1
|
Gurumallu SC, Aqeel T, Bhaskar A, Chandramohan K, Javaraiah R. Synergistic hepatoprotective effects of ω-3 and ω-6 fatty acids from Indian flax and sesame seed oils against CCl 4-induced oxidative stress-mediated liver damage in rats. Drug Chem Toxicol 2022; 45:2221-2232. [PMID: 35260009 DOI: 10.1080/01480545.2021.1917496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed (FS) and sesame seed (SS) are traditional and functional foods in traditional Indian medicine for treating various disorders. The present study investigated the hepatoprotective effects of bioactive-fatty acids (FAs) from FS and SS against carbon tetrachloride (CCl4)-induced hepatic damage in rats. Pre and post-treatments for 28 consecutive days significantly increased the activities of in vivo antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX), whereas, lipid peroxidation (LPO) activity was markedly decreased in a dose-dependent manner in liver and kidneys. A significant reduction was observed in the hematological parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin in the serum of post-treated animals compared to the negative control. The results were confirmed histopathologically. The results suggested that the ω-3 and ω-6 FAs from flaxseed oil (FSO) and sesame seed oil (SSO), respectively, showed potential synergistic hepatoprotective and antioxidant effects that were mediated mainly by ω-3 and ω-6 FAs present in the respective seed oils.
Collapse
Affiliation(s)
| | - Tareq Aqeel
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| | - Ashwini Bhaskar
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| | - Kannan Chandramohan
- Department of Zoology, Yuvaraja's College, University of Mysore, Mysuru, India
| | - Rajesha Javaraiah
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, India.,Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
2
|
Szpunar-Krok E, Wondołowska-Grabowska A. Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum. Foods 2022; 11:foods11050762. [PMID: 35267395 PMCID: PMC8909349 DOI: 10.3390/foods11050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Soybean ranks second in production and consumption of vegetable oils worldwide and these are expected to continue to increase. The suitability of soybean oil for specific uses is determined by the fatty acid composition from which a number of indices and indicators can be calculated. The aim of this study was to evaluate the indices of nutritional and health-promoting fat in seeds of soybean cultivars grown in 2016–2019 under the influence of varying doses of N and inoculation with Bradyrhizobium japonicum. Omega 3 and Omega 6, unsaturated fatty acids (UFA), saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), index of desirable fatty acids (DFA), sum of hypercholesterolemic fatty acids (OFA), index of atherogenicity (AI), index of thrombogenicity (TI), oleic desaturation ratio (ODR), linoleic desaturation ratio (LDR), calculated oxidizability value (COX) and the hypocholesterolemic/hypercholesterolemic ratio (HH), saturation fat index (S/P) and ALA/LA, OL/(LA+ALA) ratios and the consumer index (CI) were included. Fat quality indices for soybean seeds were strongly determined by weather conditions. Seeds of the cv. Aldana contained higher amounts of Omega 6 and featured more favourable MUFA/PUFA and OL/(LA+ALA) ratios, while the seeds of the cv. Annushka had more favourable CI and higher ODR, COX and S/P indices. No important differences were observed regarding the effect of nitrogen dose and seed inoculation on the formation of the DFA, OFA, HH, AI, TI and CI indices. The value of the S/P index suggests that higher nitrogen rates (60 kg∙ha−1) and the lack of inoculation treatment produce seeds with a more favourable dietary fatty acid balance.
