1
|
Theodoropoulou E, Pierozan P, Marabita F, Höglund A, Karlsson O. Persistent effects of di-n-butyl phthalate on liver transcriptome: Impaired energy and lipid metabolic pathways. CHEMOSPHERE 2024; 368:143605. [PMID: 39442571 DOI: 10.1016/j.chemosphere.2024.143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Francesco Marabita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden.
| |
Collapse
|
2
|
Wang X, Xu M, Shi M, Tian Y, Zhi Y, Han X, Sui H, Wan Y, Jia X, Yang H. Macrophage polarization as a novel endpoint for assessing combined risk of phthalate esters. ENVIRONMENT INTERNATIONAL 2024; 190:108835. [PMID: 38908276 DOI: 10.1016/j.envint.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Combined exposure to phthalate esters (PAEs) has garnered increasing attention due to potential synergistic effects on human health. This study aimed to develop an in vitro model using human macrophages to evaluate the combined toxicity of PAEs and explore the underlying mechanisms. A high-throughput screening system was engineered by expressing a PPRE-eGFP reporter in THP-1 monocytes to monitor macrophage polarization upon PAEs exposure. Individual PAEs exhibited varied inhibitory effects on M2 macrophage polarization, with mono(2-ethylhexyl) phthalate (MEHP) being the most potent. Isobologram analysis revealed additive interactions when MEHP was combined with other PAEs, resulting in more pronounced suppression of M2 markers compared to individual compounds. Mechanistic studies suggested PAEs may exert effects by modulating PPARγ activity to inhibit M2 polarization. Notably, an equimolar mixture of six PAEs showed additive inhibition of M2 markers. In vivo experiments corroborated the combined hepatotoxic effects, with mice exposed to a PAEs mixture exhibiting reduced liver weight, dyslipidemia, and decreased hepatic M2 macrophages compared to DEHP alone. Transcriptome analysis highlighted disruptions in PPAR signaling, and distinct pathway alterations on cholesterol metabolism in the mixture group. Collectively, these findings underscore the importance of evaluating mixture effects and provide a novel approach for hazard assessment of combined PAEs exposure with implications for environmental health risk assessment.
Collapse
Affiliation(s)
- Xiaohong Wang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Xu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Chengdu, China
| | - Miaoying Shi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaru Tian
- School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuan Zhi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaomin Han
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haixia Sui
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xudong Jia
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hui Yang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China; School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China.
| |
Collapse
|
3
|
Wei J, Wang S, Huang J, Zhou X, Qian Z, Wu T, Fan Q, Liang Y, Cui G. Network medicine-based analysis of the hepatoprotective effects of Amomum villosum Lour. on alcoholic liver disease in rats. Food Sci Nutr 2024; 12:3759-3773. [PMID: 38726425 PMCID: PMC11077240 DOI: 10.1002/fsn3.4046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is characterized by high morbidity and mortality, and mainly results from prolonged and excessive alcohol use. Amomum villosum Lour. (A. villosum), a well-known traditional Chinese medicine (TCM), has hepatoprotective properties. However, its ability to combat alcohol-induced liver injury has not been fully explored. The objective of this study was to investigate the hepatoprotective effects of A. villosum in a rat model of alcohol-induced liver disease, thereby establishing a scientific foundation for the potential preventive use of A. villosum in ALD. We established a Chinese liquor (Baijiu)-induced liver injury model in rats. Hematoxylin and eosin (HE) staining, in combination with biochemical tests, was used to evaluate the protective effects of A. villosum on the liver. The integration of network medicine analysis with experimental validation was used to explore the hepatoprotective effects and potential mechanisms of A. villosum in rats. Our findings showed that A. villosum ameliorated alcohol-induced changes in body weight, liver index, hepatic steatosis, inflammation, blood lipid metabolism, and liver function in rats. Network proximity analysis was employed to identify 18 potentially active ingredients of A. villosum for ALD treatment. These potentially active ingredients in the blood were further identified using mass spectrometry (MS). Our results showed that A. villosum plays a hepatoprotective role by modulating the protein levels of estrogen receptor 1 (ESR1), anti-nuclear receptor subfamily 3 group C member 1 (NR3C1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, the results of the current study suggested that A. villosum potentially exerts hepatoprotective effects on ALD in rats, possibly through regulating the protein levels of ESR1, NR3C1, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Jing Wei
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Sihua Wang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Junze Huang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Xinhua Zhou
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | | | - Tingbiao Wu
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Qing Fan
- Basic Medical Science DepartmentZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Yongyin Liang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Guozhen Cui
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| |
Collapse
|
4
|
Lu M, Pan J, Hu Y, Ding L, Li Y, Cui X, Zhang M, Zhang Z, Li C. Advances in the study of vascular related protective effect of garlic (Allium sativum) extract and compounds. J Nutr Biochem 2024; 124:109531. [PMID: 37984733 DOI: 10.1016/j.jnutbio.2023.109531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Garlic (Allium sativum) is a functional food containing multiple bioactive compounds that find widespread applications in culinary and medicinal practices. It consists of multiple chemical components, including allicin and alliin. This article offers a comprehensive review of the protective effects of garlic extracts and their active constituents on the vascular system. In vitro and in vivo experiments have shown that garlic extracts and their active ingredients possess various bioactive properties. These substances demonstrate beneficial effects on blood vessels by demonstrating anti-inflammatory and antioxidant activities, inhibiting lipid accumulation and migration, preventing lipid peroxidation, promoting angiogenesis, reducing platelet aggregation, enhancing endothelial function, and inhibiting endothelial cell apoptosis. In clinical studies, garlic and its extracts have demonstrated their efficacy in managing vascular system diseases, including atherosclerosis, diabetes, and high cholesterol levels. In summary, these studies highlight the potential therapeutic roles and underlying mechanisms of garlic and its constituents in managing conditions like diabetes, atherosclerosis, ischemic diseases, and other vascular disorders.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinyuan Pan
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Ding
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
6
|
Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sommano SR. The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Front Nutr 2023; 10:1142784. [PMID: 37560057 PMCID: PMC10409574 DOI: 10.3389/fnut.2023.1142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Garlic, a common culinary spice, is cultivated and used around the globe. Consumption of garlic and its supplements reduces the risk of diabetes and cardiovascular disease and boosts the immune system with antibacterial, antifungal, anti-aging, and anti-cancer properties. Diallyl sulfide, diallyl disulfide, triallyl trisulfide, phenolics, flavonoids, and others are the most commercially recognized active ingredients in garlic and its products. In recent years, global demand for medicinal or functional garlic has surged, introducing several products such as garlic oil, aged garlic, black garlic, and inulin into the market. Garlic processing has been demonstrated to directly impact the availability of bioactive ingredients and the functionality of products. Depending on the anticipated functional qualities, it is also recommended that one or a combination of processing techniques be deemed desirable over the others. This work describes the steps involved in processing fresh garlic into products and their physicochemical alterations during processing. Their nutritional, phytochemical, and functional properties are also reviewed. Considering the high demand for functional food, this review has been compiled to provide guidance for food producers on the industrial utilization and suitability of garlic for new product development.
