1
|
Malir F, Pickova D, Toman J, Grosse Y, Ostry V. Hazard characterisation for significant mycotoxins in food. Mycotoxin Res 2023; 39:81-93. [PMID: 36930431 DOI: 10.1007/s12550-023-00478-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
This review updates the current status of activities related to hazard characterisation for mycotoxins, with special reference to regulatory work accomplished within the European Union. Because the relevant information on these topics is widely scattered in the scientific literature, this review intends to provide a condensed overview on the most pertinent aspects. Human health risk assessment is a procedure to estimate the nature and potential for harmful effects of mycotoxins on human health due to exposure to them via contaminated food. This assessment involves hazard identification, hazard characterisation, exposure assessment, and risk characterisation. Mycotoxins covered in this review are aflatoxins, ochratoxin A, cyclopiazonic acid, citrinin, trichothecenes (deoxynivalenol, nivalenol, T-2, and HT-2 toxins), fumonisins, zearalenone, patulin, and ergot alkaloids. For mycotoxins with clear genotoxic/carcinogenic properties, the focus is on the margin of exposure approach. One of its goals is to document predictive characterisation of the human hazard, based on studies in animals using conditions of low exposure. For the other, non-genotoxic toxins, individual 'no adverse effect levels' have been established, but structural analogues or modified forms may still complicate assessment. During the process of hazard characterisation, each identified effect is assessed for human relevance. The estimation of a 'safe dose' is the hazard characterisation endpoint. The final aim of all of these activities is to establish a system, which is able to minimise and control the risk for the consumer from mycotoxins in food. Ongoing research on mycotoxins constantly comes up with new findings, which may have to be implemented into this system.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic.
| | - Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- The IARC Monographs Programme, International Agency for Research On Cancer (retired), Lyon, France
| | - Vladimir Ostry
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health, Palackeho 3a, 61242, Brno, Czech Republic
| |
Collapse
|
2
|
Chen C, Patil CL, Mduma ER, Groopman JD, Riley RT, Wu F. Mycotoxins were not associated with environmental enteropathy in a cohort of Tanzanian children. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:860-866. [PMID: 35618664 DOI: 10.1111/risa.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enteropathy is a pathophysiological condition characterized by decreased intestinal barrier function and absorption. Past studies have hypothesized that mycotoxins might impair children's growth by causing intestinal enteropathy, including interactions between mycotoxins and pathogens. We investigated the association of two mycotoxins, aflatoxin B1 (AFB1 ) and fumonisin B1 (FB1 ), independently and in conjunction with microbial pathogens, with fecal biomarkers of environmental enteropathy in children. As part of a larger MAL-ED study, 196 children were recruited in Haydom, Tanzania, and followed for the first 36 months of life. The gut inflammation biomarkers myeloperoxidase (MPO), neopterin (NEO), and alpha-1-antitrypsin (A1AT) were analyzed in stool samples at 24 months; with mean concentrations 5332.5 ng/L MPO, 807.2 nmol/L NEO, and 0.18 mg/g A1AT. Forty-eight children were measured for AFB1 -lys, with a mean of 5.30 (95% CI: 3.93-6.66) pg/mg albumin; and 87 were measured for FB1 , with a mean of 1.25 (95% CI: 0.72-1.76) ng/ml urine. Although the pathogens adenovirus and Campylobacter were associated with A1AT (p = 0.049) and NEO (p = 0.004), respectively, no association was observed between aflatoxin (MPO, p = 0.30; NEO, p = 0.08; A1AT, p = 0.24) or fumonisin (MPO, p = 0.38; NEO, p = 0.65; A1AT, p = 0.20) exposure and any gut inflammation biomarkers; nor were interactive effects found between mycotoxins and pathogens in contributing to intestinal enteropathy in this cohort. Although further studies are needed to confirm these results, it is possible that mycotoxins contribute to child growth impairment via mechanisms other than disrupting children's intestinal function.
Collapse
Affiliation(s)
- Chen Chen
- School of Public Health, Shandong University, Jinan, China
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Crystal L Patil
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, College of Nursing, Chicago, Illinois, USA
| | | | - John D Groopman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ronald T Riley
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Deoxynivalenol (Vomitoxin)-Induced Anorexia Is Induced by the Release of Intestinal Hormones in Mice. Toxins (Basel) 2021; 13:toxins13080512. [PMID: 34437383 PMCID: PMC8402572 DOI: 10.3390/toxins13080512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin that can cause antifeeding and vomiting in animals. However, the mechanism of DON inducing anorexia is complicated. Studies have shown that intestinal hormones play a significant part in the anorexia caused by DON. We adopted the “modeling of acute antifeeding in mice” as the basic experimental model, and used two methods of gavage and intraperitoneal injection to explore the effect of intestinal hormones on the antifeedant response induced by DON in mice. We found that 1 and 2.5 mg/kg·bw of DON can acutely induce anorexia and increase the plasma intestinal hormones CCK, PYY, GIP, and GLP-1 in mice within 3 h. Direct injection of exogenous intestinal hormones CCK, PYY, GIP, and GLP-1 can trigger anorexia behavior in mice. Furthermore, the PYY receptor antagonist JNJ-31020028, GLP-1 receptor antagonist Exendin(9-39), CCK receptor antagonist Proglumide, GIP receptor antagonist GIP(3-30)NH2 attenuated both intestinal hormone and DON-induced anorectic responses. These results indicate that intestinal hormones play a critical role in the anorexia response induced by DON.
