DOI: 10.3390/toxins9010006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Shuangxia Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia QLD 4067, Australia.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Gent 9000, Belgium.
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi 830091, China.
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi 830091, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| |
Collapse
|
35
|
Dagnac T, Latorre A, Fernández Lorenzo B, Llompart M. Validation and application of a liquid chromatography-tandem mass spectrometry based method for the assessment of the co-occurrence of mycotoxins in maize silages from dairy farms in NW Spain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1850-1863. [DOI: 10.1080/19440049.2016.1243806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thierry Dagnac
- Department of Animal Production, INGACAL (Galician Institute for Food Quality) –CIAM (Agrarian and Agronomic Research Centre), Laboratory of Food/Feed Safety and Organic Contaminants, A Coruña, Spain
| | - Alicia Latorre
- Department of Animal Production, INGACAL (Galician Institute for Food Quality) –CIAM (Agrarian and Agronomic Research Centre), Laboratory of Food/Feed Safety and Organic Contaminants, A Coruña, Spain
| | - Bruno Fernández Lorenzo
- Department of Animal Production, INGACAL (Galician Institute for Food Quality) –CIAM (Agrarian and Agronomic Research Centre), Laboratory of Food/Feed Safety and Organic Contaminants, A Coruña, Spain
| | - Maria Llompart
- Department of Analytical Chemistry, Nutrition and Food Science. Faculty of Chemistry, Campus Vida. University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
36
|
Del Palacio A, Mionetto A, Bettucci L, Pan D. Evolution of fungal population and mycotoxins in sorghum silage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1864-1872. [PMID: 27700537 DOI: 10.1080/19440049.2016.1244732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Silage, one of the most important feed sources for cattle, is vulnerable to contamination by spoilage moulds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of this study was to identify the mycobiota of sorghum silages, to determine the presence of aflatoxins and fumonisins, and to correlate these results with physical parameters of the silage. A total of 275 samples of sorghum were collected from dairy farms in the south-west region of Uruguay were silage practices are developed. The presence of fungi was observed in all of the sorghum samples with values varying from 0.2 × 104 to 4085 × 104 UFC g-1. Significant difference were detected in the total number of fungi during the storage period; at six months there is a high risk of fungal spoilage. The most frequent genera isolated from sorghum samples were Penicillium (70%), Aspergillus (65%), Absidia (40%), Fusarium (35%), Paecilomyces (35%) and Alternaria, Cladosporium, Gliocadium and Mucor (30%). The toxigenic species most frequently found were Penicillium citrinum, Aspergillus flavus and Fusarium nygamai. Only two samples were contaminated by AFB1 with levels of 1 and 14 µg kg-1. Fumonisin was detected in 40% of freshly harvest samples with levels ranged from 533 µg kg-1 to 933 µg kg-1. The use of silo bags seems to be an effective tool to store sorghum. However, the presence of toxigenic fungi show that regular screening for mycotoxins levels in silages must be performed to avoid the exposure of animals to contaminated feed and the introduction of these compounds into the food chain.
Collapse
Affiliation(s)
- Agustina Del Palacio
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Ana Mionetto
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Lina Bettucci
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Dinorah Pan
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| |
Collapse
|
37
|
Vidal A, Sanchis V, Ramos AJ, Marín S. The fate of deoxynivalenol through wheat processing to food products. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Del Palacio A, Bettucci L, Pan D. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay. Braz J Microbiol 2016; 47:1000-1005. [PMID: 27522933 PMCID: PMC5052332 DOI: 10.1016/j.bjm.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/25/2016] [Indexed: 11/24/2022] Open
Abstract
Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3μg/kg, whereas DON levels ranged between 3000μg/kg and 12,400μg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage.
Collapse
Affiliation(s)
- Agustina Del Palacio
- Universidad de la República, Facultad de Ciencias-Facultad de Ingeniería, Montevideo, Uruguay
| | - Lina Bettucci
- Universidad de la República, Facultad de Ciencias-Facultad de Ingeniería, Montevideo, Uruguay
| | - Dinorah Pan
- Universidad de la República, Facultad de Ciencias-Facultad de Ingeniería, Montevideo, Uruguay.