Collapse
Affiliation(s)
- Piyachat Sunanta
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Vassilis Kontogiorgos
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tanachai Pankasemsuk
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Yu L, Zhao R, Wang C, Zhang C, Chu C, Zhao J, Zhang H, Zhai Q, Chen W, Zhang H, Tian F. Effects of garlic supplementation on non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Wang Y, Zhang H, Teng X, Guo P, Zuo Y, Zhao H, Wang P, Liang H. Garlic oil alleviates high triglyceride levels in alcohol-exposed rats by inhibiting liver oxidative stress and regulating the intestinal barrier and intestinal flora. Food Sci Nutr 2022; 10:2479-2495. [PMID: 35959265 PMCID: PMC9361452 DOI: 10.1002/fsn3.2854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Garlic oil (GO) is a kind of natural extract extracted from garlic, which has strong antioxidant activity. This study elucidates the protective mechanism of GO against alcohol-induced high triglyceride levels. Sixty male Sprague Dawley rats were assigned to five groups, including a control group (CON), a model group (MOD) treated with alcohol 56% v/v at 8 ml kg-1 day-1 for 2 weeks then 10 ml kg-1 day-1 for 8 weeks, a low-dose GO group (GO-L) given GO at 20 mg kg-1 day-1, a high-dose GO group (GO-H) given GO at 40 mg kg-1 day-1, and a positive group (POS) given diammonium glycyrrhizinate at 200 mg kg-1 day-1. The results showed that GO could significantly reduce the serum and liver triglyceride levels caused by alcohol exposure (p < .05). The GO-H group significantly reduced MDA level, increased SOD and GSH-Px levels in serum, liver, and colon (p < .05), significantly increased the levels of Sirt1 and PGC-1α proteins and reduced FoxO1 protein level in liver (p < .05), and significantly increased the levels of ZO-1 and Claudin1 proteins in the colon compared to the MOD group (p < .05). The 16S rRNA sequencing showed that the intestinal flora of the GO-H group was significantly changed compared with the MOD group. In summary, GO has the potential to improve high triglyceride levels in serum and liver induced by alcohol exposure, which may be related to the inhibition of oxidative stress regulation of Sirt1 and its downstream proteins, and to the restoration of the intestinal barrier and intestinal flora.
Collapse
Affiliation(s)
- Yanhui Wang
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Huaqi Zhang
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Xiangyun Teng
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Peiyu Guo
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Yuwei Zuo
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Hui Zhao
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Peng Wang
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| | - Hui Liang
- Department of Nutrition and Food HygieneSchool of Public HealthQingdao UniversityQingdaoChina
| |
Collapse
|
9
|
Liu SX, Liu H, Wang S, Zhang CL, Guo FF, Zeng T. Diallyl disulfide ameliorates ethanol-induced liver steatosis and inflammation by maintaining the fatty acid catabolism and regulating the gut-liver axis. Food Chem Toxicol 2022; 164:113108. [PMID: 35526736 DOI: 10.1016/j.fct.2022.113108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Diallyl disulfide (DADS) has been suggested to possess hepatoprotection against alcoholic liver disease (ALD) by a couple of pilot studies, while the underlying mechanisms remain largely unknown. This study aimed to investigate the hepatoprotective effects of DADS against ethanol-induced liver steatosis and early inflammation by using the chronic-plus-binge mice model and cultured J774A.1 macrophages and AML12 hepatocytes. We found that DADS significantly attenuated ethanol-induced elevation of serum aminotransferase activities, accumulation of liver triglyceride, hepatocytes apoptosis, oxidative stress, infiltration of macrophages and neutrophils, and proinflammatory polarization of macrophages in mice livers. In addition, chronic-plus-binge drinking induced apparent intestinal mucosa damage and disturbance of gut microbiota, endotoxemia, and activation of hepatic NF-κB signaling and NLRP3 inflammasome, which was inhibited by DADS. In vitro studies using cocultured AML12/J774A.1 cells showed that DADS suppressed ethanol/LPS-induced cell injury and inflammatory activation of macrophages. Furthermore, DADS ameliorated ethanol-induced decline of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1 (CPT1), and phosphorylated AMP-activated protein kinase (AMPK) protein levels in mice liver and AML12 cells. These results demonstrate that DADS could prevent ethanol-induced liver steatosis and early inflammation by regulating the gut-liver axis and maintaining fatty acid catabolism.
Collapse
Affiliation(s)
- Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Lin YE, Lin MH, Yeh TY, Lai YS, Lu KH, Huang HS, Peng FC, Liu SH, Sheen LY. Genotoxicity and 28-day repeated dose oral toxicity study of garlic essential oil in mice. J Tradit Complement Med 2022; 12:536-544. [DOI: 10.1016/j.jtcme.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022] Open
|
11
|
Lee M, Nam SH, Yoon HG, Kim S, You Y, Choi KC, Lee YH, Lee J, Park J, Jun W. Fermented Curcuma longa L. Prevents Alcoholic Fatty Liver Disease in Mice by Regulating CYP2E1, SREBP-1c, and PPAR- α. J Med Food 2022; 25:456-463. [PMID: 35438556 DOI: 10.1089/jmf.2021.k.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined the efficacy of fermented Curcuma longa L. (FT) on the development of alcoholic fatty liver in mice and investigated the underlying mechanism. The protective potential of FT against ethanol-induced fatty liver was determined using C57BL/6 male mice allocated into four groups (8 mice/group). Control groups received either distilled water or 5 g/kg body weight (b.w.) per day ethanol for 8 days. Treatment groups were administered either 300 mg/kg b.w. per day of milk thistle or FT before receiving ethanol. FT contained a higher amount of caffeic acid and tetrahydrocurcumin than C. longa. FT pretreatment significantly suppressed the elevated hepatic lipid droplets associated with ethanol ingestion. In comparison with ethanol-treated control, FT pretreated mice showed inhibited cytochrome P4502E1 (CYP2E1), sterol regulatory element-binding protein-1 (SREBP-1c), and acetyl-CoA carboxylase production but elevated AMP-activated protein kinase, peroxisome proliferator-activated receptor-alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) levels. Taken together, FT is a promising hepatoprotectant for preventing of alcoholic fatty liver through modulating fatty acid synthesis and oxidation.