Collapse
Affiliation(s)
- Ewa Szpunar-Krok
- Department of Crop Production, University of Rzeszow, Zelwerowicza St 4, 35-601 Rzeszów, Poland
- Correspondence:
| | - Anna Wondołowska-Grabowska
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq. 24A, 50-363 Wrocław, Poland;
| |
Collapse
|
3
|
Khatun H, Das K, Nandi DK, Laha J, Rao JS, Chattopadhyay A. Anti-hyperlipidemic effect of oils from Sesamum indicum L. and Vicia faba L. on male Wistar rats. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Manz koule J, Ndomou M, Njinkoue J, Tchoumbougnang F, Milong Melong C, Djopnang JD, Oumbe AS, Nchoutpouen M, Foumedzo R, Gouado I. Antihyperlipidemic potential of oil extracted from Ilisha africana on rats. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Eweda SM, Newairy ASA, Abdou HM, Gaber AS. Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Exp Ther Med 2019; 19:33-44. [PMID: 31853270 PMCID: PMC6909485 DOI: 10.3892/etm.2019.8193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an environmental pollutant that is widely produced throughout the world. It is primarily used in the manufacture of polycarbonate plastics, epoxy resins, paints and dental materials. BPA has been reported to promote hepatotoxicity and cardiotoxicity. The antioxidant activity of sesame lignans is well established. The current study assessed the protective efficiency of sesame lignans against BPA-induced hepatotoxicity and cardiotoxicity. Rats were divided into 4 groups: A control group, a BPA-treated group, a sesame lignans-treated group and a sesame lignans and BPA-treated group. Rats were orally administered their respective doses daily [30 mg/kg body weight (BW) BPA and/or 20 mg/kg BW sesame lignans] for 6 weeks. Liver function tests were performed using serum of all groups. Lipid profile and antioxidant status were also measured in liver tissue of the studied groups. The results were confirmed by histopathological examination of liver and heart tissues. The oral administration of BPA was revealed to elicit significant decreases in the activities of hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione. It also significantly increased levels of malondialdehyde. Furthermore, BPA-treatment resulted in lipid accumulation, elevated activities of alanine aminotransferase, creatine kinase MB and lactate dehydrogenase, and histological changes of liver and heart tissues. However, the co-administration of sesame lignans and BPA attenuated hepatotoxicity, cardiotoxicity and BPA-induced histological changes. The results of the current study indicated that sesame lignans may be helpful in the development of novel natural drugs to treat hepatic and cardiovascular disorders.
Collapse
Affiliation(s)
- Saber M Eweda
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Al Sayeda A Newairy
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Assmaa S Gaber
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Lestari B, Walidah Z, Utomo RY, Murwanti R, Meiyanto E. Supplementation with extract of pumpkin seeds exerts estrogenic effects upon the uterine, serum lipids, mammary glands, and bone density in ovariectomized rats. Phytother Res 2019; 33:891-900. [PMID: 30663149 DOI: 10.1002/ptr.6280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Beni Lestari
- Cancer Chemoprevention Research Center Faculty of Pharmacy, Universitas Gadjah Mada, Jalan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Ziana Walidah
- Cancer Chemoprevention Research Center Faculty of Pharmacy, Universitas Gadjah Mada, Jalan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center Faculty of Pharmacy, Universitas Gadjah Mada, Jalan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Jalan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center Faculty of Pharmacy, Universitas Gadjah Mada, Jalan Sekip Utara, Yogyakarta, 55281, Indonesia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Jalan Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
7
|
Aslam F, Iqbal S, Nasir M, Anjum AA. White Sesame Seed Oil Mitigates Blood Glucose Level, Reduces Oxidative Stress, and Improves Biomarkers of Hepatic and Renal Function in Participants with Type 2 Diabetes Mellitus. J Am Coll Nutr 2018; 38:235-246. [PMID: 30260748 DOI: 10.1080/07315724.2018.1500183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The study was designed to investigate the impact of white sesame seed oil (WSSO) consumption on fasting blood glucose (GLU), insulin (INS), glycosylated hemoglobin (HbA1c), and hepatic antioxidant enzymes. A secondary aim was to check the influence on serum biochemistry, hepatic, cardiac, and renal functions. METHODS Forty-six participants with type 2 diabetes were recruited and randomly divided into two equal groups: diabetic control (DCON) and diabetic sesame oil (DSO). At baseline and 30, 60, and 90 days, blood samples were drawn and analyzed. Two-way repeated-measures analysis of variance was used to evaluate the difference between groups and across time. RESULTS In both groups, GLU, INS, and HbA1c were not significantly different at baseline (mean 187.07 ± 5.63 mg/dl, mean 12.12 ± 1.03 μU/ml, and mean 7.55 ± 0.37%, respectively). At 90 days, GLU was significantly (p < 0.05) decreased in DSO (137.83 ± 3.16 mg/dl) when compared with DCON (218.13 ± 5.92 mg/dl), while INS was significantly increased in DSO (23.13 ± 1.15 μU/ml) as compared to DCON (7.93 ± 0.38 μU/ml). At 90 days, HbA1c was significantly lower (p < 0.05) in DSO as compared to DCON. Thiobarbituric acid reactive substances were significantly lower (p < 0.05) in DSO (1.08 ± 0.05 [MDA] nmol/ml) as compared to DCON (2.26 ± 0.07 [MDA] nmol/ml). In DSO, activities of hepatic antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) increased while in DCON these activities decreased significantly (p < 0.05) across the time period. Biomarkers of liver, cardiac, and renal functions improved significantly in DSO as compared to DCON. CONCLUSION WSSO as a functional food may play an important role in GLU regulation and against deleterious effects of diabetes in humans with type 2 diabetes.