| |
Collapse
|
39
|
McElhinney C, Danaher M, Grant J, Elliott C, O’Kiely P. Variation associated with sampling bale or pit silage for mycotoxins and conventional chemical characteristics. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are heterogeneously distributed analytes such that obtaining a representative sample of silage for analysis can be highly challenging. The objectives of this study were to: (1) identify the variability in mycotoxin concentrations, nutritional value characteristics and fermentation characteristics when 20 cores were taken from individual next-to-be-fed silage bales and five cores were taken from the next-to-be-fed section of the feed face of pit silages, (2) compare the values obtained from intensive sampling of the silage after simulated feed-out to values obtained by the above mentioned core sampling, and (3) describe the impact of reducing the number of core samples taken from the baled and pit silages. Round baled silages (n=10) or sections (2 m wide × 1 m height) of pit silages (n=10) were core sampled at twenty and five positions, respectively. After coring, baled silages were chopped, mixed and placed along a simulated feed trough. Silage in the simulated feed trough was then grab sampled (n=20) to produce an aggregate sample, and this was undertaken in triplicate. For pits, silage was mixed and placed along a simulated feed trough before being sampled, as per baled silage. Variation within or among either baled or pit silages, and for core or feed trough samples, was generally much higher for mycotoxins than for conventional chemical composition traits. Within silage (bale or pit) and among silages, variation was generally reduced when samples were collected from the feed trough, except for mycotoxins in pit silages which had higher variation in the feed trough compared with core samples. Increasing the number of core samples increased the likelihood of detecting a positive sample if present and precise estimates of the true chemical composition of the population. Representatively sampling a next-to-be-fed section or bale of silage for conventional chemical characteristics was achieved with 2-4 core samples or 1-2 feed trough samples. However, in contrast, when sampling silages for mycotoxins, collecting a representative sample using core or feed trough sampling methods sometimes required over 100 and over 20 samples, respectively.
Collapse
Affiliation(s)
- C. McElhinney
- Teagasc Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
- Institute for Global Food Security, Queens University Belfast, University Road, BT71 NN Belfast, N. Ireland
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - M. Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - J. Grant
- Teagasc Experimental Design and Statistical Analysis, Ashtown, Dublin 15, Ireland
| | - C.T Elliott
- Institute for Global Food Security, Queens University Belfast, University Road, BT71 NN Belfast, N. Ireland
| | - P. O’Kiely
- Teagasc Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
40
|
Wambacq E, Vanhoutte I, Audenaert K, De Gelder L, Haesaert G. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2284-2302. [PMID: 26676761 DOI: 10.1002/jsfa.7565] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Ruminants are considered to be less sensitive towards mycotoxins than monogastric animals because rumen microbiota have mycotoxin-detoxifying capacities. Therefore the effect of mycotoxins towards ruminants has been studied to a lesser extent compared with monogastric animals. Worldwide, a high proportion of the ruminant diet consists of silages made of forage crops (i.e. all parts of the crop above the stubble are harvested). In practice, silages are often contaminated with multiple mycotoxins. Exposure to a cocktail of mycotoxins can hamper animal production and have severe health consequences. In this article the different aspects associated with mycotoxin contamination of silage are reviewed 'from seed to feed'. An overview is given on the occurrence of toxigenic fungal species and their concomitant mycotoxins in forage crops before and after ensiling. The mycotoxin load of visually non-mouldy samples and mouldy hot spots within the same silo is also compared. Subsequently, this review delves into different problem-solving strategies. A logical first step is prevention of mould growth and mycotoxin production in the field, during harvest and during ensiling. If prevention should fail, several remediation strategies are available. These are listed, mainly focusing on the possibilities of microbial degradation of mycotoxins in vivo in silage. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva Wambacq
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Ilse Vanhoutte
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Leen De Gelder
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
41
|
Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin--bane or boon? Environ Microbiol 2015; 18:1096-109. [PMID: 26443473 DOI: 10.1111/1462-2920.13080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/31/2022]
Abstract
Gliotoxin (GT) is the most important epidithiodioxopiperazine (ETP)-type fungal toxin. GT was originally isolated from Trichoderma species as an antibiotic substance involved in biological control of plant pathogenic fungi. A few isolates of GT-producing Trichoderma virens are commercially marketed for biological control and widely used in agriculture. Furthermore, GT is long known as an immunosuppressive agent and also reported to have anti-tumour properties. However, recent publications suggest that GT is a virulence determinant of the human pathogen Aspergillus fumigatus. This compound is thus important on several counts - it has medicinal properties, is a pathogenicity determinant, is a potential diagnostic marker and is important in biological crop protection. The present article addresses this paradox and the ecological role of GT. We discuss the function of GT as defence molecule, the role in aspergillosis and suggest solutions for safe application of Trichoderma-based biofungicides.