Collapse
Affiliation(s)
- Moeun Lee
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Process Development and Fermentation Group, World Institute of Kimchi, Gwangju, Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
| | - Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Yanghee You
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Suwon, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
12
|
Balakrishnan R, Mohammed V, Veerabathiran R. The role of genetic mutation in alcoholic liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alcoholic liver disease (ALD) is the world’s most common type of liver disease caused due to overconsumption of alcohol. The liver supports the best level of tissue damage by hefty drinking since it is the binding site of ethanol digestion. This disease can progress to alcoholic steatohepatitis from alcoholic fatty liver, which implies steatosis has become the most punctual reaction to hefty drinking and is portrayed by the deposition of fat hepatocytes. In addition, steatosis can advance to steatohepatitis, a more extreme, provocative sort of liver damage described by hepatic inflammation. Constant and unnecessary liquor utilization delivers a wide range of hepatic sores, fibrosis and cirrhosis, and sometimes hepatocellular carcinoma. Most people consuming > 40 g of liquor each day create alcoholic fatty liver (AFL); notwithstanding, just a subset of people will grow further developed infection. Hereditary, epigenetic, and non-hereditary components may clarify the impressive interindividual variety in the ALD phenotype.
Main body
This systematic review is to classify new candidate genes associated with alcoholic liver disorders, such as RASGRF2, ALDH2, NFE2L2, ADH1B, PNPLA3, DRD2, MTHFR, TM6SF2, IL1B, and CYP2E1, MBOAT7 as well as to revise the functions of each gene in its polymorphic sequence. The information obtained from the previously published articles revealed the crucial relationship between the genes and ALD and discussed each selected gene’s mechanism.
Conclusion
The aim of this review is to highlight the candidate genes associated with the ALD, and the evidence of this study is to deliberate the part of genetic alterations and modifications that can serve as an excellent biological maker, risk predictors, and therapeutic targets for this disease.
Collapse
|
13
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Zhang XN, Zhao N, Guo FF, Wang YR, Liu SX, Zeng T. Diallyl disulfide suppresses the lipopolysaccharide-driven inflammatory response of macrophages by activating the Nrf2 pathway. Food Chem Toxicol 2021; 159:112760. [PMID: 34896185 DOI: 10.1016/j.fct.2021.112760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS)-driven activation of Kupffer cells plays critical roles in the development of alcoholic liver disease (ALD). Accumulating evidence has revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. The current study aimed to investigate the roles of diallyl disulfide (DADS) in LPS-driven inflammation in vitro and in vivo. We found that DADS significantly increased the nuclear translocation of Nrf2 and the transcription of Nrf2 targets, including HO1, NQO1, and γ-GCSc, and suppressed degradation of Nrf2 protein. Besides, DADS significantly inhibited LPS-induced activation of NF-κB and MAPK, secretion of NO and TNF-α, and production of reactive oxygen species (ROS) in LPS-exposed RAW264.7 cells. In vivo study demonstrated that DADS significantly ameliorated liver damage in mice challenged with LPS, as shown by the inhibition of increases in serum aminotransferase activities, neutrophil infiltration, and NF-κB and NLRP3 inflammasome activation. Finally, knockout of Nrf2 abrogated the suppression of DADS on macrophage polarization and on liver injury induced by LPS. These findings reveal that DADS suppresses LPS-driven inflammatory response in the liver by activating Nrf2, which suggests that the protective effects of DADS against ALD may be attributed to the modulation of Kupffer cell polarization in the liver.
Collapse
Affiliation(s)
- Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
15
|
Kheirmandparizi M, Keshavarz P, Nowrouzi-Sohrabi P, Hosseini-Bensenjan M, Rezaei S, Kashani SMA, Zeidi N, Tabrizi R, Alkamel A. Effects of garlic extract on lipid profile in patients with coronary artery disease: A systematic review and meta-analysis of randomised clinical trials. Int J Clin Pract 2021; 75:e14974. [PMID: 34627133 DOI: 10.1111/ijcp.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
This meta-analysis was conducted to evaluate the effects of garlic extract on total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-c) and high-density lipoprotein-cholesterol (HDL-c), among the patients with coronary artery disease (CAD). Literature searches were conducted in EMBASE, Scopus, PubMed, Web of Science and Cochrane Library until Sep18th, 2020. Inter-study heterogeneity was examined using Cochrane's Q and I2 tests. The random-effect models were utilised to pool the weighted mean differences (WMDs) and the corresponding 95% confidence intervals (CIs). Six articles were enrolled in the current meta-analysis. Garlic consumption significantly reduced TC levels (WMD -16.32 mg/dL; 95% CI -31.22, -1.43; P = .032). We found no significant effects on TG (WMD -10.93 mg/dL; 95% CI -26.19, 4.32; P = .160), HDL-c (WMD 4.55 mg/dL; 95% CI -1.13, 10.23; P = .116) and LDL-c concentrations (WMD -3.65 mg/dL; 95% CI -13.21, 5.92; P = .455). Significant heterogeneity was observed for HDL-c (I2 = 76.8%). However, the findings of sensitivity analysis revealed that upon exclusion of the potential heterogeneity source, the pooled WMD on HDL-c levels were stable. Garlic supplementation may result in a decrease in TC, but will not affect TG, HDL-c and LDL-c levels among CAD patients.