Collapse
Affiliation(s)
- Farhan Aslam
- a Department of Food Science and Human Nutrition, Faculty of Bio-Sciences , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Sanaullah Iqbal
- a Department of Food Science and Human Nutrition, Faculty of Bio-Sciences , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Muhammad Nasir
- a Department of Food Science and Human Nutrition, Faculty of Bio-Sciences , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Aftab Ahmad Anjum
- b Department of Microbiology, Faculty of Veterinary Sciences , University of Veterinary and Animal Sciences , Lahore , Pakistan
| |
Collapse
|
8
|
|
9
|
Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res 2016; 60:32010. [PMID: 27616738 PMCID: PMC5018658 DOI: 10.3402/fnr.v60.32010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Background Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. Conclusions The intake of spinach nitrate can augment NO status, improve lipid homeostasis, relieve inflammation, and enhance endothelial function, suggesting that spinach is promising dietary supplements for insulin resistance prevention.
Collapse
Affiliation(s)
- Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xinshan Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yanfei Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China;
| |
Collapse
|
10
|
Haidari F, Mohammadshahi M, Zarei M, Gorji Z. Effects of Sesame Butter (Ardeh) versus Sesame Oil on Metabolic and Oxidative Stress Markers in Streptozotocin-Induced Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:102-9. [PMID: 26989280 PMCID: PMC4764959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diabetes is one of the most common metabolic disorders and is related to oxidative-stress-induced diseases. Given the role of dietary antioxidants in the control and prevention of diabetes, this study aimed to examine the effects of sesame butter versus sesame oil on the serum levels of glucose, lipid profile, and oxidative stress biomarkers in diabetic rats. METHODS Forty male albino rats of Wistar strain were randomly divided into 4 groups (i.e., nondiabetic control rats, diabetic rats, diabetic rats treated with sesame butter, and diabetic rats treated with sesame oil). Experimental diabetes was induced with an intraperitoneal injection of streptozotocin (55 mg/kg). Sesame butter (1.25 g/kg) and sesame oil (0.5 g/kg) were given by oral gavage to the diabetic rats for 6 weeks. Finally, serum glucose, lipid profile, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels were measured and analyzed statistically. RESULTS Our data showed that the diabetic groups treated with sesame butter and sesame oil had significantly lower levels of glucose and higher levels of high-density lipoprotein than did the diabetic control group at the end of the study (P<0.05). Sesame butter supplementation also increased TAC and decreased MDA concentrations significantly in the diabetic rats (P<0.05). CONCLUSION The antihyperglycemic, antioxidative, and partly lipid-lowering effects of sesame butter make it an excellent candidate for future human studies on diabetes, although further research is needed to determine the exact dose and duration of supplementation.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Mohammadshahi
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Gorji
- Department of Nutritional Science, Arvand International Division of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Correspondence: Zahra Gorji, MS; Arvand International Division Ahvaz, Department of Nutritional Science, Jundishapur University of Medical Sciences, Golestan Square, P.O. Box: 61357-15794, Ahvaz, Iran Tel: +98 61 33738253 Fax: +98 6 33737330
| |
Collapse
|
11
|
Matusiewicz M, Kosieradzka I, Zuk M, Szopa J. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats. Int J Mol Sci 2015; 16:14259-75. [PMID: 26110393 PMCID: PMC4490551 DOI: 10.3390/ijms160614259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2′-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Iwona Kosieradzka
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| |
Collapse
|
12
|
Tenore GC, Calabrese G, Ritieni A, Campiglia P, Giannetti D, Novellino E. Canned bluefin tuna, an in vitro cardioprotective functional food potentially safer than commercial fish oil based pharmaceutical formulations. Food Chem Toxicol 2014; 71:231-5. [DOI: 10.1016/j.fct.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
13
|
Zhao Y, Yang X, Ren D, Wang D, Xuan Y. Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice. Food Funct 2014; 5:1771-8. [DOI: 10.1039/c3fo60707k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Chen G, Wang H, Zhang X, Yang ST. Nutraceuticals and Functional Foods in the Management of Hyperlipidemia. Crit Rev Food Sci Nutr 2014; 54:1180-201. [DOI: 10.1080/10408398.2011.629354] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Haimeur A, Ulmann L, Mimouni V, Guéno F, Pineau-Vincent F, Meskini N, Tremblin G. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis 2012; 11:147. [PMID: 23110391 PMCID: PMC3543224 DOI: 10.1186/1476-511x-11-147] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/26/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. METHODS Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. RESULTS After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. CONCLUSIONS O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect of these microalgal compounds, displayed a beneficial effect in reducing the risk factors for high-fat induced metabolic syndrome: hyperlipidemia, platelet aggregation, and oxidative stress.