Collapse
|
4
|
Transient effect of single or repeated acute deoxynivalenol and zearalenone dietary challenge on fecal microbiota composition in female finishing pigs. Animal 2020; 14:2277-2287. [PMID: 32616095 PMCID: PMC7538342 DOI: 10.1017/s1751731120001299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are a major contaminant of pig feed and have negative effects on health and performance. The present study investigated the impact of single or repeated acute challenges with a diet naturally contaminated with deoxynivalenol (DON) and zearalenone (ZEN) on growth performances of finishing pigs and their fecal microbiota composition. A total of 160 pigs (castrated males and females) in two successive batches were randomly divided into four experimental groups of 40 pigs each. The control group received a control finisher diet from 99 to 154 days of age. Challenged groups were subjected to a 7-day acute challenge by being fed a DON- and ZEN-contaminated diet (3.02 mg DON/kg feed and 0.76 mg ZEN/kg feed) at 113 days (group DC), 134 days (group CD) or both 113 and 134 days (group DD). Microbiota composition was analyzed via 16S rRNA sequencing from fecal samples collected from the 80 females at 99, 119, 140 and 154 days. Challenged pigs (i.e. groups DC, CD and DD) reduced their average daily feed intake by 25% and 27% (P < 0.001) and feed efficiency by 34% and 28% (P < 0.05) during the first and second mycotoxin exposure, respectively. Microbiota composition was affected by mycotoxin exposure (P = 0.07 during the first exposure and P = 0.01 during the second exposure). At the family level, mycotoxin exposure significantly (P < 0.05) decreased the relative abundances of Ruminococcaceae, Streptococcaceae and Veillonellaceae and increased that of Erysipelotrichaceae at both 119 and 140 days of age. After the 7-day DON/ZEN challenge, the relative abundance of 6 to 148 operational taxonomic units (OTUs) differed among the treatment groups. However, none of these OTUs changed in all treatment groups. Using 27 functional pathways, pigs exposed to DON/ZEN challenges could be distinguished from control pigs using sparse partial least squares discriminant analysis, with a 15% misclassification rate. Regarding the functionality of these predictors, two pathways were involved in detoxifying mycotoxins: drug metabolism and xenobiotic metabolism by cytochrome P450. In challenged pigs, microbiota composition returned to the initial state within 3 weeks after the end of a single or repeated DON/ZEN challenge, highlighting the resilience of the gut microbiome. The feeding and growth performances of the pigs during challenge periods were significantly correlated with biological pathways related to health problems and modifications in host metabolism. To conclude, short-term DON/ZEN challenges resulted in transient modifications in the composition and functions of fecal microbiota.
Collapse
|
5
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: toxicological profiles and perspective views for future research. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is a secondary metabolite mainly produced by the fungi Fusarium in agricultural crops, widely existing in feeds and cereal-based foodstuffs. Because of the high occurrence and potentials to induce a variety of toxic effects on animals and humans, DON has been a very harmful exogenous dietary toxicant threating public health. The focus of this review is to summarise the DON-induced broad spectrum of adverse health effects, to probe the current state of knowledge of combined toxicity of DON with other mycotoxins and its derivatives, and to put forward prospective ideas that multi-generational toxicity of DON and its overall impacts on intestinal-immuno-neuroendocrine system could receive more attention in future investigations. The general aim is to provide a scientific basis for the necessity to re-consider risk-assessment and regulations.
Collapse
Affiliation(s)
- H. Zhou
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - T. Guog
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - H. Dai
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Yu
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Zhang
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| | - L. Ma
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| |
Collapse
|
7
|
Kim SW, Holanda DM, Gao X, Park I, Yiannikouris A. Efficacy of a Yeast Cell Wall Extract to Mitigate the Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Toxins (Basel) 2019; 11:toxins11110633. [PMID: 31683617 PMCID: PMC6891535 DOI: 10.3390/toxins11110633] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins are produced by fungi and are potentially toxic to pigs. Yeast cell wall extract (YCWE) is known to adsorb mycotoxins and improve gut health in pigs. One hundred and twenty growing (56 kg; experiment 1) and 48 nursery piglets (6 kg; experiment 2) were assigned to four dietary treatments in a 2 × 2 factorial design for 35 and 48 days, respectively. Factors were mycotoxins (no addition versus experiment 1: 180 μg/kg aflatoxins and 14 mg/kg fumonisins; or experiment 2: 180 μg/kg aflatoxins and 9 mg/kg fumonisins, and 1 mg/kg deoxynivalenol) and YCWE (0% versus 0.2%). Growth performance, blood, gut health and microbiome, and apparent ileal digestibility (AID) data were evaluated. In experiment 1, mycotoxins reduced ADG and G:F, and duodenal IgG, whereas in jejunum, YCWE increased IgG and reduced villus width. In experiment 2, mycotoxins reduced BW, ADG, and ADFI. Mycotoxins reduced ADG, which was recovered by YCWE. Mycotoxins reduced the AID of nutrients evaluated and increased protein carbonyl, whereas mycotoxins and YCWE increased the AID of the nutrients and reduced protein carbonyl. Mycotoxins reduced villus height, proportion of Ki-67-positive cells, and increased IgA and the proportion of bacteria with mycotoxin-degrading ability, whereas YCWE tended to increase villus height and reduced IgA and the proportion of pathogenic bacteria in jejunum. The YCWE effects were more evident in promoting gut health and growth in nursery pigs, which showed higher susceptibility to mycotoxin effects.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | | - Xin Gao
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Inkyung Park
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alexandros Yiannikouris
- Alltech Inc, Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA.
