1
|
Cheng F, Chen M, Duan Z, Zou Y, He Y, Zeng F, Yuan Y, Fu T, Tu H, Li R, Li J, Zhou W. Fabrication, characterization, and bioactivity of self-assembled carrier-free colloidal dispersions from Citrus × Limon 'Rosso' essential oil and tea polyphenols. Food Chem 2024; 457:140058. [PMID: 38905825 DOI: 10.1016/j.foodchem.2024.140058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carrier-free nanodelivery systems are fully self-assembled from active ingredients through interactions, offering the advantages of green, safe, and large-scale manufacturing. To improve the dispersion of Citrus × limon 'Rosso' peel essential oil (CEO) in water and boost the biological activity of CEO and tea polyphenols (TP), self-assembled CEO-TP colloidal dispersions (CEO-TP Colloids) were fabricated through sonication without surfactants or carriers. The optimal CEO and TP concentrations in the CEO-TP Colloids were determined to be 10.0 and 20.0 mg/mL by particle size and stability analyzer, respectively. The CEO self-assembled with TP to form spherical nanoparticles through hydrophobic and hydrogen-bonding interactions, whereas the CEO in CEO-TP Colloids weakened TP intramolecular aggregation. Meanwhile, the CEO-TP Colloids showed synergistic effects with better antibacterial, cellular antioxidant, and anti-inflammatory activities than single components. This study opens up the possibility of carrier-free co-delivery of hydrophobic and hydrophilic active components developed into food-grade formulations with multiple bioactivities.
Collapse
Affiliation(s)
- Fangying Cheng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650000, China
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tiaokun Fu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Hao Tu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
2
|
Fu Q, Yu Z, Yang C, Yu M, Wei Y, Wang C. Discovery of Quality by Design-Based Extraction Technology and the Quality Standard of Jinhua Finger Citron Essential Oil. ACS OMEGA 2024; 9:38490-38497. [PMID: 39310158 PMCID: PMC11411540 DOI: 10.1021/acsomega.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Jinhua finger citron is one of the traditional specialties of Jinhua with a long history of cultivation. The current study highlighted the advantages of using the quality by design approach to optimize the ultrasonic-assisted distillation extraction of Jinhua finger citron essential oil. The yield of Jinhua finger citron essential oil was regarded as a potential critical quality attribute. Potential critical process parameters were screened by the definitive screening design. Finally, the design space of the essential oil extraction process was constructed. The optimal operating space included an auxiliary NaCl concentration range of 9-12.00%, a soak temperature range of 30-50 °C, a distillation time range of 3.5-4.00 h, an ultrasonic power range of 200-300 W, a solid-liquid ratio range of 1:3-1:3.5, and a soak time range of 40-80 min. On this basis, the relative density, refractive index, and pH values of different batches of Jinhua finger citron essential oil were checked. The involved batches were analyzed by gas chromatography (GC), and gas chromatographic fingerprints were established by identifying major compounds, including d-limonene, γ-terpinene, and 5,7-dimethoxycoumarin. Based on the "quality by design" strategy, the extraction process of Jinhua finger citron essential oil established in this study was robust, reliable, and flexible.
Collapse
Affiliation(s)
- Qiafan Fu
- Department
of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 East Renmin Road, 321000 Jinhua, P.