Collapse
Affiliation(s)
- Adil Haimeur
- Université du Maine, PRES L'UNAM, EA 2160 MMS (Mer, Molécules, Santé), Faculté des Sciences et Techniques, Le Mans - IUT Département Génie Biologique, Laval, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Makni M, Chtourou Y, Garoui EM, Boudawara T, Fetoui H. Carbon tetrachloride-induced nephrotoxicity and DNA damage in rats. Hum Exp Toxicol 2012; 31:844-52. [DOI: 10.1177/0960327111429140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the protective effects of vanillin were evaluated against carbon tetrachloride (CCl4)-induced kidney damages in Wistar albino rats. CCl4 (1 ml/kg, intraperitoneally [i.p.]) caused a significant induction of renal disorder, oxidative damage and DNA fragmentation as evidenced by increased plasma creatinine, urea and uric acid levels, increased lipid peroxidation (malondialdehyde [MDA]) and protein carbonyl. Furthermore, glutathione levels, catalase, superoxide dismutase, glutathione transferase and glutathione peroxidase activities were significantly decreased. A smear without ladder formation on agarose gel was also shown, indicating random DNA degradation. Pretreatment of rats with vanillin (150 mg/kg/day, i.p.), for 3 consecutive days before CCl4 injection, protected kidney against the increase of MDA and degradation of membrane proteins compared to CCl4-treated rats and exhibited marked prevention against CCl4-induced nephropathology, oxidative stress and DNA damage. Kidney histological sections showed glomerular hypertrophy and tubular dilatation in CCl4-treated rats, however, in vanillin pretreated rats, these histopathological changes were less important and present a similar structure to that of control rats. These data indicated the protective role of vanillin against CCl4-induced nephrotoxicity and suggested its significant contribution of these beneficial effects.
Collapse
Affiliation(s)
- M Makni
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
- Food Processing Department, ISET, Sidi Bouzid, Tunisia
| | - Y Chtourou
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | - EM Garoui
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | - T Boudawara
- Histopathology Laboratory, University of Sfax, Sfax, Tunisia
| | - H Fetoui
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Makni M, Fetoui H, Gargouri NK, Garoui EM, Zeghal N. Antidiabetic effect of flax and pumpkin seed mixture powder: effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. J Diabetes Complications 2011; 25:339-45. [PMID: 21106396 DOI: 10.1016/j.jdiacomp.2010.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/14/2010] [Accepted: 09/08/2010] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species play a crucial role in the pathogenesis of diabetes and its complications. This study aims to examine the effects of flax and pumpkin powder seed mixture on alloxan induced diabetes in Wistar rats. Animals were allocated into three groups of six rats each: a control group (CD), diabetic group (DD) and diabetic rats fed with flax and pumpkin seed mixture (DMS) group. The diabetic rats (DD) presented a significant increase in glycemia, plasma and liver lipid parameters such as total lipid, total cholesterol and triglycerides compared to the control group (CD). In addition, plasma and liver malonaldialdehyde levels (MDA, an index of lipid peroxidation) significantly increased compared to (CD). Antioxidant enzymes activities such as catalase, superoxide dismutase, and reduced glutathione (GSH) levels significantly decreased in the plasma and liver of diabetic rats compared to controls. Diet supplemented with flax and pumpkin seed mixture in the DMS group ameliorated antioxidant enzymes activities and level of GSH in diabetic rats and significantly decreased MDA levels. The present study revealed a significant increase in the activities of aspartate aminotransferase and alanine aminotransferase on diabetic status, indicating considerable hepatocellular injury. The administration of flax and pumpkin seed mixture attenuated the increased levels of the plasma enzymes produced by the induction of diabetes and caused a subsequent recovery towards normalization comparable to the control group animals. Our results thus suggest that flax and pumpkin seed mixture supplemented to diet may be helpful in preventing diabetic complications in adult rats.