| |
Collapse
|
8
|
Serviento AM, Brossard L, Renaudeau D. An acute challenge with a deoxynivalenol-contaminated diet has short- and long-term effects on performance and feeding behavior in finishing pigs. J Anim Sci 2019; 96:5209-5221. [PMID: 30423126 DOI: 10.1093/jas/sky378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungi and are known to contaminate animal feed ingredients especially cereals. One of the most common mycotoxins in swine diets is deoxynivalenol (DON) which is known to decrease growth performance. The objective of the present study was to evaluate the effects of single or repeated short-term DON challenges on growth performance, and feeding behavior in finishing pigs. A total of 160 pigs were distributed to four experimental groups in two successive replicates with each pig individually measured for live BW and individually fed using an electronic feeding station. The pigs in control group CC were fed with a standard finisher diet during the whole duration of the experimental period. Groups DC, CD, and DD were given the DON-contaminated diet (3.02 mg DON/kg feed) for 7 d at 113 d, at 134 d, and at 113 and 134 d of age, respectively. The DON-contaminated diet was formulated with a naturally contaminated corn. During challenge periods, ADFI was decreased by 26% to 32% (P < 0.05) and ADG by 40% to 60% (P < 0.05). The drop in ADFI during DON challenges was associated with changes in the feeding behavior: when compared to the nonchallenged pigs, pigs fed with DON-contaminated diet had lower number of meals per day (9.6 versus 8.2 meals per day on average; P < 0.05) and slower feeding rate (42.0 g/min versus 39.9 g/min on average; P < 0.05). For the whole trial period, pigs submitted to the DON challenge at the end of the experiment (i.e., first time for CD group and second time for DD group) had a lower (P < 0.05) ADFI (2.67 and 2.59 kg/d, respectively) when compared to the control CC group of pigs (2.87 kg/d). An intermediate value was reported for the DC groups (2.79 kg/d). All challenged groups, i.e., DC, CD, and DD pigs, had lower (P < 0.05) overall ADG (970, 940, and 900 g/day, respectively) than CC (1,050 g/day) for the whole trial period. Pigs challenged early in the trial, i.e., DC and DD groups, had a higher (P < 0.05) FCR than CC group (3.00 and 3.06 versus 2.80, respectively) while group CD showed intermediate results (2.92). This study demonstrates that the severity of DON toxicity in pig performance can be related to the age of exposure (113 or 134 d) and the number of exposures to the toxin (one or two). Exposure to DON also resulted to long-term effects because challenged pigs showed limited ability to recover after the DON-induced reduction of feed intake.
Collapse
|
9
|
Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food Chem Toxicol 2018; 121:701-714. [PMID: 30243968 DOI: 10.1016/j.fct.2018.09.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
The trichothecenes, produced by Fusarium, contaminate animal feed and human food in all stages of production and lead to a large spectrum of adverse effects for animal and human health. An hallmark of trichothecenes toxicity is the onset of emesis followed by anorexia and food intake reduction in different animal species (mink, mice and pig). The modulation of emesis and anorexia can result from a direct action of trichothecenes in the brain or from an indirect action in the gastrointestinal tract. The direct action of trichothecenes involved specific brain areas such as nucleate tractus solitarius in the brainstem and the arcuate nuclei in the hypothalamus. Activation of these areas in the brain leads to the activation of specific neuronal populations containing anorexigenic factors (POMC and CART). The indirect action of trichothecenes in the gastrointestinal tract involved, by enteroendocrine cells, the secretion of several gut hormones such as cholecystokinin (CCK) and peptide YY (PYY) but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP) and 5-hydroxytryptamine (5-HT), which transmitted signals to the brain via the gut-brain axis. This review summarizes current knowledge on the effects of trichothecenes, especially deoxynivalenol, on emesis and anorexia and discusses the mechanisms underlying trichothecenes-induced food reduction.
Collapse
|
10
|
Jia H, Wu WD, Lu X, Zhang J, He CH, Zhang HB. Role of Glucagon-Like Peptide-1 and Gastric Inhibitory Peptide in Anorexia Induction Following Oral Exposure to the Trichothecene Mycotoxin Deoxynivalenol (Vomitoxin). Toxicol Sci 2018. [PMID: 28633506 DOI: 10.1093/toxsci/kfx112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deoxynivalenol (DON), which is a Type B trichothecene mycotoxin produced by Fusarium, frequently contaminates cereal staples, such as wheat, barley and corn. DON threatens animal and human health by suppressing food intake and impairing growth. While anorexia induction in mice exposed to DON has been linked to the elevation of the satiety hormones cholecystokinin and peptide YY3-36 in plasma, the effects of DON on the release of other satiety hormones, such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), have not been established. The purpose of this study was to determine the roles of GLP-1 and GIP in DON-induced anorexia. In a nocturnal mouse food consumption model, the elevation of plasma GLP-1 and GIP concentrations markedly corresponded to anorexia induction by DON. Pretreatment with the GLP-1 receptor antagonist Exendin9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexia. In contrast, the GIP receptor antagonist Pro3GIP induced a dose-dependent attenuation of both GIP- and DON-induced anorexia. Taken together, these results suggest that GLP-1 and GIP play instrumental roles in anorexia induction following oral exposure to DON, and the effect of GLP-1 is more potent and long-acting than that of GIP.