R. China
| | - Zengying Yu
- Xinzhi
College, Zhejiang Normal University, Lanxi, 321100 Jinhua, P. R. China
| | - Changquan Yang
- Xinzhi
College, Zhejiang Normal University, Lanxi, 321100 Jinhua, P. R. China
| | - Mengmeng Yu
- Xinzhi
College, Zhejiang Normal University, Lanxi, 321100 Jinhua, P. R. China
| | - Yanxue Wei
- Xinzhi
College, Zhejiang Normal University, Lanxi, 321100 Jinhua, P. R. China
| | - Chaoyue Wang
- Xinzhi
College, Zhejiang Normal University, Lanxi, 321100 Jinhua, P. R. China
- Jinhua
Advanced Research Institute, 99 South Huancheng Road, 321019 Jinhua, P. R. China
| |
Collapse
|
3
|
Brinza I, Boiangiu RS, Honceriu I, Abd-Alkhalek AM, Eldahshan OA, Dumitru G, Hritcu L, Todirascu-Ciornea E. Investigating the Potential of Essential Oils from Citrus reticulata Leaves in Mitigating Memory Decline and Oxidative Stress in the Scopolamine-Treated Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1648. [PMID: 38931080 PMCID: PMC11207389 DOI: 10.3390/plants13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 μL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 μM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | | | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt;
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| |
Collapse
|
4
|
Rahayu M, Kalima T, Martgrita MM, Sembiring C, Simangunsong L, Elisabeth S, Munawaroh E, Astuti IP, Susiarti S, Oryzanti P, Sihotang VBL, Purwanto Y, Nikmatullah M. Ethnobotany and diversity of Citrus spp. (Rutaceae) as a source of "Kem-kem" traditional medicine used among the Karo sub-ethnic in North Sumatra, Indonesia. Heliyon 2024; 10:e29721. [PMID: 38694125 PMCID: PMC11061673 DOI: 10.1016/j.heliyon.2024.e29721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024] Open
Abstract
The Karo sub-ethnic is one of five Batak sub-ethnicities in the Karo Regency, North Sumatra Province, Indonesia. They are famous for their local knowledge about the traditional use of medicinal plants to treat various diseases. The "Kem-kem" traditional medicine is one of the traditional healing practices that involve using plants passed down through generations from their ancestors. One of the plant genus group in the Rutaceae family utilized in the traditional "Kem-kem" healing practice is a citrus known as "Rimo". This study aims to document the local knowledge about the diversity of Citrus spp. as Kem-kem's herbal medicinal plant. This study was conducted from April to July 2023 in the Kabanjahe and Berastagi districts, Karo Regency, North Sumatra. Data was collected using interviews with traditional healers, herbal medicine vendors, and direct observations at traditional markets, involving a total of 8 Citrus spp. The Karo uses "Rimo" with different local names as sources of traditional medicinal ingredients in practicing "Kem-kem". There are 15 local names comprising eight species of Citrus. Four are hybrids, i.e., Citrus x aurantiifolia (Christm.) Swingle, Citrus × aurantium L, Citrus × junos Siebold ex Yu.Tanaka, and Citrus × taitensis Risso. Two of the remaining species are recognized in infraspecific rank, one variety (Citrus medica var. sarcodactylis (Hoola van Nooten) Swingle) and one form (Citrus × aurantium f. deliciosa (Ten.) M.Hiroe). They were used as material sources for Kem-kem traditional medicine to treat at least nine health problems. There are two species with six local names included in the Least Concern (LC) category, namely C. medica (Rimo Gawang, Rimo Hantuantu, Rimo Kayu), C. medica var. sarcodactylis (Rimo Kuku Harimau), and C. medica (Rimo Telur Buaya), C. maxima (Burm.) Merr. (Rimo Malem). Nine local names are included in the Not Evaluated (NE) category, namely C. × junos (Rimo Kejaren), C. × taitensis (Rimo Jungga), C. × aurantium f. deliciosa (Rimo Keling), C. × aurantium (Rimo Kersik), Citrus hystrix DC. (Rimo Mukur), C. × taitensis (Rimo Puraga), C. × aurantium (Rimo Kalele), Citrus swinglei Burkill ex Harms (Rimo Pagar), and C. x aurantiifolia (Rimo Bunga). Rimo Kejaren (C. × junos) is a species that has the most benefits.
Collapse
Affiliation(s)
- Mulyati Rahayu
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Titi Kalima
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | | | - Christine Sembiring
- Del Institute of Technology, Jl. P.I Del, Laguboti, Toba, North Sumatera, Indonesia
| | - Lianty Simangunsong
- Del Institute of Technology, Jl. P.I Del, Laguboti, Toba, North Sumatera, Indonesia
| | - Sion Elisabeth
- Del Institute of Technology, Jl. P.I Del, Laguboti, Toba, North Sumatera, Indonesia
| | - Esti Munawaroh
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Inggit Puji Astuti
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Jl.Ir. H. Juanda 13, Bogor, 16122, West Java, Indonesia
| | - Siti Susiarti
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Parwa Oryzanti
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Vera Budi Lestari Sihotang
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Y. Purwanto
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| | - Muhamad Nikmatullah
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km. 46, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
5
|
Gwon YG, Rod-In W, Lee HJ, Lee SM, Shin IS, Park WJ. Inhibitory effects of Oncorhynchus mykiss lipids in LPS-induced RAW264.7 cells via suppression of NF-κB and MAPK pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109266. [PMID: 38043872 DOI: 10.1016/j.fsi.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Oncorhynchus mykiss, a significant aquaculture species, possesses compounds with numerous biological and pharmacological functions, including antioxidant, anticancer, anti-microbial, and anti-obesity effects. However, possible anti-inflammatory effects of lipids extracted from O. mykiss eggs on RAW264.7 cells induced by LPS have not been elucidated yet. The current study identified 13 fatty acids in lipids extracted from O. mykiss eggs that contained high amounts (51.92% of total fatty acids) of polyunsaturated fatty acids (PUFAs), especially DHA (33.66%) and EPA (7.77%). These O. mykiss lipids (100-400 μg/mL) showed significant anti-inflammatory effects by inhibiting NO and iNOS expression in LPS-stimulated RAW264.7 cells. They also inhibited expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while upregulating anti-inflammatory cytokines IL-10, IL-11, and TGF-β. These lipids from O. mykiss effectively inhibited LPS-induced expression CD86 as a surface biomarker on RAW264.7 cells. Additionally, O. mykiss lipids suppressed phosphorylation of p38, JNK, and ERK1/2 and the expression of phosphorylated NF-κB subunit p65. These findings indicate that O. mykiss lipids possess anti-inflammatory properties by inhibiting NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yun Gu Gwon
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Nar-esuan University, Phitsanulok, 65000, Thailand; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Ha Jun Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Sang-Min Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Il-Shik Shin
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea.