Collapse
Affiliation(s)
- Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
42
|
Haerr K, Lopes N, Pereira M, Fellows G, Cardoso F. Corn silage from corn treated with foliar fungicide and performance of Holstein cows. J Dairy Sci 2015; 98:8962-72. [DOI: 10.3168/jds.2015-9887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022]
|
43
|
Dell’Orto V, Baldi G, Cheli F. Mycotoxins in silage: checkpoints for effective management and control. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has a substantial role in ruminant nutrition. Silages as a source of mycotoxigenic fungi and mycotoxins merit attention. Fungal growth and mycotoxin production before and during storage are a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. Mycotoxin co-contamination seems to be unavoidable under current agricultural and silage-making practices. Multi-mycotoxin contamination in silages is of particular concern due to the potential additive or synergistic effects on animals. In regard to managing the challenge of mycotoxins in silages, there are many factors with pre- and post-harvest origins to take into account. Pre-harvest events are predominantly dictated by environmental factors, whereas post-harvest events can be largely controlled by the farmer. An effective mycotoxin management and control programme should be integrated and personalised to each farm at an integrative level throughout the silage production chain. Growing crops in the field, silage making practices, and the feed out phase must be considered. Economical and straightforward silage testing is critical to reach a quick and sufficiently accurate diagnosis of silage quality, which allows for ‘in field decision-making’ with regard to the rapid diagnosis of the quality of given forage for its safe use as animal feed. Regular sampling and testing of silage allow picking up any variations in mycotoxin contamination. The use of rapid methods in the field represents future challenges. Moreover, a proper nutritional intervention needs to be considered to manage mycotoxin-contaminated silages. At farm level, animals are more often exposed to moderate amounts of several mycotoxins rather than to high levels of a single mycotoxin, resulting more frequently in non-specific digestive and health status impairment. Effective dietary strategies to promote rumen health, coupled with the administration of effective and broad-spectrum mycotoxin detoxifiers, are essential to minimise the negative impact of mycotoxins.
Collapse
Affiliation(s)
- V. Dell’Orto
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - G. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| |
Collapse
|
44
|
Boudra H, Rouillé B, Lyan B, Morgavi D. Presence of mycotoxins in sugar beet pulp silage collected in France. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Occurrence and stability of masked fumonisins in corn silage samples. Food Chem 2015; 189:38-44. [PMID: 26190598 DOI: 10.1016/j.foodchem.2014.10.156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Corn plants contaminated with Fusarium verticilloides were harvested at two dates and ensiled in laboratory silos. The stability of Fumonisins B1 and B2 (FB1, FB2) was studied and the effects of inoculant use (Lactobacillus buchneri) and of the ensiling time were assessed. The occurrence of masked fumonisins was also investigated. After the extraction of the free forms (FB1, FB2), the residue was subjected to an alkaline hydrolysis resulting in the release of derivates subsequently detected by LC-HESI-MS/MS. The ensiling time has shown to be a significant factor for the evolution of free FB1 and FB2 at the 2nd harvest date. Moreover, the use of inoculant had a significant effect on the stability of hidden and total FB1 at the two harvest dates. Samples previously ensiled and exposed to aerobic conditions for 7days have shown higher fumonisin levels than those not exposed to air. Our results showed that 65% and 39% of the total FB1 and FB2 contents in silage were due to hidden fumonisins.
Collapse
|
46
|
Dogi CA, Pellegrino M, Poloni V, Poloni L, Pereyra CM, Sanabria A, Pianzzola MJ, Dalcero A, Cavaglieri L. Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence onAspergillus parasitucus, A. flavus and A. fumigatusdetermined by q-PCR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:229-35. [DOI: 10.1080/19440049.2014.986223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Metabolism of modified mycotoxins studied through in vitro and in vivo models: an overview. Toxicol Lett 2014; 233:24-8. [PMID: 25542142 DOI: 10.1016/j.toxlet.2014.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Mycotoxins are toxic, secondary metabolites produced by fungi. They occur in a wide variety of food and feed commodities, and are of major public health concern because they are the most hazardous of all food and feed contaminants in terms of chronic toxicity. In the past decades, it has become clear that in mycotoxin-contaminated commodities, many structurally related compounds generated by plant metabolism, fungi or food processing coexist with their free mycotoxins, defined as modified mycotoxins. These modified xenobiotics might endanger animal and human health as they are possibly hydrolysed into their free toxins in the digestive tract of mammals, and may consequently contribute to an unexpected high toxicity. As modified toxins represent an emerging issue, it is not a surprise that for most toxicological tests data are scarce to non-existent. Therefore, there is a need to elucidate the disposition and kinetics of both free and modified mycotoxins in mammals to correctly interpret occurrence data and biomonitoring results. This review emphasizes the current knowledge on the metabolism of modified mycotoxins using in vitro and in vivo models.