Collapse
Affiliation(s)
- Hui Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wen-Da Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Cheng-Hua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hai-Bin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
11
|
Wu W, Sheng K, Xu X, Zhang H, Zhou G. Potential roles for glucagon-like peptide-1 7-36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:181-187. [PMID: 29433086 DOI: 10.1016/j.ecoenv.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Anorexia is a hallmark of animal and human exposed to T-2 toxin, a most poisonous trichothecene mycotoxins contaminating various cereal grains including wheat, corn and barley. Although this adverse effect has been well characterized in several animal species, the underlying mechanisms are unclear. The goal for this study was to elucidate the roles of two gut satiety hormones, glucagon-like peptide-17-36 amide (GLP-1) and cholecystokinin (CCK) in T-2 toxin-evoked anorectic response using a mouse anorexia bioassay. Elevations of plasma GLP-1 and CCK significantly corresponded to anorexia induction by T-2 toxin. Direct administration of exogenous GLP-1 and CCK markedly evoked anorectic responses similar to T-2 toxin. The GLP-1 receptor (GLP-1R) antagonist Exendin9-39 dose-dependently cause attenuation of both GLP-1- and T-2 toxin-induced anorectic responses. Pretreatment with the CCK1 receptor (CCK1R) antagonist SR 27897 and CCK2 receptor (CCK2R) antagonist L-365,260 attenuated anorexia induction by both CCK- and T-2 toxin in a dose dependent manner. Taken together, our findings suggest that both GLP-1 and CCK play contributory roles in T-2 toxin-induced anorexia.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Zhang J, Zhang H, Liu S, Wu W, Zhang H. Comparison of Anorectic Potencies of Type A Trichothecenes T-2 Toxin, HT-2 Toxin, Diacetoxyscirpenol, and Neosolaniol. Toxins (Basel) 2018; 10:toxins10050179. [PMID: 29710820 PMCID: PMC5983235 DOI: 10.3390/toxins10050179] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023] Open
Abstract
Trichothecene mycotoxins are common contaminants in cereal grains and negatively impact human and animal health. Although anorexia is a common hallmark of type B trichothecenes-induced toxicity, less is known about the anorectic potencies of type A trichothecenes. The purpose of this study was to compare the anorectic potencies of four type A trichothecenes (T-2 toxin (T-2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS), and neosolaniol (NEO)) in mice. Following oral exposure to T-2, HT-2, DAS, and NEO, the no observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were 0.01, 0.01, 0.1, and 0.01 mg/kg body weight (BW), and 0.1, 0.1, 0.5, and 0.1 mg/kg BW, respectively. Following intraperitoneal (IP) exposure to T-2, HT-2, DAS, and NEO, the NOAELs were 0.01 mg/kg BW, except for DAS (less than 0.01 mg/kg BW), and the LOAELs were 0.1, 0.1, 0.01, and 0.1 mg/kg BW, respectively. Taken together, the results suggest that (1) type A trichothecenes could dose-dependently elicit anorectic responses following both oral gavage and IP exposure in mice; (2) the anorectic responses follow an approximate rank order of T-2 = HT-2 = NEO > DAS for oral exposure, and DAS > T-2 = HT-2 = NEO for IP administration; (3) IP exposure to T-2, HT-2, DAS, and NEO evoked stronger anorectic effects than oral exposure. From a public health perspective, comparative anorectic potency data should be useful for establishing toxic equivalency factors for type A trichothecenes.
Collapse
Affiliation(s)
- Jie Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hua Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi 276000, China.
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY 3-36. Toxicology 2018; 402-403:28-36. [PMID: 29689362 DOI: 10.1016/j.tox.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022]
Abstract
T-2 toxin, a potent type A trichothecene mycotoxin, is produced by various Fusarium species and can negatively impact animal and human health. Although anorexia induction is a common hallmark of T-2 toxin-induced toxicity, the underlying mechanisms for this adverse effect are not fully understood. The goal of this study was to determine the roles of two gut satiety hormones, glucose-dependent insulinotropic polypeptide (GIP) and Peptide YY3-36 (PYY3-36) in anorexia induction by T-2 toxin. Elevations of plasma GIP and PYY3-36 markedly corresponded to anorexia induction following oral exposure to T-2 toxin using a nocturnal mouse anorexia model. Direct administration of exogenous GIP and PYY3-36 similarly induced anorectic responses. Furthermore, the GIP receptor antagonist Pro3GIP dose-dependently attenuated both GIP- and T-2 toxin-induced anorectic responses. Pretreatment with NPY2 receptor antagonist JNJ-31020028 induced a dose-dependent attenuation of both PYY3-36- and T-2 toxin-induced anorectic responses. To summarize, these findings suggest that both GIP and PYY3-36 might be critical mediators of anorexia induction by T-2 toxin.
Collapse
|
14
|
Ivanova L, Fæste CK, Solhaug A. Role of P -glycoprotein in deoxynivalenol-mediated in vitro toxicity. Toxicol Lett 2018; 284:21-28. [DOI: 10.1016/j.toxlet.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
|
15
|
Gut satiety hormones cholecystokinin and glucagon-like Peptide-17-36 amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol. Toxicol Appl Pharmacol 2017; 335:49-55. [DOI: 10.1016/j.taap.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
|
16
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
17
|
Sex Is a Determinant for Deoxynivalenol Metabolism and Elimination in the Mouse. Toxins (Basel) 2017; 9:toxins9080240. [PMID: 28777306 PMCID: PMC5577574 DOI: 10.3390/toxins9080240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Based on prior observations that deoxynivalenol (DON) toxicity is sex-dependent, we compared metabolism and clearance of this toxin in male and female mice. Following intraperitoneal challenge with 1 mg/kg bw DON, the dose used in the aforementioned toxicity study, ELISA and LC–MS/MS analyses revealed that by 24 h, most DON and DON metabolites were excreted via urine (49–86%) as compared to feces (1.2–8.3%). Females excreted DON and its principal metabolites (DON-3-, DON-8,15 hemiketal-8-, and iso-DON-8-glucuronides) in urine more rapidly than males. Metabolite concentrations were typically 2 to 4 times higher in the livers and kidneys of males than females from 1 to 4 h after dosing. Trace levels of DON-3-sulfate and DON-15-sulfate were found in urine, liver and kidneys from females but not males. Fecal excretion of DON and DON sulfonates was approximately 2-fold greater in males than females. Finally, decreased DON clearance rates in males could not be explained by glucuronidation activities in liver and kidney microsomes. To summarize, increased sensitivity of male mice to DON’s toxic effects as compared to females corresponds to decreased ability to clear the toxin via urine but did not appear to result from differences in toxin metabolism.