| |
Collapse
|
6
|
Xia C, Deng J, Tong W, Chen J, Xiang Z, Yang X, Zhu B, Sun P, Li J, Pan Y, Zhu Y. Evaluation of the Antioxidant Potential of Citrus medica from Different Geographical Regions and Characterization of Phenolic Constituents by LC-MS. ACS OMEGA 2023; 8:32526-32535. [PMID: 37720798 PMCID: PMC10500571 DOI: 10.1021/acsomega.3c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
The varying antioxidant potential of Citrus medica associated with different geographical regions makes the evaluation of C. medica for natural antioxidants essential. This work aimed to compare the antioxidant potential of the phenolic constituents from different geographical regions. The chemical compositions were characterized by ultra-high-performance liquid chromatography (UPLC) coupled with mass spectrometry (MS). A total of 67 compounds including 29 coumarin derivatives and 38 flavonoids were tentatively identified by UPLC-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). To evaluate the quality of C. medica from seven different geographical regions, water and 80% methanol fractions were subjected to quantitative analysis. Antioxidant potentials were determined by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), iron chelation, and reduction methods. The samples collected from Sichuan province showed the highest content of total phenolic compounds. Combined with antioxidant results, the sample from Sichuan province presented good antioxidant activity. This study also showed that total phenolic compounds significantly contributed to the antioxidant activities (2,2-azinobis(3-ethyl-benzothiazoline-6-sulphonic acid) and radical scavenging activity) of C. medica samples (p < 0.01). These results provided chemical information and potential antioxidant value for further research, providing ideal evidence for the quality evaluation and exploitation of the source.
Collapse
Affiliation(s)
- Chen Xia
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Junlin Deng
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Wen Tong
- Industrial
Crop Research Institute, Sichuan Academy
of Agriculture Sciences, Chengdu 610300, Sichuan, China
| | - Jian Chen
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Zhuoya Xiang
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Xing Yang
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Boyu Zhu
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Pei Sun
- Industrial
Crop Research Institute, Sichuan Academy
of Agriculture Sciences, Chengdu 610300, Sichuan, China
| | - Juan Li
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Yu Pan
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau
University of Science and Technology, Macau 999078, China
| | - Yongqing Zhu
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| |
Collapse
|
7
|
Benedetto N, Carlucci V, Faraone I, Lela L, Ponticelli M, Russo D, Mangieri C, Tzvetkov NT, Milella L. An Insight into Citrus medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2267. [PMID: 37375892 DOI: 10.3390/plants12122267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Plant species are a reservoir of natural compounds that can potentially be used to treat different diseases. Citrus medica Linn. belonging to the Rutaceae family, has been used for centuries in medicine for its antioxidant, anti-inflammatory, antimicrobial, antiviral, and antihyperglycemic properties. These activities are ascribable not only to the presence of health-promoting macronutrients and micronutrients, such as carbohydrates, minerals, amino acids, and vitamins, but also to specialized metabolites, such as flavonoids (apigenin, hesperetin, hesperidin, naringin, naringenin, rutin, quercetin, and diosmin), coumarins (citropten, scoparone, and bergapten), terpenes (limonene, γ-terpinene, limonin, and nomilin), and phenolic acids (p-coumaric acid, trans-ferulic acid, and chlorogenic acid). In recent years, particular attention has been focused on the antioxidant, anti-inflammatory, antimicrobial activity, antidiabetic, anticancer, and neuroprotective activity of C. medica. However, although many studies have reported this species' chemical and biological properties, the literature has never been analyzed via a systematic approach. For this reason, using PubMed and Scopus as databases, we performed a systematic review of C. medica's chemical composition and biological properties to inspire new research approaches and increase its curative application.