Collapse
Affiliation(s)
| | - Pedram Keshavarz
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shahla Rezaei
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Zeidi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Clinical Research Development Unit, Vali Asr Hospital, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
16
|
Zhang L, Qu Z, Song A, Yang J, Yu J, Zhang W, Zhuang C. Garlic oil blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis by inducing phase II drug-metabolizing enzymes. Food Chem Toxicol 2021; 157:112581. [PMID: 34562529 DOI: 10.1016/j.fct.2021.112581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer caused one-quarter of all cancer deaths that was more than other cancers. Chemoprevention is a potential strategy to reducing lung cancer incidence and death, and the effective chemopreventive agents are needed. We investigated the efficacy and mechanism of garlic oil (GO), the garlic product, in the chemoprevention of tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer in A/J mice and MRC-5 cell models in the present study. As a result, it was demonstrated that GO significantly inhibited the NNK-induced lung cancer in vivo and protected MRC-5 cells from NNK-induced cell damage. GO could induce the expressions of the phase II drug-metabolizing enzymes, including NAD(P)H: quinone oxidoreductase 1 (NQO-1), glutathione S-transferase alpha 1 (GSTA1), and antioxidative enzymes heme oxygenase-1 (HO-1). These results supported the potential of GO as a novel candidate agent for the chemoprevention of tobacco carcinogens induced lung cancer.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Aiwei Song
- Montverde Academy Shanghai, 508 South Hanqing Road, Shanghai, 201201, China
| | - Jianhong Yang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
17
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
18
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
19
|
Nogales F, Cebadero O, Romero-Herrera I, Rua RM, Carreras O, Ojeda ML. Selenite supplementation modulates the hepatic metabolic sensors AMPK and SIRT1 in binge drinking exposed adolescent rats by avoiding oxidative stress. Food Funct 2021; 12:3022-3032. [PMID: 33710180 DOI: 10.1039/d0fo02831b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binge drinking (BD) is the main alcohol consumption pattern among teenagers. Recently, oxidative stress (OS) generated by BD exposure has been related to hepatic metabolic deregulation and cardiovascular dysfunction. This study analyzed if BD by generating oxidative stress modulates the alteration in hepatic energy homeostasis through two important regulators of energy metabolism: the NAD+-dependent sirtuin deacetylase (SIRT1) and AMP-activated protein kinase (AMPK) and if supplementation with the antioxidant selenium (Se) improves these metabolic disorders. Four groups of adolescent rats supplemented or not with Se (0.4 ppm) and exposed to intermittent i.p. BD were used. BD rats showed an increased AST/ALT ratio, total bilirubin in serum and lipid peroxidation in the liver. The BD rats also showed a higher abdominal/thoracic ratio and increased levels of TG, gluc, and chol compared to the control group, provoking an increase in mean blood pressure (MBP). This alcohol consumption pattern decreased hepatic Se deposits, cytoplasmic GPx activity, and GSH levels as well as the expressions of two metabolic sensors and the pAMPK/AMPK ratio. Se supplementation restored antioxidant parameters and decreased lipid oxidation, avoiding OS and improving the hepatic expression of pAMPK and SIRT1, contributing to the improvement of metabolic (better lipid profile and IRS-1 expression) and vascular function (lower MBP), and to the increase of hepatic functionality (lower AST/ALT ratio). All these actions decrease cardiometabolic risk factor development in the short and long term and could disrupt the relationship between BD and MS, two problems which are currently affecting adolescents.
Collapse
Affiliation(s)
- Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Zhang W, Li JY, Wei XC, Wang Q, Yang JY, Hou H, Du ZW, Wu XA. Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway. Food Chem Toxicol 2021; 149:112029. [PMID: 33508418 DOI: 10.1016/j.fct.2021.112029] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Phateacid esters (PAEs), such as dibutyl phthalate (DBP), have been widely used and human exposure results into serious toxic effects; such as the development of fatty liver disease. In the present study, SD rat models for in vivo study (normal and fatty liver model group) and hepatocytes for in vitro study (normal and abnormal lipid metabolism model group) were established to determine the effects of DBP on liver function and discover the possible mechanisms. Meanwhile, the peroxisome proliferator activated receptor (PPARα) blocker, GW6471, with the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activator, AICAR, were applied in vitro study to clarify the role of PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway in the process. Results suggested that DBP could activate PPARα signaling pathway and affected the protein expression of SREBP, FAS and GPAT to cause hyperlipidemia and abnormal liver function. DBP also could inhibit the phosphorylation and activation of AMPK to inhibit the decomposition and metabolism of lipids. Interestingly, the effects of DBP could be alleviated by GW6471 and AICAR. Our experimental results provide reliable evidence that DBP exposure could further induce liver lipid metabolism disorder and other hepatic toxicity through PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Jing-Ya Li
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, China; Department of Biological Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Chen Wei
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Qian Wang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Ji-Yang Yang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Huan Hou
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Zi-Wei Du
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Xin-An Wu
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China.
| |
Collapse
|
21
|
Disrupted H 2S Signaling by Cigarette Smoking and Alcohol Drinking: Evidence from Cellular, Animal, and Clinical Studies. Antioxidants (Basel) 2021; 10:antiox10010049. [PMID: 33401622 PMCID: PMC7824711 DOI: 10.3390/antiox10010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The role of endogenous hydrogen sulfide (H2S) as an antioxidant regulator has sparked interest in its function within inflammatory diseases. Cigarette and alcohol use are major causes of premature death, resulting from chronic oxidative stress and subsequent tissue damage. The activation of the Nrf2 antioxidant response by H2S suggests that this novel gasotransmitter may function to prevent or potentially reverse disease progression caused by cigarette smoking or alcohol use. The purpose of this study is to review the interrelationship between H2S signaling and cigarette smoking or alcohol drinking. Based on the databases of cellular, animal, and clinical studies from Pubmed using the keywords of H2S, smoking, and/or alcohol, this review article provides a comprehensive insight into disrupted H2S signaling by alcohol drinking and cigarette smoking-caused disorders. Major signaling and metabolic pathways involved in H2S-derived antioxidant and anti-inflammatory responses are further reviewed. H2S supplementation may prove to be an invaluable asset in treating or preventing diseases in those suffering from cigarette or alcohol addiction.
Collapse
|
22
|
Do MH, Lee HB, Oh MJ, Jhun H, Choi SY, Park HY. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem 2020; 343:128395. [PMID: 33268179 DOI: 10.1016/j.foodchem.2020.128395] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
Abstract
Radish (Raphanus sativus) greens are commonly used as a vegetable in Korea; however, their anti-obesity effect has not been reported yet. We prepared the polysaccharide fraction of radish greens (PRG) and assessed its anti-obesity activity in high fat diet (HFD)-induced obese C57BL/6J mice. Supplementation with 4 mg/kg PRG reduced weight gain and body fat percentage, and regulated serum biomarkers against HFD-induced obesity. Moreover, PRG treatment improved gut permeability by increasing tight junction protein expression and colon length shortening. HFD intake increased the proportion of Firmicutes and decreased the proportion of Bacteroidetes and Verrucomicrobia; however, PRG supplementation maintained gut microbial composition to normal diet condition. Moreover, PRG reduced HFD-induced increase of lipid metabolism-related protein expression, along with adipocyte size in white adipose tissue. These results indicated that PRG as a potential prebiotic, has anti-obesity properties by improving gut barrier function, modulating gut microbiota and regulating lipid metabolism.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hye-Bin Lee
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Mi-Jin Oh
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Sang Yoon Choi
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
23
|
Li Y, Zhang Q, Fang J, Ma N, Geng X, Xu M, Yang H, Jia X. Hepatotoxicity study of combined exposure of DEHP and ethanol: A comprehensive analysis of transcriptomics and metabolomics. Food Chem Toxicol 2020; 141:111370. [DOI: 10.1016/j.fct.2020.111370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
|
24
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. J Adv Res 2020; 27:127-135. [PMID: 33318872 PMCID: PMC7728580 DOI: 10.1016/j.jare.2020.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione β-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. Aim of Review In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. Key Scientific Concepts of Review As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.