Collapse
|
18
|
Zhang J, Jia H, Wang Q, Zhang Y, Wu W, Zhang H. Role of Peptide YY3-36 and Glucose-Dependent Insulinotropic Polypeptide in Anorexia Induction by Trichothecences T-2 Toxin, HT-2 Toxin, Diacetoxyscirpenol, and Neosolaniol. Toxicol Sci 2017; 159:203-210. [DOI: 10.1093/toxsci/kfx128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jie Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hui Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qingqing Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yajie Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
19
|
Peng Z, Chen L, Xiao J, Zhou X, Nüssler AK, Liu L, Liu J, Yang W. Review of mechanisms of deoxynivalenol-induced anorexia: The role of gut microbiota. J Appl Toxicol 2017; 37:1021-1029. [DOI: 10.1002/jat.3475] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jie Xiao
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Xiaoqi Zhou
- Department of Non-Communicable Chronic Disease Prevention and Control; Wuhan Center for Disease Prevention and Control; 24 Jianghan N. Road Wuhan 430015 China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma Center; Eberhard Karls University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
20
|
Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin). Arch Toxicol 2016; 91:495-507. [PMID: 26979077 DOI: 10.1007/s00204-016-1687-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/24/2016] [Indexed: 12/26/2022]
Abstract
Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.
Collapse
|
21
|
Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, Deng J, Zuo Z, Wang Y, Shen L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:686-691. [PMID: 26407231 DOI: 10.1016/j.etap.2015.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
This study was performed to investigate the individual and combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEA) on mouse kidney. A total of 360 female mice were divided into nine groups. Each group received intraperitoneal injection of solvent (control), DON, ZEA, or DON+ZEA four times for 12d. Results showed that ZEA and/or DON increased the apoptosis rate in the kidney, as well as the levels of serum creatinine and blood urea nitrogen. DON and/or ZEA also induced renal oxidative stress as indicated by increased malondialdehyde concentration and nitric oxide level and reduced superoxide dismutase enzyme activity and hydroxyl radical inhibiting capacity. The observed changes were dose and time dependent. This study reports that DON and/or ZEA induced apoptosis, dysfunction, and oxidative stress in mouse kidney. Furthermore, the combination of DON+ZEA exhibited a sub-additive nephrotoxic effect.
Collapse
Affiliation(s)
- Zhen Liang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Shuang Gao
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yun Chen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yanyi Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| |
Collapse
|
22
|
High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses. Toxins (Basel) 2015; 7:4199-215. [PMID: 26492270 PMCID: PMC4626729 DOI: 10.3390/toxins7104199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.
Collapse
|
23
|
Clark ES, Flannery BM, Pestka JJ. Murine Anorectic Response to Deoxynivalenol (Vomitoxin) Is Sex-Dependent. Toxins (Basel) 2015; 7:2845-59. [PMID: 26230710 PMCID: PMC4549728 DOI: 10.3390/toxins7082845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a common trichothecene mycotoxin found in cereal foods, dysregulates immune function and maintenance of energy balance. The purpose of this study was to determine if sex differences are similarly evident in DON's anorectic responses in mice. A bioassay for feed refusal, previously developed by our lab, was used to compare acute i.p. exposures of 1 and 5 mg/kg bw DON in C57BL6 mice. Greater anorectic responses were seen in male than female mice. Male mice had higher organ and plasma concentrations of DON upon acute exposure than their female counterparts. A significant increase in IL-6 plasma levels was also observed in males while cholecystokinin response was higher in females. When effects of sex on food intake and body weight changes were compared after subchronic dietary exposure to 1, 2.5, and 10 ppm DON, males were found again to be more sensitive. Demonstration of male predilection to DON-induced changes in food intake and weight gain might an important consideration in future risk assessment of DON and other trichothecenes.
Collapse
Affiliation(s)
- Erica S Clark
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
The Food Contaminant Mycotoxin Deoxynivalenol Inhibits the Swallowing Reflex in Anaesthetized Rats. PLoS One 2015; 10:e0133355. [PMID: 26192767 PMCID: PMC4507856 DOI: 10.1371/journal.pone.0133355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/26/2015] [Indexed: 12/04/2022] Open
Abstract
Deoxynivalenol (DON), one of the most abundant mycotoxins found on cereals, is known to be implicated in acute and chronic illnesses in both humans and animals. Among the symptoms, anorexia, reduction of weight gain and decreased nutrition efficiency were described, but the mechanisms underlying these effects on feeding behavior are not yet totally understood. Swallowing is a major motor component of ingestive behavior which allows the propulsion of the alimentary bolus from the mouth to the esophagus. To better understand DON effects on ingestive behaviour, we have studied its effects on rhythmic swallowing in the rat, after intravenous and central administration. Repetitive electrical stimulation of the superior laryngeal nerve or of the tractus solitarius, induces rhythmic swallowing that can be recorded using electromyographic electrodes inserted in sublingual muscles. Here we provide the first demonstration that, after intravenous and central administration, DON strongly inhibits the swallowing reflex with a short latency and in a dose dependent manner. Moreover, using c-Fos staining, a strong neuronal activation was observed in the solitary tract nucleus which contains the central pattern generator of swallowing and in the area postrema after DON intravenous injection. Our data show that DON modifies swallowing and interferes with central neuronal networks dedicated to food intake regulation.