Collapse
Affiliation(s)
- Nadia Benedetto
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff Bioactiplant, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Yang J, Lee SY, Jang SK, Kim KJ, Park MJ. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics 2023; 15:1595. [PMID: 37376044 DOI: 10.3390/pharmaceutics15061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Citrus cultivars have remarkable health benefits, but only the anti-inflammatory activities of the major varieties have been studied. This study investigated the anti-inflammatory effects of various citrus cultivars and their active anti-inflammatory components. The essential oils of 21 citrus peels were extracted via hydrodistillation using a Clevenger-type apparatus, and the chemical compositions of the essential oils were analyzed. D-Limonene was the most abundant constituent. To evaluate the anti-inflammatory effects of the citrus cultivars, the gene expression levels of an inflammatory mediator and proinflammatory cytokines were investigated. Among the 21 essential oils, those extracted from C. japonica and C. maxima exhibited superior anti-inflammatory activities, being able to inhibit the expression of the inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells. The essential oils of C. japonica and C. maxima were distinguished into seven distinct constituents, α-pinene, myrcene, D-limonene, β-ocimene, linalool, linalool oxide, and α-terpineol, compared with other essential oils. The anti-inflammatory activities of the seven single compounds significantly inhibited the levels of inflammation-related factors. In particular, α-terpineol exhibited a superior anti-inflammatory effect. This study showed that the essential oils from C. japonica and C. maxima exhibit high anti-inflammatory activity. In addition, α-terpineol is an active anti-inflammatory compound that contributes to inflammatory responses.
Collapse
Affiliation(s)
- Jiyoon Yang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Su-Yeon Lee
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo-Kyeong Jang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Jin Park
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| |
Collapse
|
9
|
Tiwari R, Tiwari G, Mishra S, Ramachandran V. Preventive and Therapeutic Aspects of Migraine for Patient Care: An Insight. Curr Mol Pharmacol 2023; 16:147-160. [PMID: 35152874 DOI: 10.2174/1874467215666220211100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Migraine is a common neurological condition marked by frequent mild to extreme headaches that last 4 to 72 hours. A migraine headache may cause a pulsing or concentrated throbbing pain in one part of the brain. Nausea, vomiting, excessive sensitivity to light and sound, smell, feeling sick, vomiting, painful headache, and blurred vision are all symptoms of migraine disorder. Females are more affected by migraines in comparison to males. OBJECTIVE The present review article summarizes preventive and therapeutic measures, including allopathic and herbal remedies for the treatment of migraine. RESULTS This review highlights the current aspects of migraine pathophysiology and covers an understanding of the complex workings of the migraine state. Therapeutic agents that could provide an effective treatment have also been discussed. CONCLUSION It can be concluded that different migraines could be treated based on their type and severity.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Gaurav Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Sonam Mishra
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
10
|
Neocinnamomum caudatum Essential Oil Ameliorates Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Cells by Inhibiting NF-κB Activation and ROS Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238193. [PMID: 36500283 PMCID: PMC9736579 DOI: 10.3390/molecules27238193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
11
|
Xu Y, Wang Y, Li R, Sun P, Chen D, Shen J, Feng T. Characteristic aroma analysis of finger citron in four different regions based on
GC‐MS‐HS‐SPME
and
ROAV. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Xu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Ruixiang Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ping Sun
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences University of Idaho, 875 Perimeter Drive Moscow United States
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Tao Feng
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
12
|
Pina LTS, Rabelo TK, Trindade GGG, Almeida IKS, Oliveira MA, Dos Santos PL, Souza DS, de Menezes-Filho JER, de Vasconcelos CML, Santos SL, Scotti L, Scotti MT, Araújo AAS, Quintans JSS, Quintans LJ, Guimarães AG. γ-Terpinene complexed with β-cyclodextrin attenuates spinal neuroactivity in animals with cancer pain by Ca2+ channel block. J Pharm Pharmacol 2022; 74:1629-1639. [PMID: 35976257 DOI: 10.1093/jpp/rgac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Considering that γ-terpinene (γ-TPN) is a monoterpene found in Cannabis oil, with high lipophilicity and limited pharmacokinetics, our objective was to evaluate whether its complexation in β-cyclodextrin (γ-TPN/β-CD) could improve its physicochemical properties and action on cancer pain, as well as verify the mechanisms of action involved. METHODS The γ-TPN/β-CD was prepared and submitted to physicochemical characterization. Animals with sarcoma 180 were treated (vehicle, γ-TPN 50 mg/kg, γ-TPN/β-CD 5 mg/kg or morphine) and assessed for hyperalgesia, TNF-α and IL-1β levels, iNOS and c-Fos activity. The effects of γ-TPN on calcium channels were studied by patch-clamp and molecular docking. RESULTS β-CD improved the physicochemical properties and prolonged the anti-hyperalgesic effect of γ-TPN. This compound also reduced the levels of IL-1β, TNF-α and iNOS in the tumour, and c-Fos protein in the spinal cord. In addition, it reduced Ca2+ current, presenting favourable chemical interactions with different voltage-dependent calcium channels. CONCLUSION These results indicate that the complexation of γ-TPN into β-CD increases its stability and time effect, reducing spinal neuroactivity and inflammation by blocking calcium channels.
