1
|
Alehashem M, Alcaraz AJ, Hogan N, Weber L, Siciliano SD, Hecker M. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173041. [PMID: 38723972 DOI: 10.1016/j.scitotenv.2024.173041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Although many organochlorine pesticides (OCPs) have been banned or restricted because of their persistence and linkage to neurodegenerative diseases, there is evidence of continued human exposure. In contrast, registered herbicides are reported to have a moderate to low level of toxicity; however, there is little information regarding their toxicity to humans or their combined effects with OCPs. This study aimed to characterize the mechanism of toxicity of banned OCP insecticides (aldrin, dieldrin, heptachlor, and lindane) and registered herbicides (trifluralin, triallate, and clopyralid) detected at a legacy contaminated pesticide manufacturing and packing site using SH-SY5Y cells. Cell viability, LDH release, production of reactive oxygen species (ROS), and caspase 3/7 activity were evaluated following 24 h of exposure to the biocides. In addition, RNASeq was conducted at sublethal concentrations to investigate potential mechanisms involved in cellular toxicity. Our findings suggested that aldrin and heptachlor were the most toxic, while dieldrin, lindane, trifluralin, and triallate exhibited moderate toxicity, and clopyralid was not toxic to SH-SY5Y cells. While aldrin and heptachlor induced their toxicity through damage to the cell membrane, the toxicity of dieldrin was partially attributed to necrosis and apoptosis. Moreover, toxic effects of lindane, trifluralin, and triallate, at least partially, were associated with ROS generation. Gene expression profiles suggested that decreased cell viability induced by most of the tested biocides was related to inhibited cell proliferation. The dysregulation of genes encoding for proteins with anti-apoptotic properties also supported the absence of caspase activation. Identified enriched terms showed that OCP toxicity in SH-SY5Y cells was mediated through pathways associated with the pathogenesis of neurodegenerative diseases. In conclusion, this study provides a basis for elucidating the molecular mechanisms of pesticide-induced neurotoxicity. Moreover, it introduced SH-SY5Y cells as a relevant in vitro model for investigating the neurotoxicity of pesticides in humans.
Collapse
Affiliation(s)
- M Alehashem
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - A J Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Animal Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - S D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
2
|
Limbu S, Glasgow E, Block T, Dakshanamurthy S. A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations. TOXICS 2024; 12:481. [PMID: 39058133 PMCID: PMC11281031 DOI: 10.3390/toxics12070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Environmental chemicals, such as PFAS, exist as mixtures and are frequently encountered at varying concentrations, which can lead to serious health effects, such as cancer. Therefore, understanding the dose-dependent toxicity of chemical mixtures is essential for health risk assessment. However, comprehensive methods to assess toxicity and identify the mechanisms of these harmful mixtures are currently absent. In this study, the dose-dependent toxicity assessments of chemical mixtures are performed in three methodologically distinct phases. In the first phase, we evaluated our machine-learning method (AI-HNN) and pathophysiology method (CPTM) for predicting toxicity. In the second phase, we integrated AI-HNN and CPTM to establish a comprehensive new approach method (NAM) framework called AI-CPTM that is targeted at refining prediction accuracy and providing a comprehensive understanding of toxicity mechanisms. The third phase involved experimental validations of the AI-CPTM predictions. Initially, we developed binary, multiclass classification, and regression models to predict binary, categorical toxicity, and toxic potencies using nearly a thousand experimental mixtures. This empirical dataset was expanded with assumption-based virtual mixtures, compensating for the lack of experimental data and broadening the scope of the dataset. For comparison, we also developed machine-learning models based on RF, Bagging, AdaBoost, SVR, GB, KR, DT, KN, and Consensus methods. The AI-HNN achieved overall accuracies of over 80%, with the AUC exceeding 90%. In the final phase, we demonstrated the superior performance and predictive capability of AI-CPTM, including for PFAS mixtures and their interaction effects, through rigorous literature and statistical validations, along with experimental dose-response zebrafish-embryo toxicity assays. Overall, the AI-CPTM approach significantly improves upon the limitations of standalone AI models, showing extensive enhancements in identifying toxic chemicals and mixtures and their mechanisms. This study is the first to develop a hybrid NAM that integrates AI with a pathophysiology method to comprehensively predict chemical-mixture toxicity, carcinogenicity, and mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3700 O St. NW, Washington, DC 20057, USA