Collapse
|
25
|
Comparison of Anorectic Potencies of the Trichothecenes T-2 Toxin, HT-2 Toxin and Satratoxin G to the Ipecac Alkaloid Emetine. Toxicol Rep 2015; 2:238-251. [PMID: 25932382 PMCID: PMC4410735 DOI: 10.1016/j.toxrep.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anorectic effects of natural toxins were compared in the mouse. Parenteral and oral T-2 and HT-2 toxin exposure caused prolonged anorexia. Emetine was more potent when delivered orally as compared to parenterally. Emetine's effects were less than T-2 and HT-2 toxin and more transient. Parental and intranasal delivery satratoxin G caused transient anorectic effects.
Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g., satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.
Collapse
|
26
|
Wu W, Zhou HR, Bursian SJ, Pan X, Link JE, Berthiller F, Adam G, Krantis A, Durst T, Pestka JJ. Comparison of anorectic and emetic potencies of deoxynivalenol (vomitoxin) to the plant metabolite deoxynivalenol-3-glucoside and synthetic deoxynivalenol derivatives EN139528 and EN139544. Toxicol Sci 2014; 142:167-81. [PMID: 25173790 DOI: 10.1093/toxsci/kfu166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON) elicits robust anorectic and emetic effects in several animal species. However, less is known about the potential for naturally occurring and synthetic congeners of this trichothecene to cause analogous responses. Here we tested the hypothesis that alterations in DON structure found in the plant metabolite deoxynivalenol-3-glucoside (D3G) and two pharmacologically active synthetic DON derivatives, EN139528 and EN139544, differentially impact their potential to evoke food refusal and emesis. In a nocturnal mouse food consumption model, oral administration with DON, D3G, EN139528, or EN139544 at doses from 2.5 to 10 mg/kg BW induced anorectic responses that lasted up to 16, 6, 6, and 3 h, respectively. Anorectic potency rank orders were EN139544>DON>EN139528>D3G from 0 to 0.5 h but DON>D3G>EN139528>EN139544 from 0 to 3 h. Oral exposure to each of the four compounds at a common dose (2.5 mg/kg BW) stimulated plasma elevations of the gut satiety peptides cholecystokinin and to a lesser extent, peptide YY3-36 that corresponded to reduced food consumption. In a mink emesis model, oral administration of increasing doses of the congeners differentially induced emesis, causing marked decreases in latency to emesis with corresponding increases in both the duration and number of emetic events. The minimum emetic doses for DON, EN139528, D3G, and EN139544 were 0.05, 0.5, 2, and 5 mg/kg BW, respectively. Taken together, the results suggest that although all three DON congeners elicited anorectic responses that mimicked DON over a narrow dose range, they were markedly less potent than the parent mycotoxin at inducing emesis.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - Steven J Bursian
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Anthony Krantis
- Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Department of Chemistry, University of Ottawa, Canada
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824 Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
27
|
Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 2014; 6:1615-43. [PMID: 24859243 PMCID: PMC4052256 DOI: 10.3390/toxins6051615] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/28/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
The natural food contaminants, mycotoxins, are regarded as an important risk factor for human and animal health, as up to 25% of the world's crop production may be contaminated. The Fusarium genus produces large quantities of fusariotoxins, among which the trichothecenes are considered as a ubiquitous problem worldwide. The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants. An increasing number of studies suggest that intestinal epithelial cells are targets for deoxynivalenol (DON) and other Type B trichothecenes (TCTB). In humans, various adverse digestive symptoms are observed on acute exposure, and in animals, these toxins induce pathological lesions, including necrosis of the intestinal epithelium. They affect the integrity of the intestinal epithelium through alterations in cell morphology and differentiation and in the barrier function. Moreover, DON and TCTB modulate the activity of intestinal epithelium in its role in immune responsiveness. TCTB affect cytokine production by intestinal or immune cells and are supposed to interfere with the cross-talk between epithelial cells and other intestinal immune cells. This review summarizes our current knowledge of the effects of DON and other TCTB on the intestine.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| | - Isabelle P Oswald
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| |
Collapse
|
28
|
Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka JJ. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 2014; 278:107-15. [PMID: 24793808 DOI: 10.1016/j.taap.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kaiyu He
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Hui-Ren Zhou
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Dept. of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yoshiko Sugita-Konishi
- Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara, Kanagawa Pref., 252-5201, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Anthony Krantis
- Dept. of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Dept. of Chemistry, University of Ottawa, Canada
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - James J Pestka
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Kouadio JH, Moukha S, Brou K, Gnakri D. Lipid metabolism disorders, lymphocytes cells death, and renal toxicity induced by very low levels of deoxynivalenol and fumonisin b1 alone or in combination following 7 days oral administration to mice. Toxicol Int 2014; 20:218-23. [PMID: 24403731 PMCID: PMC3877489 DOI: 10.4103/0971-6580.121673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
SCOPE In our previous study focused on in vitro interactive effect of Fusarium mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), we reported that these toxins tested at low level and in association could lead to additive or synergistic cytotoxic effect. The aim of the present study is to confirm those findings by in vivo study. MATERIALS AND METHODS Swiss mice were orally administered with low doses of DON (45 μg/kg bw/day), FB1 (110 μg/kg bw/day), and their mixture (DON + FB1) for 7 days. RESULTS As results, no death or abnormal symptoms were observed in all groups. The significant of loss of weight was observed in females group treated with FB1 and its association with DON. Serum chemistry examinations revealed that disorders in lipid metabolism, renal filtration perturb and a rhabdomyolysis. DON has been found as particular inducer of kidney cell deoxyribonucleic acid (DNA) methylation and blood lymphocytes cell death as measured by lymphocytes DNA fragmentation. Female mice were more sensitive and the mixture of DON and FB1 led to additive or more than additive effect particularly for their target kidney which showed different pattern of toxicity. CONCLUSION Based on the results of this study, the no-observed-adverse effect level (NOAEL) o both DON and FB1 should be low than 45 μg/kg bw/day and 110 μg/kg bw/day, respectively in mice.