Collapse
Affiliation(s)
- Lícia T S Pina
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Sunnybrook Research Institute. Harquail Centre for Neuromodulation, Canada
| | - Gabriela G G Trindade
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Iggo K S Almeida
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Diego Santos Souza
- Department of Biophysics and Immunology, Federal University of Minas Gerais, Brazil.,Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luciana Scotti
- Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo J Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
13
|
Luo B, Lv J, Li K, Liao P, Chen P. Structural Characterization and Anti-inflammatory Activity of a Galactorhamnan Polysaccharide From Citrus medica L. var. sarcodactylis. Front Nutr 2022; 9:916976. [PMID: 35757248 PMCID: PMC9225144 DOI: 10.3389/fnut.2022.916976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to extract polysaccharides from Citrus medica L. var. sarcodactylis (finger citron fruits) and analyze their structures and potential bioactivities. A new polysaccharide named K-CMLP was isolated and purified by Diethylaminoethylcellulose (DEAE)-Sepharose Fast Flow and DEAE-52 cellulose column chromatography with an average molecular weight of 3.76 × 103 kDa. Monosaccharide composition analysis revealed that K-CLMP consisted of rhamnose, galactose, and glucose, with a molar ratio of 6.75:5.87:1.00. Co-resolved by methylation and two-dimensional nuclear magnetic resonance (NMR), K-CLMP was alternately connected with 1, 2-Rha and 1, 4-Gal to form the backbone, and a small number of glucose residues was connected to O-4 of rhamnose. The results of DPPH⋅ and ABTS+⋅ radical scavenging assays indicated that both crude polysaccharide Citrus medica L. var. polysaccharide (CMLP) and K-CLMP exhibited strong free-radical-scavenging properties in a dose-dependent manner. In addition, K-CMLP significantly inhibited the production of pro-inflammatory cytokines (IL-6 and TNF-α) and reactive oxygen species (ROS) in RAW 264.7 cells treated with LPS. These results provide a basis for further use as one of the potential functions of food or natural medicine.
Collapse
Affiliation(s)
- Bi Luo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China.,Comprehensive Experimental Station of Guangzhou, Chinese Materia Medica, China Agriculture Research System, Guangzhou, China
| | - Jia Lv
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China.,Comprehensive Experimental Station of Guangzhou, Chinese Materia Medica, China Agriculture Research System, Guangzhou, China
| | - Kejie Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China.,Comprehensive Experimental Station of Guangzhou, Chinese Materia Medica, China Agriculture Research System, Guangzhou, China
| | - Peiran Liao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China.,Comprehensive Experimental Station of Guangzhou, Chinese Materia Medica, China Agriculture Research System, Guangzhou, China
| | - Peng Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
15
|
Anti-inflammatory effect of essential oil from Amomum Tsaoko Crevost et Lemarie. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha's Hand Fruit. Molecules 2022; 27:molecules27051666. [PMID: 35268766 PMCID: PMC8911557 DOI: 10.3390/molecules27051666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The present work aimed to chemically characterize and evaluate the antiradical power and biological effects of Citrus medica var. sarcodactylus essential oil (EO) and hydrolate (Hy) from exocarp as well as methanol extracts, from both exocarp and mesocarp (EEX and MEX). The whole fresh fruit was also investigated by SPME-GC/MS to describe its volatile composition. EO and Hy were analyzed by GC/MS and HS-GC/MS techniques, respectively. Limonene and γ-terpinene were found to be the most abundant compounds both in the fresh parts of the fruit and in the EO, while α-terpineol and terpinen-4-ol were in the Hy. The extracts were also rich in furan and coumarin derivatives. A good antiradical activity of all samples except Hy was detected both against ABTS·+ than DPPH·, removed up to about 50%. The antibacterial activity against Bacillus cereus and Escherichia coli was evaluated by microwell dilution method to determine MIC and MBC values. EEX and MEX showed efficacy at very high concentrations against both tested bacteria. The MIC value of EO against B. cereus was 0.5% v/v, while Hy was not able to inhibit the bacterial growth at the tested concentrations. Cytotoxicity investigated on the HL60 leukemia cell line by MTT assay provided an EC50 of 1.24% v/v for EO. Interesting activity of Hy was also observed.