Collapse
Key Words
- 3-MP, 3-mercaptopyruvate
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AGTR1, angiotensin II type 1 receptor
- AMPK, AMP-activated protein kinase
- Akt, protein kinase B
- CAT, cysteine aminotransferase
- CBS, cystathione β-synthase
- CO, carbon monoxide
- COX-2, cyclooxygenase-2
- CSE, cystathione γ-lyase
- CX3CR1, chemokine CX3C motif receptor 1
- Cancer
- DAO, D-amino acid oxidase
- DATS, Diallyl trisulfide
- EGFR, epidermal growth factor receptor
- ERK, extracellular regulated protein kinases
- FAS, fatty acid synthase
- Fibrosis
- H2S, hydrogen sulfide
- HFD, high fat diet
- HO-1, heme oxygenase 1
- Hydrogen sulfide
- IR, ischemia/reperfusion
- Liver disease
- MMP-2, matrix metalloproteinase 2
- NADH, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver diseases
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NaHS, sodium hydrosulfide
- Nrf2, nuclear factor erythroid2-related factor 2
- PI3K, phosphatidylinositol 3-kinase
- PLP, pyridoxal 5′-phosphate
- PPG, propargylglycine
- PTEN, phosphatase and tensin homolog deleted on chromosome ten
- SAC, S-allyl-cysteine
- SPRC, S-propargyl-cysteine
- STAT3, signal transducer and activator of transcription 3
- Steatosis
- VLDL, very low density lipoprotein
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518037, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,National University of Singapore Research Institute, Suzhou 215000, China
| |
Collapse
|
25
|
Panjeshahin A, Mollahosseini M, Panbehkar‐Jouybari M, Kaviani M, Mirzavandi F, Hosseinzadeh M. Effects of garlic supplementation on liver enzymes: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res 2020; 34:1947-1955. [DOI: 10.1002/ptr.6659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Asieh Panjeshahin
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mehdi Mollahosseini
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Monireh Panbehkar‐Jouybari
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mojtaba Kaviani
- Faculty of Pure & Applied Science, School of Nutrition and DieteticsAcadia University Wolfville Nova Scotia Canada
| | - Farhang Mirzavandi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
26
|
Loiselle JJ, Yang G, Wu L. Hydrogen sulfide and hepatic lipid metabolism - a critical pairing for liver health. Br J Pharmacol 2020; 177:757-768. [PMID: 30499137 PMCID: PMC7024709 DOI: 10.1111/bph.14556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is the most recently recognized gasotransmitter, influencing a wide range of physiological processes. As a critical regulator of metabolism, H2 S has been suggested to be involved in the pathology of many diseases, particularly obesity, diabetes and cardiovascular disorders. Its involvement in liver health has been brought to light more recently, particularly through knockout animal models, which show severe hepatic lipid accumulation upon ablation of H2 S metabolic pathways. A complex relationship between H2 S and lipid metabolism in the liver is emerging, which has significant implications for liver disease establishment and/or progression, regardless of the disease-causing agent. In this review, we discuss the critical importance of H2 S in hepatic lipid metabolism. We then describe the animal models so far related with H2 S and lipid-associated liver disease, as well as H2 S-based treatments available. Finally, we highlight important considerations for future studies and identify areas in which much still remains to be determined. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Julie J Loiselle
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| | - Guangdong Yang
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| |
Collapse
|
27
|
Mun J, Park J, Yoon HG, You Y, Choi KC, Lee YH, Kim K, Lee J, Kim OK, Jun W. Effects of Eriobotrya japonica Water Extract on Alcoholic and Nonalcoholic Fatty Liver Impairment. J Med Food 2019; 22:1262-1270. [PMID: 31834842 DOI: 10.1089/jmf.2019.4493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the potential protective effects of the hot water extract of Eriobotrya japonica (EJW) on EtOH- or free fatty acid (FFA)-induced fatty liver injury in vitro. HepG2/2E1 cells were exposed to EtOH and HepG2 cells were exposed to a mixture of FFAs (oleic acid:palmitic acid, 2:1) to stimulate oxidative stress and to induce lipid accumulation, respectively. Antioxidant activity was significantly increased and lipid accumulation was inhibited in cells pretreated with EJW compared to those in cells exposed to EtOH or FFA only. Also, 5'adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylations were considerably increased, indicating activation of AMPK. Furthermore, EJW reduced the messenger RNA (mRNA) expression of lipogenesis-associated factors such as ACC, sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS), and increased mRNA expression related to components of the fatty acid β-oxidation pathway, such as AMPK, carnitine palmitoyltransferase 1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPARα). These results suggest that EJW possessed potential preventive effects against both EtOH- and FFA-induced fatty liver disease by alleviation of oxidative stress and lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
- Jeongeun Mun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Yanghee You
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Suwon, Korea
| | - Kyungmi Kim
- Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
28
|
Hu S, Li SW, Yan Q, Hu XP, Li LY, Zhou H, Pan LX, Li J, Shen CP, Xu T. Natural products, extracts and formulations comprehensive therapy for the improvement of motor function in alcoholic liver disease. Pharmacol Res 2019; 150:104501. [PMID: 31689520 DOI: 10.1016/j.phrs.2019.104501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
29
|
Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 289:121720. [PMID: 31271916 DOI: 10.1016/j.biortech.2019.121720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin Zhang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
30
|
A Discovery of Relevant Hepatoprotective Effects and Underlying Mechanisms of Dietary Clostridium butyricum Against Corticosterone-Induced Liver Injury in Pekin Ducks. Microorganisms 2019; 7:microorganisms7090358. [PMID: 31527489 PMCID: PMC6780423 DOI: 10.3390/microorganisms7090358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium butyricum (C. butyricum) can attenuate oxidative stress, inflammation, and hepatic fatty deposition in poultry, however, the underlying mechanisms for this in Pekin ducks remain unclear. This study evaluated these hepatoprotective effects and the underlying mechanisms in a corticosterone (CORT)-induced liver injury model in Pekin ducks fed a C. butyricum intervention diet. A total of 500 Pekin ducks were randomly divided into five groups: one group (CON group) was only provided with a basal diet, three groups were provided a basal diet with 200 mg/kg (LCB group), 400 mg/kg (MCB group), or 600 mg/kg (HCB group) C. butyricum, respectively, and one group was provided a basal diet with 150 mg/kg aureomycin (ANT group) for 42 d. At 37 days-old, all ducks received daily intraperitoneal injections of CORT for five days to establish a liver injury model. C. butyricum intervention alleviated liver injury by decreasing the liver organ indices, hepatic steatosis and hepatocyte necrosis, and improving liver function, antioxidant capacity, and inflammatory factors. Hepatic RNA-seq revealed 365 differentially expressed genes (DEGs) between the MCB and CON groups, with 229 up- and 136 down-regulated DEGs in the MCB group. Between the MCB and ANT groups, 407 DEGs were identified, including 299 up- and 108 down-regulated genes in MCB group. Some DEGs in the MCB group related to oxidative stress and inflammatory responses such as Sod3, Tlr2a/b, and Il10, which were up-regulated, while Apoa1, Cyp7a1, Acsl1/5, Fasn, Ppar-γ, and Scd, which are involved in lipid metabolism, were down-regulated, indicating that these genes were responsive to dietary C. butyricum for the alleviation of corticosterone-induced hepatic injury. Toll-like receptor signaling, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine and glycerophospholipid metabolism signaling pathway were significantly enriched in the MCB group. These findings indicate that C. butyricum intervention can protect Pekin ducks from corticosterone-induced liver injury by the modulation of immunoregulatory- and lipid metabolism-related genes and pathways.