| |
Collapse
|
3
|
Ma M, Guo D, Wang R, Wang P, Su X. Hormone effects of eighteen bisphenol analogues and their effects on cellular homeostasis and the typical signal pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122688. [PMID: 37816402 DOI: 10.1016/j.envpol.2023.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Through the transfer chain of surroundings from feed to the farmed-animals and ultimately the corresponding livestock and poultry products, people are exposed to large amounts of bisphenol analogues (BPs), such as rational emissions from manufacturing plants, feed packaging bags and food packaging contact. Some BPs have been reported to show certain toxicological effects, especially, estrogen and endocrine disrupting effect. With the increasing application of BPs, the problem is becoming more and more serious. We systematically studied the hormonal effects of 18 BPs and their effects on cell homeostasis and classical signaling pathways by using classical E-SCREEN assay, fluorescent probes and western blotting. The results confirmed the estrogen-like effect of 13 BPs and 6 BPs obtained high docking scores (Scores < -9.0) for the three receptors simultaneously with the main interactions of hydrophobic, hydrogen and π-stacking of T-type bonds. BPAP regulates cells via apoptosis and steroid signaling pathway by intracellular ROS and mitochondrial followed the caspase pathway. BPE and BPS were involved in the classical NF-κB and Hippo signaling pathways. All data provides scientific basis for the safety risk assessment of endocrine disrupting and cellular homeostasis evaluation of BPs as chronic environmental pollution.
Collapse
Affiliation(s)
- Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Dongmei Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou Zhejiang, 310021, China
| | - Ruiguo Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Peilong Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China; Beijing Jingwa Agricultural Science and Innovation Center, No.1, Yuda Street, Yukou Town, Pinggu District, Beijing, 101206, China.
| |
Collapse
|
4
|
Chen Y, Zhang J, Zhu X, Wang Y, Chen J, Sui B, Teng HH. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115509. [PMID: 37742573 DOI: 10.1016/j.ecoenv.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Cadmium (Cd) and aniline frequently co-occur in industrial settings but have rarely been addressed as composite toxicants in terms of the overall toxicity despite extensive knowledge of the environmental impact of each individual pollutant. In this study, we attempt to assess the relation of individual and combined toxic effects of Cd and aniline using a bacterial consortium cultured from soils as a model system. Results showed that the consortial bacteria exhibited drastically stronger tolerance to stand-alone Cd and aniline in comparison to literature data acquired from single species studies. When occurring simultaneously, the joint toxicity displayed a concentration-dependent behavior that wasn't anticipated based on individual chemical tests. Specifically, additive effects manifested with Cd and aniline at their IC10s, but changed to synergistic when the concentrations increased to IC20, and finally transitioned into antagonistic at IC30s and beyond. In addition, co-occurring aniline appeared to have retarded the cellular accumulation of Cd while increasing the enzymatic activities of superoxide dismutase and catalase relative to that in Cd-alone treatments. Finally, the bacterial community experienced distinct compositional changes under solo and combined toxicities with several genera exhibiting inconsistent behavior between treatments of single and composite toxicants. Findings from this study highlight the complexity of bacterial response to composite pollutions and point to the need for more comprehensive references in risk and toxicology assessment at multi-chemical contamination sites.