Collapse
|
17
|
Cai Q, Liu C, Yuan M, Pan L, Yang Q, Zhou L. HLB induce changes in the tree physiology of citron ( Citrus medica L. var. sarcodactylis Swingle). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:517-531. [PMID: 35400879 PMCID: PMC8943090 DOI: 10.1007/s12298-022-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Huanglongbing (HLB) is a highly destructive disease that decreases the yield and quality of Citrus medica L. var. sarcodactylis Swingle (C. medica var. sarcodactylis) and poses a great threat to the development of the global citrus industry. To explore the influence of HLB infection on C. medica var. sarcodactylis, levels of photosynthetic pigments, malondialdehyde (MDA), and carbohydrates, as well as antioxidant enzyme activities, were measured. The results show that HLB infection decreased photosynthetic pigment content, increased MDA content and antioxidant enzyme activities, and caused various changes in carbohydrate levels in stem, fruit, and leaf tissues. Transcriptomic analysis of C. medica var. sarcodactylis was also used to identify key genes related to the carbohydrate metabolic synthesis pathway in C. medica var. sarcodactylis. The C. medica var. sarcodactylis ADP-glucose pyrophosphorylase1 (CmAGP1), CmAGP2, C. medica var. sarcodactylis Granule-bound starch synthase (CmGBSS), C. medica var. sarcodactylis Sucrose synthases1 (CmSUS1), CmSUS2, C. medica var. sarcodactylis Sucrose phosphate synthase (CmSPS), C. medica var. sarcodactylis alkaline/neutral invertase1 (CmNi1), CmNi2, CmNi3 and CmNi4 were successfully cloned and identified, and differential expression analysis showed that HLB infection significantly upregulated these genes in stems and leaves. In conclusion, HLB infection causes cellular damage, a reduction in photosynthetic capacity, decreased pathogen resistance, and severe disorders in carbohydrate metabolism in C. medica var. sarcodactylis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01129-z.
Collapse
Affiliation(s)
- Qizhong Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center On Good Agricultural Practice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, 510006 China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Meng Yuan
- Shanting District Healthealth Bureau, Zaozhuang, 277299 China
| | - Liming Pan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center On Good Agricultural Practice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, 510006 China
| | - Quan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center On Good Agricultural Practice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, 510006 China
| | - Liangyun Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center On Good Agricultural Practice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, 510006 China
| |
Collapse
|
18
|
Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:nu14030619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. Methods: The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. Results: More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. Conclusion: A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
|
19
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
20
|
Anti-Inflammatory Effect of Turbo cornutus Viscera Ethanolic Extract against Lipopolysaccharide-Stimulated Inflammatory Response via the Regulation of the JNK/NF-kB Signaling Pathway in Murine Macrophage RAW 264.7 Cells and a Zebrafish Model: A Preliminary Study. Foods 2022; 11:foods11030364. [PMID: 35159514 PMCID: PMC8834147 DOI: 10.3390/foods11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Turbo cornutus, the horned turban sea snail, is found along the intertidal and basaltic shorelines and is an important fishery resource of Jeju Island. In this study, we performed a preliminary study on anti-inflammatory effect of 70% ethanol extract obtained from T. cornutus viscera (TVE) on lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and zebrafish embryos in vivo. TVE reduced the production of LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) without any toxic effects. TVE also decreased the protein expression of LPS-induced inducible NO synthase and cyclooxygenase-2 and suppressed the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Furthermore, mechanistic studies indicated that TVE suppressed c-Jun N-terminal kinase phosphorylation and nuclear factor-kB activation. In zebrafish embryos, TVE did not show developmental toxicity based on the survival rate and cell death findings. In LPS-stimulated zebrafish embryos, TVE suppressed NO production and cell death. In conclusion, the result from this preliminary study showed TVE has a potential anti-inflammatory property that can be exploited as a functional food ingredient.