Collapse
|
31
|
Han W, Liu R, Zhang X, Lv P, Li M, Wang X. The potential agents from food for preventing leukopenia induced by benzene: garlic preparations. Toxicol Mech Methods 2019; 29:702-709. [PMID: 31364917 DOI: 10.1080/15376516.2019.1650148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leukopenia is the early clinical manifestation of benzene poisoning. The aim of our research was to evaluate the preventive effects of three kinds of garlic preparations on benzene induced leukopenia. The mouse model of Leukopenia was established with benzene orally. At the same time, mice were administrated with garlic homogenate (GH), garlic oil (GO) or diallyl trisulfide (DATS) as preventional measures. The counts of white blood cells (WBC), the organ indexes, pathological examinations, blood biochemical parameters, weight gains, and food intakes were evaluated to observe the protective effect and potential adverse events. The results demonstrated that the counts of WBC increased by 144.04%, 140.07%, and 148.34%, respectively, after intervention by GH (400 mg/kg), GO (60 mg/kg) and DATS (30 mg/kg), compared with that in the model group. The spleen and thymus indexes in the benzene model group were 44.99% and 54.04% lower than those in the blank control group, the number of spleen nodules reduced and the thymus atrophy, which were restored by three garlic preparations at different degree. The results suggested that the three preparations all could prevent the leukopenia and protect the organ injuries induced by benzene. However, the spleen index and weight gains revealed that GH and GO brought more adverse events than DATS.
Collapse
Affiliation(s)
- Wenting Han
- School of Public Health and Management, Binzhou Medical University , Yantai , China
| | - Ruogu Liu
- School of Teacher Education, Ludong University , Yantai , China
| | - Xiaoshuai Zhang
- School of Public Health and Management, Binzhou Medical University , Yantai , China
| | - Peng Lv
- School of Public Health and Management, Binzhou Medical University , Yantai , China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
32
|
Li M, Xu C, Shi J, Ding J, Wan X, Chen D, Gao J, Li C, Zhang J, Lin Y, Tu Z, Kong X, Li Y, Yu C. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 2018; 67:2169-2180. [PMID: 28877979 PMCID: PMC6241611 DOI: 10.1136/gutjnl-2017-313778] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Accumulation of free fatty acids (FFAs) in hepatocytes induces lipotoxicity, leading to non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the underlying mechanisms by which FFA contributes to the pathogenesis of NAFLD via the regulation of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous hydrogen sulfide (H2S) biosynthesis. DESIGN Hepatic MPST expression was evaluated in mice and patients with NAFLD. A variety of molecular approaches were used to study the effects of MPST regulation on hepatic steatosis in vivo and in vitro. RESULTS In vitro treatment of hepatocytes with FFAs upregulated MPST expression, which was partially dependent on NF-κB/p65. Hepatic MPST expression was markedly increased in high fat diet (HFD)-fed mice and patients with NAFLD. Partial knockdown of MPST via adenovirus delivery of MPST short hairpin RNA or heterozygous deletion of the Mpst gene significantly ameliorated hepatic steatosis in HFD-fed mice. Consistently, inhibition of MPST also reduced FFA-induced fat accumulation in L02 cells. Intriguingly, inhibition of MPST significantly enhanced rather than decreased H2S production, whereas MPST overexpression markedly inhibited H2S production. Co-immunoprecipitation experiments showed that MPST directly interacted with and negatively regulated cystathionine γ-lyase (CSE), a major source of H2S production in the liver. Mechanistically, MPST promoted steatosis via inhibition of CSE/H2S and subsequent upregulation of the sterol regulatory element-binding protein 1c pathway, C-Jun N-terminal kinase phosphorylation and hepatic oxidative stress. CONCLUSIONS FFAs upregulate hepatic expression of MPST and subsequently inhibit the CSE/H2S pathway, leading to NAFLD. MPST may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Division of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jiexia Ding
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dahua Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianguo Gao
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Lin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenhua Tu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoni Kong
- Department of Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
34
|
Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediators Inflamm 2018; 2018:9734845. [PMID: 29785173 PMCID: PMC5896216 DOI: 10.1155/2018/9734845] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Collapse
|
35
|
Wang F, Wu Y, Xie X, Sun J, Chen W. Essential role of nuclear receptors for the evaluation of the benefits of bioactive herbal extracts on liver function. Pharmacotherapy 2018; 99:798-809. [DOI: 10.1016/j.biopha.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
|
36
|
You Y, Lee H, Yoon HG, Park J, Kim OK, Kim K, Lee MJ, Lee YH, Lee J, Jun W. A Blend of Extracts from Houttuynia cordata, Nelumbo nucifera, and Camellia sinensis Protects Against Ethanol-Induced Liver Damage in C57BL/6 Mice. J Med Food 2018; 21:203-206. [PMID: 29356593 DOI: 10.1089/jmf.2017.4043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The protective activity of a mixture of aqueous and ethanolic extracts from Houttuynia cordata Thunb, Nelumbo nucifera G. leaves, and Camellia sinensis seed (HNC) was evaluated in C57BL/6 mice. Pretreatment with HNC prevented the elevation of serum aspartate aminotransferase and alanine aminotransferase caused by ethanol-induced hepatic damage. The HNC-treated mice showed significantly lower triglyceride levels, reduced CYP2E1 activity, and increased antioxidant enzyme activities and lipogenic mRNA levels. These results suggest that HNC might be a candidate agent for liver protection against ethanol-induced oxidative damage, through enhancement of antioxidant and antilipogenic activity.