Collapse
Affiliation(s)
- Yuxuan Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jianchao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| | - Xiangyu Zhu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Yuebo Wang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Biao Sui
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - H Henry Teng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| |
Collapse
|
5
|
Preparation and characterization of duck liver-derived antioxidant peptides based on LC-MS/MS, molecular docking, and machine learning. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
7
|
Assessing the combined toxicity effects of three neonicotinoid pesticide mixtures on human neuroblastoma SK-N-SH and lepidopteran Sf-9 cells. Food Chem Toxicol 2020; 145:111632. [DOI: 10.1016/j.fct.2020.111632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
|
8
|
Huang T, Huang Y, Huang Y, Yang Y, Zhao Y, Martyniuk CJ. Toxicity assessment of the herbicide acetochlor in the human liver carcinoma (HepG2) cell line. CHEMOSPHERE 2020; 243:125345. [PMID: 31739254 DOI: 10.1016/j.chemosphere.2019.125345] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Acetochlor is a high-volume herbicide used on a global scale and toxicity assessments are needed to define its potential for adverse effects in wildlife and humans. This study was conducted to determine the effects of acetochlor on human liver carcinoma cells (HepG2), a cell model widely used to assess the potential for chemical hepatotoxicity. Experiments were conducted at concentrations ranging 0-800 μM acetochlor over a 12 to 48h period to quantify underlying mechanisms of toxicity. Our data indicate that acetochlor suppressed HepG2 cell proliferation in both a concentration- and time-dependent manner. Acetochlor induced reactive oxygen species (ROS) generation more than 700% with exposure to 400 μM acetochlor, and acetochlor decreased the activities and levels of anti-oxidant responses (superoxide dismutase, glutathione) following exposure to 100 μM, 200 μM and 400 μM acetochlor. Acetochlor also (1) induced HepG2 cell damage through apoptotic-signaling pathways; (2) enhanced intracellular free Ca2+ concentration (>400%); (3) decreased mitochondrial transmembrane potential (∼77%), and reduced ATP levels (∼65%) following exposure to 400 μM acetochlor compared to untreated cells. Notably, cell cycle progression was blocked at G0/G1 phase in HepG2 cells when treated for 24 h with 400 μM acetochlor. Taken together, acetochlor induced significant cytotoxicity toward HepG2 cells, and the underlying toxicity mechanisms appear to be related to ROS generation, mitochondrial dysfunction and disruption in the cell cycle regulation. These data contribute to toxicity assessments for acetochlor, a high-use herbicide, to quantify risk to wildlife and human health.
Collapse
Affiliation(s)
- Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Ma M, Chen C, Yang G, Wang Y, Wang T, Li Y, Qian Y. Combined anti-androgenic effects of mixtures of agricultural pesticides using in vitro and in silico methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109652. [PMID: 31605955 DOI: 10.1016/j.ecoenv.2019.109652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Humans and wildlife are continuously and simultaneously exposed to various pesticides that have been identified as endocrine disruptors which interfere with regulations of sexual differentiation and fertility. Low-dose effects of combined exposure from mixtures of pesticides have been extensively reported and need to be addressed in the context of human health risk assessment. The objective of the study is to assess the individual and combined anti-androgenic effects of twelve widely used pesticides in MDA-kb2 cells. The order of potency for seven pesticides with moderate anti-androgenic activities was in the order: fenitrothion > dimethomorph > difenoconazole > bromopropylate > prochloraz > imazalil > endosulfan, which was induced by the androgen receptor (AR) antagonism rather than cytotoxicity (with the exception of endosulfan which exhibited the highest cytotoxicity). The other five pesticides exhibited lower anti-androgenic activities. At 10% of AR antagonistic effect, three mixtures comprised of the seven pesticides (Mix-EC10, Mix-EC20, and Mix-EC25) at equi-effect concentrations showed summed concentrations of 6.75E-11, 17.63 and 25.21 μM, respectively. The combined effects were essentially close to the predicted of concentration addition (CA) at realistically low concentrations. In addition, molecular docking simulation indicated that hydrophobic interaction and polar functional groups of the pesticides contributed to the binding energy, which might be responsible for the AR antagonism. Our findings provide a basis for defining similarly acting antagonists in the context of cumulative risk assessment for pesticides in foods.
Collapse
Affiliation(s)
- Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China.
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China.
| | - Guiling Yang
- Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanhua Wang
- Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Yun Li
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
10
|
Panseri S, Chiesa L, Ghisleni G, Marano G, Boracchi P, Ranghieri V, Malandra RM, Roccabianca P, Tecilla M. Persistent organic pollutants in fish: biomonitoring and cocktail effect with implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:601-611. [PMID: 30862267 DOI: 10.1080/19440049.2019.1579926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The impact of anthropogenic wastes of persistent organic pollutants (POPs) on the marine environment has increased in the last decades. POPs include polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs). To assess the levels of these POPs in the wild fish population, pelagic and benthopelagic predator fish species were selected as biomonitors. For detection and quantification of POPs in muscular tissues, a simple extraction through Accelerated-Solvent-Extraction (ASE) with an 'in-line' clean up purification approach was applied, followed by a GC-MS/MS analysis. Concentrations of sum DDT, sum HCH and endrin correlated with all PCB concentrations. Significant differences among fish species were found for all OCs and all PCBs except PCB 31 and 101. Blackspot seabream had the highest PCB concentrations; OCs were highest in tuna. Due to major concerns regarding fish population losses and the possible human chronic exposure to contaminated fish, studies addressing combined effects of multiple POPs ('cocktail effect') should be implemented. Our data motivate further experimental and observational studies in fish to define adequate baseline levels for cumulative human exposure and potential role of these contaminants for food safety.