Collapse
|
21
|
Dike CS, Orish CN, Nwokocha CR, Sikoki FD, Babatunde BB, Frazzoli C, Orisakwe OE. Phytowaste as nutraceuticals in boosting public health. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe utilization of bioactive constituent of peels and seeds provide an effective, environment friendly and inexpensive therapy for different forms of human disease, and the production, improvement and documentation of novel nutraceuticals. This review systematically presents findings and further understanding of the reported benefits and therapeutic applications of peel and seed extracts on innovative cell culture and animal studies, as well as phased clinical human trial research. The extracts of seed and peels were reported to possess high quantities of bioactive substances with antioxidative, antidiabetic, hepatorenal protective, antithyroidal, anti-inflammatory, antibacterial, cardiovascular protective, neuro-protective effects, anticancer and wound healing activities. Therapeutic activities of the bioactive substances of peel and seed extracts include elevation of Superoxide dismutase (SOD), GSH-Px, t-GPx, Catalase and GST activities, with the suppression of MDA levels, hydroperoxide generation and lipid peroxidized products, the extracts also regulate inflammatory mediators and cytokines as they are reported to suppress the secretion of inflammatory cytokines, which include; IL-1β, PGE2, TGF-β and TNF-α and induces apoptosis and cell differentiation. This review revealed the therapeutic importance and best utilization of peels and seed extracts of fruits and vegetables.
Collapse
|
22
|
Soni S, Parekh MY, Jacob JA, Mack JP, Lobo DE. Kumquat essential oil decreases proliferation and activates JNK signaling and apoptosis in HT-1080 fibrosarcoma cells. Mol Cell Biochem 2021; 477:445-453. [PMID: 34783965 DOI: 10.1007/s11010-021-04291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Kumquats are small citrus fruits produced by the Fortunella japonica tree. In addition to its aroma, kumquat essential oil may have antiproliferative effects; however, research on the effects of kumquat essential oil on human cell lines is limited. This study investigated the effects of kumquat essential oil on the proliferation of three human cell lines (HT-1080 fibrosarcoma cells, HeLa cervical adenocarcinoma cells, and CUA-4 normal human fibroblasts). As the concentration of kumquat essential oil increased, cell proliferation and viability, as measured by MTT activity assays, decreased in all three cell lines. Compared to untreated cells, HT-1080 fibrosarcoma cells exposed to kumquat essential oil exhibited an increased presence of phosphorylated JNK. Apoptosis was also stimulated, as PARP cleavage of treated HT-1080 fibrosarcoma cells was detected. Use of a JNK inhibitor resulted in decreased PARP cleavage in HT-1080 cells following treatment with kumquat EO, suggesting that activity of JNK is implicated in the stress response. The kumquat essential oil constituents limonene and myrcene both independently led to decreased proliferation and apoptosis.
Collapse
Affiliation(s)
- Subah Soni
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Mruga Y Parekh
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Jive A Jacob
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - James P Mack
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Dorothy E Lobo
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA.
| |
Collapse
|
23
|
Liktor-Busa E, Keresztes A, LaVigne J, Streicher JM, Largent-Milnes TM. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol Rev 2021; 73:98-126. [PMID: 34663685 PMCID: PMC11060501 DOI: 10.1124/pharmrev.120.000046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes β-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes β-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.