Collapse
Affiliation(s)
- Yanghee You
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
- 2 University Industry Liaison Office of CNU, Chonnam National University , Gwangju, Korea
| | - Hyunmi Lee
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
| | - Ho-Geun Yoon
- 3 Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University , Seoul, Korea
| | - Jeongjin Park
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
- 4 Research Institute for Human Ecology, Chonnam National University , Gwangju, Korea
| | - Ok-Kyung Kim
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
| | - Kyungmi Kim
- 5 Department of Biofood Analysis, Korea Bio Polytechnic , Ganggyung, Korea
| | - Min-Jae Lee
- 6 NutriPlan Co., Ltd. , Research Center, Gyeonggido, Korea
| | - Yoo-Hyun Lee
- 7 Department of Food and Nutrition, University of Suwon , Gyeonggido, Korea
| | - Jeongmin Lee
- 8 Research Institute of Medical Nutrition, Kyung Hee University , Gyeonggido, Korea
| | - Woojin Jun
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
- 4 Research Institute for Human Ecology, Chonnam National University , Gwangju, Korea
| |
Collapse
|
37
|
Han W, Wang S, Li M, Jiang L, Wang X, Xie K. The protective effect of diallyl trisulfide on cytopenia induced by benzene through modulating benzene metabolism. Food Chem Toxicol 2018; 112:393-399. [PMID: 29305270 DOI: 10.1016/j.fct.2017.12.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 02/02/2023]
Abstract
It has been known that metabolism of benzene is necessary for its toxicity. The purpose of our study is to investigate the effect of diallyl trisulfide (DATS) on attenuating cytopenia in peripheral blood introduced by benzene through regulating benzene metabolism in rats. We established benzene poisoning model with benzene (1.3 g/kg), while the DATS treatment groups were treated with DATS plus benzene (15 or 30 mg/kg) for 28 days, respectively. The results of blood parameters and concentration of metabolites of benzene (t, t-MA and SPMA) determination in urine showed that DATS could effectively attenuate the cytopenia induced by benzene through regulating benzene metabolism. Western blot and chemical method were used to detect the activities and protein expression levels of enzymes CYP2E1 and GSTT1 in liver and enzymes MPO and NQO1 in bone marrow were tested. The results suggested that the inhibition of bioactivation in liver and bone marrow catalyzed by CYP2E1 and MPO and the activation of detoxification catalyzed by GSTT1 and NQO1 might be the critical mechanism, through which DATS modulated benzene metabolism to prevent benzene-induced cytopenia.
Collapse
Affiliation(s)
- Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
38
|
Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Guan MJ, Zhao N, Xie KQ, Zeng T. Hepatoprotective effects of garlic against ethanol-induced liver injury: A mini-review. Food Chem Toxicol 2018; 111:467-473. [DOI: 10.1016/j.fct.2017.11.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
40
|
Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues. Toxicology 2017; 390:53-60. [DOI: 10.1016/j.tox.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
41
|
Zhao L, Jiang Y, Ni Y, Zhang T, Duan C, Huang C, Zhao Y, Gao L, Li S. Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
42
|
Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPAR α. Acta Pharm Sin B 2017; 7:427-438. [PMID: 28752027 PMCID: PMC5518659 DOI: 10.1016/j.apsb.2017.05.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) α, -γ and -β/δ are ligand-activated transcription factors and members of the superfamily of nuclear hormone receptor. These receptors play key roles in maintaining glucose and lipid homeostasis by modulating gene expression. PPARs constitute a recognized druggable target and indeed several classes of drugs used in the treatment of metabolic disease symptoms, such as dyslipidemia (fibrates, e.g. fenofibrate and gemfibrozil) and diabetes (thiazolidinediones, e.g. rosiglitazone and pioglitazone) are ligands for the various PPAR isoforms. More precisely, antidiabetic thiazolidinediones act on PPARγ, while PPARα is the main molecular target of antidyslipidemic fibrates. Over the past few years, our understanding of the mechanism underlying the PPAR modulation of gene expression has greatly increased. This review presents a survey on terrestrial and marine natural products modulating the PPARα system with the objective of highlighting how the incredible chemodiversity of natural products can provide innovative leads for this "hot" target.
Collapse
|
43
|
Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Blockade of hedgehog pathway is required for the protective effects of magnesium isoglycyrrhizinate against ethanol-induced hepatocyte steatosis and apoptosis. IUBMB Life 2017; 69:540-552. [DOI: 10.1002/iub.1639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Chunfeng Lu
- Department of Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
| | - Wenxuan Xu
- Department of Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
| | - Anping Chen
- Department of Pathology, School of Medicine; Saint Louis University; St Louis MO USA
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu China
| |
Collapse
|
44
|
Magdaleno F, Blajszczak CC, Nieto N. Key Events Participating in the Pathogenesis of Alcoholic Liver Disease. Biomolecules 2017; 7:biom7010009. [PMID: 28134813 PMCID: PMC5372721 DOI: 10.3390/biom7010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality worldwide. It ranges from fatty liver to steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The most prevalent forms of ALD are alcoholic fatty liver, alcoholic hepatitis (AH) and alcoholic cirrhosis, which frequently progress as people continue drinking. ALD refers to a number of symptoms/deficits that contribute to liver injury. These include steatosis, inflammation, fibrosis and cirrhosis, which, when taken together, sequentially or simultaneously lead to significant disease progression. The pathogenesis of ALD, influenced by host and environmental factors, is currently only partially understood. To date, lipopolysaccharide (LPS) translocation from the gut to the portal blood, aging, gender, increased infiltration and activation of neutrophils and bone marrow-derived macrophages along with alcohol plus iron metabolism, with its associated increase in reactive oxygen species (ROS), are all key events contributing to the pathogenesis of ALD. This review aims to introduce the reader to the concept of alcohol-mediated liver damage and the mechanisms driving injury.