Collapse
Affiliation(s)
- Sara Panseri
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - Luca Chiesa
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - Gabriele Ghisleni
- b DIMEVET-Department of Veterinary Medicine , School of Veterinary Medicine , Milano , Italy
| | - Giuseppe Marano
- c Department of Clinical Sciences and Community Health Laboratory of Medical Statistics, Epidemiology and Biometry G. A. Maccacaro , University of Milan , Milan , Italy
| | - Patrizia Boracchi
- d Unit of Medical Statistics, Biometry and Bioinformatics , Fondazione IRCSS Istituto Nazionale Tumori di Milano , Milan , Italy
| | | | - Renato M Malandra
- f National Health Service , ATS Veterinary Service , Milano , MI , Italy
| | - Paola Roccabianca
- b DIMEVET-Department of Veterinary Medicine , School of Veterinary Medicine , Milano , Italy
| | - Marco Tecilla
- b DIMEVET-Department of Veterinary Medicine , School of Veterinary Medicine , Milano , Italy
| |
Collapse
|
11
|
Bouagga A, Chaabane H, Toumi K, Mougou Hamdane A, Nasraoui B, Joly L. Pesticide residues in Tunisian table grapes and associated risk for consumer’s health. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:135-144. [DOI: 10.1080/19393210.2019.1571532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- A. Bouagga
- Plant Health and Environment, Institut National Agronomique de Tunisie, City of Mahrajene, Tunis, Tunisia
| | - H. Chaabane
- Plant Health and Environment, Institut National Agronomique de Tunisie, City of Mahrajene, Tunis, Tunisia
| | - K. Toumi
- Pesticide Science Laboratory, Université de Liége, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - A. Mougou Hamdane
- Plant Health and Environment, Institut National Agronomique de Tunisie, City of Mahrajene, Tunis, Tunisia
| | - B. Nasraoui
- Plant Health and Environment, Institut National Agronomique de Tunisie, City of Mahrajene, Tunis, Tunisia
| | - L. Joly
- Chemical and Physical Health Risks, Sciensano, Ixelles, Belgium
| |
Collapse
|
12
|
Alarcan J, Biré R, Le Hégarat L, Fessard V. Mixtures of Lipophilic Phycotoxins: Exposure Data and Toxicological Assessment. Mar Drugs 2018; 16:E46. [PMID: 29385038 PMCID: PMC5852474 DOI: 10.3390/md16020046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filter-feeding shellfish and can cause human intoxication. Regulatory limits have been set for individual toxins, and the toxicological features are well characterized for some of them. However, phycotoxin contamination is often a co-exposure phenomenon, and toxicological data regarding mixtures effects are very scarce. Moreover, the type and occurrence of phycotoxins can greatly vary from one region to another. This review aims at summarizing the knowledge on (i) multi-toxin occurrence by a comprehensive literature review and (ii) the toxicological assessment of mixture effects. A total of 79 publications was selected for co-exposure evaluation, and 44 of them were suitable for toxin ratio calculations. The main toxin mixtures featured okadaic acid in combination with pectenotoxin-2 or yessotoxin. Only a few toxicity studies dealing with co-exposure were published. In vivo studies did not report particular mixture effects, whereas in vitro studies showed synergistic or antagonistic effects. Based on the combinations that are the most reported, further investigations on mixture effects must be carried out.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Ronel Biré
- Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 94706 Maisons-Alfort, France.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| |
Collapse
|
13
|
Hernández AF, Gil F, Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 2017; 91:3211-3223. [PMID: 28845507 DOI: 10.1007/s00204-017-2043-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