Collapse
Affiliation(s)
- J H Kouadio
- Department of Biochemistry and Microbiology, University of Daloa, Ivoiry Coast, France ; Department of Food Technologies and Sciences, University of Nangui Abrogoua, Abidjan, Ivoiry Coast, France
| | - S Moukha
- UPR 1264- MycSA, National Institute for Agricultural Research, Research Center of Bordeaux, Aquitaine, France
| | - K Brou
- Department of Food Technologies and Sciences, University of Nangui Abrogoua, Abidjan, Ivoiry Coast, France
| | - D Gnakri
- Department of Biochemistry and Microbiology, University of Daloa, Ivoiry Coast, France
| |
Collapse
|
30
|
Wu W, Zhou HR, He K, Pan X, Sugita-Konishi Y, Watanabe M, Zhang H, Pestka JJ. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 2014; 138:278-89. [PMID: 24385417 DOI: 10.1093/toxsci/kft335] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu W, Zhang H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 2014; 39:875-86. [DOI: 10.2131/jts.39.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
32
|
Ren Z, Zhou R, Deng J, Zuo Z, Peng X, Wang Y, Wang Y, Yu S, Shen L, Cui H, Fang J. Effects of the Fusarium toxin zearalenone (ZEA) and/or deoxynivalenol (DON) on the serum IgA, IgG and IgM levels in mice. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.867928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Flannery BM, He K, Pestka JJ. Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 2013; 221:9-14. [PMID: 23707852 DOI: 10.1016/j.toxlet.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
The trichothecene deoxynivalenol (DON), a potent ribotoxic mycotoxin produced by the cereal blight fungus Fusarium graminearum, commonly contaminates grain-based foods. Oral exposure to DON causes decreased food intake, reduced weight gain and body weight loss in experimental animals - effects that have been linked to dysregulation of hormones responsible for mediating satiety at the central nervous system level. When diet-induced obese (DIO) mice are fed DON, they consume less food, eventually achieving body weights of control diet-fed mice. Here, we extended these findings by characterizing: (1) reversibility of DON-induced body weight loss and anorexia in DIO mice and (2) the role of double-stranded RNA-activated protein kinase (PKR) which has been previously linked to initiation of the ribotoxic stress response. The results demonstrated that DON-induced weight loss was reversible in DIO mice and this effect corresponded to initiation of a robust hyperphagic response. When DIO mice deficient in PKR were exposed to DON, they exhibited weight suppression similar to DIO wild-type fed the toxin, suggesting the toxin's weight effects were not dependent on PKR. Taken together, DON's effects on food consumption and body weight are not permanent and, furthermore, PKR is not an essential signaling molecule for DON's anorectic and weight effects.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
34
|
Wu W, Bates MA, Bursian SJ, Flannery B, Zhou HR, Link JE, Zhang H, Pestka JJ. Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). Toxicol Sci 2013; 133:186-95. [PMID: 23457120 DOI: 10.1093/toxsci/kft033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON's emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression. Toxicology 2013; 304:192-8. [PMID: 23298694 DOI: 10.1016/j.tox.2012.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023]
Abstract
Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON's influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON's adverse effects on growth.
Collapse
|
36
|
Bonnet MS, Roux J, Mounien L, Dallaporta M, Troadec JD. Advances in deoxynivalenol toxicity mechanisms: the brain as a target. Toxins (Basel) 2012. [PMID: 23202308 PMCID: PMC3509700 DOI: 10.3390/toxins4111120] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions. DON consumption may result in intoxication, the severity of which is dose-dependent and may lead to different symptoms including anorexia, vomiting, reduced weight gain, neuroendocrine changes, immunological effects, diarrhea, leukocytosis, hemorrhage or circulatory shock. During the last two decades, many studies have described DON toxicity using diverse animal species as a model. While the action of the toxin on peripheral organs and tissues is well documented, data illustrating its effect on the brain are significantly less abundant. Yet, DON is known to affect the central nervous system. Recent studies have provided new evidence and detail regarding the action of the toxin on the brain. The purpose of the present review is to summarize critical studies illustrating this central action of the toxin and to suggest research perspectives in this field.
Collapse
Affiliation(s)
- Marion S. Bonnet
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Julien Roux
- Biomeostasis, Contract Research Organization, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Marseilles 13397, France;
| | - Lourdes Mounien
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Michel Dallaporta
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Jean-Denis Troadec
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
- Author to whom correspondence should be addressed; ; Tel: +33-491-288-948; Fax: +33-491-288-885
| |
Collapse
|
37
|
Wu W, Bates MA, Bursian SJ, Link JE, Flannery BM, Sugita-Konishi Y, Watanabe M, Zhang H, Pestka JJ. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 2012; 131:279-91. [PMID: 22997060 DOI: 10.1093/toxsci/kfs286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the acute toxic effects of trichothecene mycotoxin deoxynivalenol (DON or vomitoxin), a known cause of human food poisoning, have been well characterized in several animal species, much less is known about closely related 8-ketotrichothecenes that similarly occur in cereal grains colonized by toxigenic fusaria. To address this, we compared potencies of DON, 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), fusarenon X (FX), and nivalenol (NIV) in the mink emesis model following intraperitoneal (ip) and oral administration. All five congeners dose-dependently induced emesis by both administration methods. With increasing doses, there were marked decreases in latency to emesis with corresponding increases in emesis duration and number of emetic events. The effective doses resulting in emetic events in 50% of the animals for ip exposure to DON, 15-ADON, 3-ADON, FX, and NIV were 80, 170, 180, 70, and 60 µg/kg bw, respectively, and for oral exposure, they were 30, 40, 290, 30, and 250 µg/kg bw, respectively. The emetic potency of DON determined here was comparable to that reported in analogous studies conducted in pigs and dogs, suggesting that the mink is a suitable small animal model for investigating acute trichothecene toxicity. The use of a mouse pica model, based on the consumption of kaolin, was also evaluated as a possible surrogate for studying emesis but was found unsuitable. From a public health perspective, comparative emetic potency data derived from small animal models such as the mink should be useful for establishing toxic equivalency factors for DON and other trichothecenes.