Collapse
Affiliation(s)
- Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Chuck C Blajszczak
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Liu S, Cheng Y, Rao M, Tang M, Dong Z. Muscone Induces CYP1A2 and CYP3A4 Enzyme Expression in L02 Human Liver Cells and CYP1A2 and CYP3A11 Enzyme Expression in Kunming Mice. Pharmacology 2017; 99:205-215. [PMID: 28110334 DOI: 10.1159/000455154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
Abstract
AIM To examine the effect of synthetic muscone on the expression of CYP1A2 and CYP3A4 enzymes in human liver L02 cells and in the liver tissue of Kunming mice. METHODS The L02 hepatic cell line was used to study the effect of low (10-4 μmol/L), middle (10-3 μmol/L), and high concentrations (10-2 μmol/L) of muscone on the expression of CYP1A2 and CYP3A4 enzymes. In addition, the cytochrome P450 (CYP) expression was investigated in Kunming mice after the administration of 10 mg/kg (low), 50 mg/kg (middle), and 100 mg/kg (high) dose of muscone for 6 days. A mixture of phenobarbital (30 mg/kg) and β-napthoflavone (80 mg/kg) was used as positive control and the effects of the compounds on CYP expression were investigated at the end of 6- and 12-day periods. RESULTS Muscone induced the expression of CYP1A2 (middle and low concentrations) and of CYP3A4 (high concentration) enzymes in L02 cells. In vivo, administration of muscone in Kunming mice revealed significant weight reduction at the end of 6- and 12-day periods (middle and high doses, respectively), compared to the control group (p < 0.05). Liver toxicity scores indicated that the liver injuries in the positive control and high doses of muscone group were significantly higher in the 6- and 12-day periods, compared to those in the blank control group (p < 0.05). Furthermore, muscone induced CYP1A2 and CYP3A11 expressions in Kunming mice at the middle dose and all doses during the 12-day period as demonstrated by immunoblotting experiments. A low dose of mucone induced the CYP enzyme expression more rapidly, whereas a high dose of muscone caused the longest inductive effect. The results were confirmed by immunohistochemistry experiments and real-time PCR studies, where similar patterns of muscone-mediated inductive effects were noted. CONCLUSIONS Muscone induces CYP1A2 and CYP3A4 expression in liver cells in vitro and in vivo. In addition, it exhibits liver toxicity in Kunming mice at concentrations higher than 50 mg/kg. The CYP-inductive effect that is caused by muscone encompasses a 6- to 12-day period of activity after drug administration as demonstrated by follow-up in vivo studies.
Collapse
Affiliation(s)
- Sha Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
46
|
Wegner SA, Pollard KA, Kharazia V, Darevsky D, Perez L, Roychowdhury S, Xu A, Ron D, Nagy LE, Hopf FW. Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcohol Clin Exp Res 2017; 41:345-358. [PMID: 28103636 DOI: 10.1111/acer.13303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Liver damage is a serious and sometimes fatal consequence of long-term alcohol intake, which progresses from early-stage fatty liver (steatosis) to later-stage steatohepatitis with inflammation and fibrosis/necrosis. However, very little is known about earlier stages of liver disruption that may occur in problem drinkers, those who drink excessively but are not dependent on alcohol. METHODS We examined how repeated binge-like alcohol drinking in C57BL/6 mice altered liver function, as compared with a single binge-intake session and with repeated moderate alcohol consumption. We measured a number of markers associated with early- and later-stage liver disruption, including liver steatosis, measures of liver cytochrome P4502E1 (CYP2E1) and alcohol dehydrogenase (ADH), alcohol metabolism, expression of cytokine mRNA, accumulation of 4-hydroxynonenal (4-HNE) as an indicator of oxidative stress, and alanine transaminase/aspartate transaminase as a measure of hepatocyte injury. RESULTS Importantly, repeated binge-like alcohol drinking increased triglyceride levels in the liver and plasma, and increased lipid droplets in the liver, indicators of steatosis. In contrast, a single binge-intake session or repeated moderate alcohol consumption did not alter triglyceride levels. In addition, alcohol exposure can increase rates of alcohol metabolism through CYP2E1 and ADH, which can potentially increase oxidative stress and liver dysfunction. Intermittent, excessive alcohol intake increased liver CYP2E1 mRNA, protein, and activity, as well as ADH mRNA and activity. Furthermore, repeated, binge-like drinking, but not a single binge or moderate drinking, increased alcohol metabolism. Finally, repeated, excessive intake transiently elevated mRNA for the proinflammatory cytokine IL-1B and 4-HNE levels, but did not alter markers of later-stage liver hepatocyte injury. CONCLUSIONS Together, we provide data suggesting that even relatively limited binge-like alcohol drinking can lead to disruptions in liver function, which might facilitate the transition to more severe forms of liver damage.
Collapse
Affiliation(s)
- Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Katherine A Pollard
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Viktor Kharazia
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Luz Perez
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Allison Xu
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Dorit Ron
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Frederic Woodward Hopf
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| |
Collapse
|
47
|
Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Nrf2 Activation Is Required for Ligustrazine to Inhibit Hepatic Steatosis in Alcohol-Preferring Mice and Hepatocytes. Toxicol Sci 2016; 155:432-443. [DOI: 10.1093/toxsci/kfw228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Kim M, Pichiah PBT, Kim DK, Cha YS. Black adzuki bean (Vigna angularis) extract exerts phenotypic effects on white adipose tissue and reverses liver steatosis in diet-induced obese mice. J Food Biochem 2016. [DOI: 10.1111/jfbc.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mina Kim
- Department of Food Science and Human Nutrition, and Research Institute of Human Ecology; Chonbuk National University; Jeonju 561-756 South Korea
| | | | - Dae Keun Kim
- College of Pharmacy; Woosuk University; Jeonju 565-701 South Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, and Research Institute of Human Ecology; Chonbuk National University; Jeonju 561-756 South Korea
| |
Collapse
|
49
|
Dietary supplementation in patients with alcoholic liver disease: a review on current evidence. Hepatobiliary Pancreat Dis Int 2016; 15:348-60. [PMID: 27498574 DOI: 10.1016/s1499-3872(16)60096-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is one of the main causes of liver disease worldwide. Although the pathogenesis of ALD has not yet been well elucidated, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species play a pivotal role in the clinical and pathological spectrum of the disease. This review summarizes the existing evidences on dietary supplements considered to have antioxidant, and/or anti-inflammatory properties, and their role in the management of ALD and the proposed mechanisms. DATA SOURCES The present study reviewed all studies published in PubMed, ScienceDirect and Scopus, from 1959 to 2015, indicating the role of different dietary supplementation in attenuation of many pathophysiological processes involved in development and progression of ALD. Full-texts of citations were used except for those that were published in languages other than English. RESULTS Significant progress has been made to understand the key events and molecular players for the onset and progression of ALD from both experimental and clinical studies; however, there is no successful treatment currently available. The present review discussed the role of a variety of dietary supplements (e.g. vitamin A, carotenoids, vitamins B3, C and E, in addition to antioxidants and anti-inflammatory agents) in treating ALD. It has been shown that supplementation with some carotenoids, vitamin B3, vitamin C, silymarin, curcumin, probiotics, zinc, S-adenosylmethionine and garlic may have potential beneficial effects in animal models of ALD; however, the number of clinical studies is very limited. In addition, supplementation should be accompanied with alcohol cessation. CONCLUSIONS Since oxidative stress and inflammation are involved in the pathogenesis of ALD, dietary supplements that can modulate these pathologies could be useful in the treatment of ALD. In addition to alcohol cessation, these supplements have shown beneficial effects on animal models of ALD. Clinical trials are needed to validate the beneficiary role of these supplements in patients with ALD.
Collapse
|
50
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|