Pesticides can interact with each other in various ways according to the compound itself and its chemical family, the dose and the targeted organs, leading to various effects. The term interaction means situations where some or all individual components of a mixture influence each other's toxicity and the joint effects may deviate from the additive predictions. The various mixture effects can be greatly determined by toxicokinetic and toxicodynamic factors involving metabolic pathways and cellular or molecular targets of individual pesticides, respectively. However, the complexity of toxicological interactions can lead to unpredictable effects of pesticide mixtures. Interactions on metabolic processes affecting the biotransformation of pesticides seem to be by far the most common mechanism of synergism. Moreover, the identification of pesticides responsible for synergistic interactions is an important issue for cumulative risk assessment. Cholinesterase inhibiting insecticides (organophosphates and N-methylcarbamates), triazole fungicides, triazine herbicides, and pyrethroid insecticides are overrepresented in the synergistic mixtures identified so far. Since the limited available empirical evidence suggests that synergisms at dietary exposure levels are rather rare, and experimentally occurred at unrealistic high concentrations, synergism cannot be predicted quantitatively on the basis of the toxicity of mixture components. The prediction of biological responses elicited by interaction of pesticides with each other (or with other chemicals) will benefit from using a systems toxicology approach. The identification of core features of pesticide mixtures at molecular level, such as gene expression profiles, could be helpful to assess or predict the occurrence of interactive effects giving rise to unpredicted responses.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - Marina Lacasaña
- Andalulsian School of Public Health, Granada, Spain.,CIBERESP, Madrid, Spain.,ibs.GRANADA, Granada, Spain
| |
Collapse
|
14
|
Kadar A, de Sousa G, Peyre L, Wortham H, Doumenq P, Rahmani R. Evidence of in vitro metabolic interaction effects of a chlorfenvinphos, ethion and linuron mixture on human hepatic detoxification rates. CHEMOSPHERE 2017; 181:666-674. [PMID: 28476006 DOI: 10.1016/j.chemosphere.2017.04.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
General population exposure to pesticides mainly occurs via food and water consumption. However, their risk assessment for regulatory purposes does not currently consider the actual co-exposure to multiple substances. To address this concern, relevant experimental studies are needed to fill the lack of data concerning effects of mixture on human health. For the first time, the present work evaluated on human microsomes and liver cells the combined metabolic effects of, chlorfenvinphos, ethion and linuron, three pesticides usually found in vegetables of the European Union. Concentrations of these substances were measured during combined incubation experiments, thanks to a new analytical methodology previously developed. The collected data allowed for calculation and comparison of the intrinsic hepatic clearance of each pesticide from different combinations. Finally, the results showed clear inhibitory effects, depending on the association of the chemicals at stake. The major metabolic inhibitor observed was chlorfenvinphos. During co-incubation, it was able to decrease the intrinsic clearance of both linuron and ethion. These latter also showed a potential for metabolic inhibition mainly cytochrome P450-mediated in all cases. Here we demonstrated that human detoxification from a pesticide may be severely hampered in case of co-occurrence of other pesticides, as it is the case for drugs interactions, thus increasing the risk of adverse health effects. These results could contribute to improve the current challenging risk assessment of human and animal dietary to environmental chemical mixtures.
Collapse
Affiliation(s)
- Ali Kadar
- Aix Marseille Univ, CNRS, LCE, Marseille, France; INRA, UMR 1331 TOXALIM, Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, BP 167, 400 Route des Chappes, 06903, Sophia Antipolis Cedex, France.