Collapse
Affiliation(s)
- Mohamed Makni
- Animal Physiology Laboratory, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
18
|
Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon tetrachloride-treated rats. Eur J Pharmacol 2011; 668:133-9. [PMID: 21777577 DOI: 10.1016/j.ejphar.2011.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 11/23/2022]
Abstract
The antioxidant and anti-inflammatory effects of vanillin are considered as important forces in the protection against liver injury and fibrosis. This study investigated the protective effects of vanillin against carbon tetrachoride (CCl(4))-induced hepatotoxicity in rat. Pretreatment with vanillin prior the administration of CCl(4) significantly prevented the decrease of protein synthesis and the increase in plasma alanine (ALT) and aspartate (AST) aminotransferases. Furthermore, it inhibited hepatic lipid peroxidation (MDA) and protein carbonyl (PCO) formation and attenuated the (CCl(4))-mediated depletion of antioxidant enzyme catalase and superoxide dismutase (SOD) activities and glutathione level (GSH) in the liver. In addition, vanillin markedly attenuated the expression levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) and prevented CCl(4)-induced hepatic cell alteration and necrosis, as indicated by liver histopathology. These findings suggest that the antioxidant and anti-inflammatory effects of vanillin against CCl(4)-induced acute liver injury may involve its ability to block CCl(4)-generated free radicals.
Collapse
|
19
|
Makni M, Sefi M, Garoui EM, Fetoui H, Boudawara T, Zeghal N. Dietary polyunsaturated fatty acid prevents hyperlipidemia and hepatic oxidant status in pregnant diabetic rats and their macrosomic offspring. J Diabetes Complications 2011; 25:267-74. [PMID: 21458299 DOI: 10.1016/j.jdiacomp.2011.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/15/2011] [Indexed: 02/02/2023]
Abstract
A considerable amount of clinical and experimental evidence now exists and suggests the involvement of fatty acids and free radical-mediated oxidative processes in the pathogenesis of diabetic complications. Fetuses from diabetic mothers are at increased risk of developing neonatal macrosomia and oxidative stress. We investigated the modulation of antioxidant status and liver biochemical parameters in normal and diabetic pregnant rats and their offspring. Animals were randomly allocated into three groups of six rats each: a control group, a diabetic group and diabetic rats fed with flax and sesame seeds mixture group. The time course of changes in lipid metabolism and antioxidant status by dietary rich in ω3- and ω6-polyunsaturated fatty acids in alloxan-induced diabetic pregnant rats and their macrosomic offspring was studied. Glucose and insulin levels were also assessed in order to characterize the diabetic state of dams and their offspring. The diabetic rats presented a significant increase in glycemia, plasma and liver lipid parameters compared with those of control group. In addition, liver malonaldialdehyde levels significantly increased. Antioxidant enzyme activities such as catalase and superoxide dismutase and reduced glutathione levels significantly decreased in the liver of diabetic rats when compared with controls. Diet supplemented with flax and sesame seeds mixture in pregnant diabetic rats ameliorated lipid parameters, antioxidant enzyme activities, level of reduced glutathione and significantly decreased malonaldialdehyde levels. These ameliorations were also observed in pups whose pregnant diabetic mothers were fed seeds mixture. Our results suggested that flax and sesame seeds mixture supplemented to diet of pregnant diabetic rats might be helpful in preventing diabetic complications in adult dams and their offspring.
Collapse
Affiliation(s)
- Mohamed Makni
- Animal Physiology Laboratory, Faculty of Sciences, BP1171, 3000 Sfax. University of Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|