Collapse
|
48
|
Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1360-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Uegaki R, Tohno M, Yamamura K, Tsukiboshi T, Uozumi S. Natural occurrence of mycotoxins in forage maize during crop growth in Japan: case study. Mycotoxin Res 2014; 31:51-6. [PMID: 25208749 DOI: 10.1007/s12550-014-0210-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022]
Abstract
We investigated concentrations of mycotoxins during the growth of four cultivars of forage maize (Zea mays L.) in Nasushiobara, Tochigi prefecture, and their distribution in ears of maize grown in Morioka, Iwate prefecture, Japan. In experiment 1, we measured concentrations of naturally occurring fumonisin, nivalenol, deoxynivalenol and zearalenone at progressive crop growth stages. Concentrations of fumonisin in stems+leaves remained very low or not detectable, but those in ears became detectable at 40 days after heading and increased rapidly after 50 days after heading (DAH) (fumonisin B1+B2<3260 μg/kg; mean value at 50-74 days after heading). Concentrations varied widely within cultivars on the same day. Concentrations of nivalenol, deoxynivalenol and zearalenone in stems+leaves and in ears were low or not detectable throughout the experiment. In experiment 2, we collected three ears of each cultivar at the late yellow-ripe stage that showed extreme symptoms of Fusarium ear rot. Concentrations of fumonisin were extremely high in the upper half of ears in all cultivars (fumonisin B1+B2 18,000-25,900 μg/kg) but low in the lower half and bracts. Concentrations of nivalenol, deoxynivalenol and zearalenone were extremely low or not detectable. These results show that fumonisin concentrations in ears increased rapidly after 50 DAH, they were extremely high in ears of all cultivars with symptoms of Fusarium ear rot, and fumonisin was the most common contaminant. These results will help reduce mycotoxin contamination.
Collapse
Affiliation(s)
- R Uegaki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Senbonmatsu 768, Nasushiobara, Tochigi, 329-2793, Japan,
| | | | | | | | | |
Collapse
|
50
|
Storm IMLD, Rasmussen RR, Rasmussen PH. Occurrence of pre- and post-harvest mycotoxins and other secondary metabolites in Danish maize silage. Toxins (Basel) 2014; 6:2256-69. [PMID: 25089350 PMCID: PMC4147581 DOI: 10.3390/toxins6082256] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022] Open
Abstract
Maize silage is a widely used feed product for cattle worldwide, which may be contaminated with mycotoxins, pre- and post-harvest. This concerns both farmers and consumers. To assess the exposure of Danish cattle to mycotoxins from maize silage, 99 samples of whole-crop maize (ensiled and un-ensiled) were analyzed for their contents of 27 mycotoxins and other secondary fungal metabolites by liquid chromatography-tandem mass spectrometry. The method specifically targets the majority of common pre- and post-harvest fungi associated with maize silage in Denmark. Sixty-one samples contained one or more of the 27 analytes in detectable concentrations. The most common mycotoxins were zearalenone, enniatin B nivalenol and andrastin A, found in 34%, 28%, 16% and 15% of the samples, respectively. None of the samples contained mycotoxins above the EU recommended maximum concentrations for Fusarium toxins in cereal-based roughage. Thus, the present study does not indicate that Danish maize silage in general is a cause of acute single mycotoxin intoxications in cattle. However, 31 of the samples contained multiple analytes; two samples as much as seven different fungal metabolites. Feed rations with maize silage may therefore contain complex mixtures of fungal secondary metabolites with unknown biological activity. This emphasizes the need for a thorough examination of the effects of chronic exposure and possible synergistic effects.
Collapse
Affiliation(s)
- Ida M L Drejer Storm
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | - Rie Romme Rasmussen
- Department of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | - Peter Have Rasmussen
- Department of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| |
Collapse
|