| | - Georges de Sousa
- INRA, UMR 1331 TOXALIM, Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, BP 167, 400 Route des Chappes, 06903, Sophia Antipolis Cedex, France
| | - Ludovic Peyre
- INRA, UMR 1331 TOXALIM, Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, BP 167, 400 Route des Chappes, 06903, Sophia Antipolis Cedex, France
| | | | | | - Roger Rahmani
- INRA, UMR 1331 TOXALIM, Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, BP 167, 400 Route des Chappes, 06903, Sophia Antipolis Cedex, France
| |
Collapse
|
15
|
Ma M, Chen C, Yang G, Li Y, Chen Z, Qian Y. Combined cytotoxic effects of pesticide mixtures present in the Chinese diet on human hepatocarcinoma cell line. CHEMOSPHERE 2016; 159:256-266. [PMID: 27300773 DOI: 10.1016/j.chemosphere.2016.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/11/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Consumers might be simultaneously exposed to several pesticide residues contained in their food. Based on the results of previous studies, 20 pesticides were selected due to their high exposure levels to which the Chinese population is likely exposed through the diet. The purpose of this study was to measure the cytotoxicity of these pesticides in HepG2 cells in vitro, as an alternative approach to assess the toxicity of chemicals. Then, the pesticides and some of the mixtures with comparatively high cell-proliferating inhibitory activities were selected to test the cellular ROS level and apoptosis-related protein Caspase-3/7 content in HepG2 cells. The combined effects of these pesticide mixtures with the prediction was based on a combination index (CI)-isobologram equation and the pesticide combinations exhibited various types of interactions (synergism, antagonism, and additivity). Two individuals, one binary combinations, and three uniform design (UD) mixtures of the pesticides were found to have significant cytotoxic effects, along with significant time- and dose-dependent induction of caspase-3/7 activity in vitro, indicating that cytotoxicity caused by these pesticides might be attributed to the pro-oxidative and apoptosis induced potential.
Collapse
Affiliation(s)
- Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guiling Yang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yun Li
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem Biol Interact 2016; 254:231-46. [DOI: 10.1016/j.cbi.2016.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/18/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022]
|
17
|
Wang N, Wang XC, Ma X. Characteristics of concentration-inhibition curves of individual chemicals and applicability of the concentration addition model for mixture toxicity prediction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:176-182. [PMID: 25499050 DOI: 10.1016/j.ecoenv.2014.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The concentration addition (CA) model has been widely applied to predict mixture toxicity. However, its applicability is difficult to evaluate due to the complexity of interactions among substances. Considering that the concentration-response curve (CRC) of each component of the mixture is closely related to the prediction of mixture toxicity, mathematical treatments were used to derive a characteristic index kECx (k was the slope of the tangent line of a CRC at concentration ECx). The implication is that the CA model would be applicable for predicting the mixture toxicity only when chemical components have similar kECx in the whole or part of the concentration range. For five selected chemicals whose toxicity was detected using luminescent bacteria, sodium dodecyl benzene sulfonate (SDBS) showed much higher kECx values than the others and its existence in the binary mixtures brought about overestimation of the mixture toxicity with the CA model. The higher the mass ratio of SDBS in a multi-mixture was, the more the toxicity prediction deviated from measurements. By applying the method proposed in this study to analyze some published data, it is confirmed that some components having significantly different kECx values from the other components could explain the large deviation of the mixture toxicity predicted by the CA model.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China.
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| |
Collapse
|
18
|
Ilboudo S, Fouche E, Rizzati V, Toé AM, Gamet-Payrastre L, Guissou PI. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicol Rep 2014; 1:474-489. [PMID: 28962261 PMCID: PMC5598529 DOI: 10.1016/j.toxrep.2014.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
In Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues. Thus, consumers being orally exposed to a combination of multiple pesticide residues through food and water intake, the digestive tract is a tissue susceptible to be directly exposed to these food contaminants. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyalothrine LCT, and Teflubenzuron TBZ) alone and in combination on the human intestinal Caco-2 cells viability and function. Cells were exposed to 0.1–100 μM pesticides for 10 days alone or in mixture (MIX). Our results showed a cytotoxic effect of DTM, FNT, FPN, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells. The most efficient were shown to be FPN and FNT impacting the cell layer integrity and/or barrier function, ALP activity, antioxidant enzyme activity, lipid peroxidation, Akt activation, and apoptosis. The presence of antioxidant reduced lipid peroxidation level and attenuated the pesticides-induced cell toxicity, suggesting that key mechanism of pesticides cytotoxicity may be linked to their pro-oxidative potential. A comparative analysis with the predicted cytotoxic effect of pesticides mixture using mathematical modeling shown that the combination of these pesticides led to synergistic effects rather than to a simple independent or dose addition effect.