Collapse
Affiliation(s)
- Wenda Wu
- Department of Preventive Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Flannery BM, Clark ES, Pestka JJ. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicol Sci 2012; 130:289-97. [PMID: 22903826 DOI: 10.1093/toxsci/kfs255] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin's anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15-120 min and lasted up to 120 min (CCK) and 240 min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
39
|
Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. Food Chem Toxicol 2012; 50:2056-61. [DOI: 10.1016/j.fct.2012.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/19/2022]
|
40
|
The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr Res Rev 2012; 25:162-79. [PMID: 22651937 DOI: 10.1017/s095442241200008x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxins are toxic secondary metabolites that globally contaminate an estimated 25 % of cereal crops and thus exposure is frequent in many populations. Aflatoxins, fumonisins and deoxynivalenol are amongst those mycotoxins of particular concern from a human health perspective. A number of risks to health are suggested including cancer, growth faltering, immune suppression and neural tube defects; though only the demonstrated role for aflatoxin in the aetiology of liver cancer is widely recognised. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates; instead biomarkers provide better tools for informing epidemiological investigations. Validated exposure biomarkers for aflatoxin (urinary aflatoxin M(1), aflatoxin-N7-guaunine, serum aflatoxin-albumin) were established almost 20 years ago and were critical in confirming aflatoxins as potent liver carcinogens. Validation has included demonstration of assay robustness, intake v. biomarker level, and stability of stored samples. More recently, aflatoxin exposure biomarkers are revealing concerns of growth faltering and immune suppression; importantly, they are being used to assess the effectiveness of intervention strategies. For fumonisins and deoxynivalenol these steps of development and validation have significantly advanced in recent years. Such biomarkers should better inform epidemiological studies and thus improve our understanding of their potential risk to human health.
Collapse
|
41
|
Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B, Wanaverbecq N, Mounien L, Trouslard J, Jean A, Dallaporta M, Troadec JD. The food-contaminant deoxynivalenol modifies eating by targeting anorexigenic neurocircuitry. PLoS One 2011; 6:e26134. [PMID: 22022538 PMCID: PMC3192137 DOI: 10.1371/journal.pone.0026134] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 01/25/2023] Open
Abstract
Physiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food. DON has been implicated in acute and chronic illnesses in both humans and farm animals including weight loss. Here, we provide the first demonstration that DON reduced feeding behavior and modified satiation and satiety by interfering with central neuronal networks dedicated to food intake regulation. Moreover, our results strongly suggest that during intoxication, DON reaches the brain where it modifies anorexigenic balance. In view of the widespread human exposure to DON, the present results may lead to reconsider the potential consequences of chronic DON consumption on human eating disorders.
Collapse
Affiliation(s)
- Clémence Girardet
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Marion S. Bonnet
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Rajae Jdir
- Université Paul Cézanne, Marseille, France
| | | | - Sylvie Thirion
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Catherine Tardivel
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Julien Roux
- Biomeostasis, Contract Research Organization, Marseille, France
| | - Bruno Lebrun
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Nicolas Wanaverbecq
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Lourdes Mounien
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Jérôme Trouslard
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - André Jean
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Michel Dallaporta
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
| | - Jean-Denis Troadec
- Université Paul Cézanne, Marseille, France
- INRA USC 2027, Marseille, France
- CNRS UMR 6231, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Département de Physiologie Neurovégétative, Marseille, France
- * E-mail:
| |
Collapse
|
42
|
Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B, Mounien L, Trouslard J, Jean A, Dallaporta M, Troadec JD. Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: a PGE2-independent mechanism. Toxicol Sci 2011; 124:179-91. [PMID: 21873375 DOI: 10.1093/toxsci/kfr219] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deoxynivalenol (DON), one of the most abundant trichothecenes found on cereals, has been implicated in mycotoxicoses in both humans and farm animals. Low-dose toxicity is characterized by reduced weight gain, diminished nutritional efficiency, and immunologic effects. The levels and patterns of human food commodity contamination justify that DON consumption constitutes a public health issue. DON stability during processing and cooking explains its large presence in human food. We characterized here DON intoxication by showing that the toxin concomitantly affects feeding behavior, body temperature, and locomotor activity after both per os and central administration. Using c-Fos expression mapping, we identified the neuronal structures activated in response to DON and observed that the pattern of neuronal populations activated by the toxin resembled those induced by inflammatory signals. By real-time PCR, we report the first evidences for a DON-induced central inflammation, attested by the strong upregulation of interleukin-1β, interleukin-6, tumor necrosis factor-α, cyclooxygenase-2, and microsomal prostaglandin synthase-1 (mPGES-1) messenger RNA. However, silencing prostaglandins E2 signaling pathways using mPGES-1 knockout mice, which are resistant to cytokine-induced sickness behavior, did not modify the responses to the toxin. These results reveal that, despite strong similarities, behavioral changes observed after DON intoxication differ from classical sickness behavior evoked by inflammatory cytokines.
Collapse
Affiliation(s)
- Clémence Girardet
- Département de Physiologie Neurovégétative, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Université Paul Cézanne, INRA USC 2027, CNRS UMR 6231, 13397 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|