Collapse
Affiliation(s)
- Sylvain Ilboudo
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France.,Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso.,Laboratoire de Toxicologie, Environnement et Santé; Ecole Doctorale de la Santé, Université de Ouagadougou, 03, BP 7021, Ouagadougou, Burkina Faso
| | - Edwin Fouche
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Virginie Rizzati
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Adama M Toé
- Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso
| | - Laurence Gamet-Payrastre
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Pierre I Guissou
- Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso.,Laboratoire de Toxicologie, Environnement et Santé; Ecole Doctorale de la Santé, Université de Ouagadougou, 03, BP 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
19
|
Masci M, Orban E, Nevigato T. Organochlorine pesticide residues: an extensive monitoring of Italian fishery and aquaculture. CHEMOSPHERE 2014; 94:190-198. [PMID: 24184045 DOI: 10.1016/j.chemosphere.2013.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
A sampling campaign from 21 sites in Italy was carried out to investigate the presence of organochlorine pesticide residues in different fish species. Samples came from marine fishery and either from sea- or freshwater aquaculture. Fish feed used in some fish farms were also analyzed. Pesticides studied belong to Persistent Organic Pollutants widely used in the past such as DDT, chlordane, heptachlor, and others. To ensure good quality results and proper data validation the main existing guidelines in the field were applied. The instrumental technique was a Dual column-Dual detector Gas Chromatography (GC-ECD and Ion Trap GC-MS) which allowed that complementary data on the same sample were acquired. Results for fishery showed a wide range of concentrations depending from the area and species examined. DDT, the major OC pesticide detected, varied from 0.02 to 130.03 ng g(-1) edible portion. As regards the products of aquaculture we observed slightly lower average levels of pollutants in a more narrow range of concentration: this is probably due to fish feed used as shown by some measures performed in the present study. Organochlorine pesticide residues were detected in all samples examined but they were generally well below the existing tolerance or action levels. Also the estimated daily intakes are well below than those recommended by WHO. This is a good indication about OCPs in the areas investigated but some further considerations on fish safety must be taken into account. An example on how fishes may act as bioindicators is reported.
Collapse
Affiliation(s)
- Maurizio Masci
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Centre for Food and Nutrition, Rome, Italy.
| | | | | |
Collapse
|
20
|
Crépet A, Héraud F, Béchaux C, Gouze M, Pierlot S, Fastier A, Leblanc J, Le Hégarat L, Takakura N, Fessard V, Tressou J, Maximilien R, de Sousa G, Nawaz A, Zucchini-Pascal N, Rahmani R, Audebert M, Graillot V, Cravedi J. The PERICLES research program: An integrated approach to characterize the combined effects of mixtures of pesticide residues to which the French population is exposed. Toxicology 2013; 313:83-93. [DOI: 10.1016/j.tox.2013.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/28/2012] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
|
21
|
Crépet A, Tressou J, Graillot V, Béchaux C, Pierlot S, Héraud F, Leblanc JC. Identification of the main pesticide residue mixtures to which the French population is exposed. ENVIRONMENTAL RESEARCH 2013; 126:125-133. [PMID: 23777638 DOI: 10.1016/j.envres.2013.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Owing to the intensive use of pesticides and their potential persistence in the environment, various pesticide residues can be found in the diet. Consumers are therefore exposed to complex pesticide mixtures which may have combined adverse effects on human health. By modelling food exposure to multiple pesticides, this paper aims to determine the main mixtures to which the general population is exposed in France. Dietary exposure of 3337 individuals from the INCA2 French national consumption survey was assessed for 79 pesticide residues, based on results of the 2006 French food monitoring programmes. Individuals were divided into groups with similar patterns of co-exposure using the clustering ability of a Bayesian nonparametric model. In the 5 groups of individuals with the highest exposure, mixtures are formed by pairs of pesticides with correlations above 0.7. Seven mixtures of 2-6 pesticides each were characterised. We identified the commodities that contributed the most to exposure. Pesticide mixtures can either be components of a single plant protection product applied together on the same crop or be from separate products that are consumed together during a meal. Of the 25 pesticides forming the mixtures, two--DDT and Dieldrin--are known persistent organic pollutants. The approach developed is generic and can be applied to all types of substances found in the diet in order to characterise the mixtures that should be studied first because of their adverse effects on health.
Collapse
Affiliation(s)
- A Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 27-31 Avenue du général Leclerc, 94701 Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|