Collapse
Affiliation(s)
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
24
|
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RRJ, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr 2021; 63:2773-2789. [PMID: 34554029 DOI: 10.1080/10408398.2021.1980762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Collapse
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University Seoul, Seoul, Republic of Korea
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Yang J, Li S, He L, Chen M. Adipose-derived stem cells inhibit dermal fibroblast growth and induce apoptosis in keloids through the arachidonic acid-derived cyclooxygenase-2/prostaglandin E2 cascade by paracrine. BURNS & TRAUMA 2021; 9:tkab020. [PMID: 34514006 PMCID: PMC8430279 DOI: 10.1093/burnst/tkab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/14/2022]
Abstract
Background The clinical features of keloids consist of aberrant proliferation, secretion, differentiation and apoptosis of keloid dermis-derived fibroblasts (KFBs). Notably, the apoptosis rate of KFBs is lower than the proliferation rate. Though the anti-fibrotic effect of adipose-derived stem cells (ADSCs) on keloids has become a hot topic of research, the exact anti-fibrotic mechanism of the paracrine effect remains unclear. This study aimed to find out how the conditioned medium of ADSCs (ADSC-CM) exerts an anti-fibrotic effect in KFBs. Methods KFBs and ADSCs were extracted and cultured. Then, ADSC-CM was prepared. Whether ADSC-CM could inhibit KFB growth and induce apoptosis was verified by the use of a cell counting kit-8, an 5-Ethynyl-2-deoxyuridine (Edu) kit and flow cytometry. The expressions of cyclooxygenase-1 (COX-1), COX-2, caspase 3 and B-cell lymphoma-2 (Bcl-2) in ADSC-CM-cultured KFBs were tested by real-time PCR and western blotting. To clarify the role of COX-2 in ADSC-CM-induced KFB apoptosis, a specific COX-2 inhibitor, celecoxib, was applied to KFBs cultured in ADSC-CM. Moreover, we tested the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) by ELISA. Then, we established a keloid transplantation model in a nude mouse to validate the therapeutic effect in vivo. Results The proliferation ability of KFBs cultured in ADSC-CM was found to be weakened and apoptosis was significantly increased. Caspase 3 expression was significantly upregulated and Bcl-2 was downregulated in ADSC-CM-cultured KFBs. Furthermore, ADSC-CM strikingly elevated COX-2 mRNA and protein expressions, but COX-1 expression was unaltered. COX-2 inhibitors reduced ADSC-CM-induced apoptosis. Additionally, COX-2 inhibition blocked the elevation of caspase 3 and reversed the decrease in Bcl-2 expression. ADSC-CM increased PGE2 levels by 1.5-fold and this effect was restrained by COX-2 inhibition. In the nude mouse model, expressions of AA, COX-2 and PGE2 were higher in the translated keloid tissues after ADSC-CM injection than in the controls. Conclusions We showed activation of the COX-2/PGE2 cascade in KFBs in response to ADSC-CM. By employing a specific COX-2 inhibitor, COX-2/PGE2 cascade activation played a crucial role in mediating the ADSC-CM-induced KFB apoptosis and anti-proliferation effects.
Collapse
Affiliation(s)
- Jinxiu Yang
- Department of Burn and Plastic Surgery, the Fourth Medical Centre, Chinese People's Liberation Army General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Shiyi Li
- Department of Burn and Plastic Surgery, the Fourth Medical Centre, Chinese People's Liberation Army General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Leren He
- 7th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.33 Ba Dachu Road, Shi Jingshan District, Beijing, 100144, China
| | - Minliang Chen
- Department of Burn and Plastic Surgery, the Fourth Medical Centre, Chinese People's Liberation Army General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| |
Collapse
|
26
|
Anti-Inflammatory Activity of 4-((1 R,2 R)-3-Hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol Isolated from Juglans mandshurica Maxim. in LPS-Stimulated RAW 264.7 Macrophages and Zebrafish Larvae Model. Pharmaceuticals (Basel) 2021; 14:ph14080771. [PMID: 34451869 PMCID: PMC8398860 DOI: 10.3390/ph14080771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.
Collapse
|
27
|
Lee JH, Lee YY, Lee J, Jang YJ, Jang HW. Chemical Composition, Antioxidant, and Anti-Inflammatory Activity of Essential Oil from Omija ( Schisandra chinensis (Turcz.) Baill.) Produced by Supercritical Fluid Extraction Using CO 2. Foods 2021; 10:foods10071619. [PMID: 34359489 PMCID: PMC8304754 DOI: 10.3390/foods10071619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill., which is known as omija in South Korea, is mainly cultivated in East Asia. The present study aimed to investigate the chemical composition of essential oil from the omija (OMEO) fruit obtained by supercritical fluid extraction using CO2 and to confirm the antioxidant and anti-inflammatory activity of OMEO using HaCaT human keratinocyte and RAW 264.7 murine macrophages. As a result of the chemical composition analysis of OMEO using gas chromatography-mass spectrometry, a total of 41 compounds were identified. The detailed analysis results are sesquiterpenoids (16), monoterpenoids (14), ketones (4), alcohols (3), aldehydes (2), acids (1), and aromatic hydrocarbons (1). OMEO significantly reduced the increased ROS levels in HaCaT keratinocytes induced by UV-B irradiation (p < 0.05). It was confirmed that 5 compounds (α-pinene, camphene, β-myrcene, 2-nonanone, and nerolidol) present in OMEO exhibited inhibitory activity on ROS production. Furthermore, OMEO showed excellent anti-inflammatory activity in RAW 264.7 macrophages induced by lipopolysaccharide. OMEO effectively inhibited NO production (p < 0.05) by suppressing the expression of the iNOS protein. Finally, OMEO was investigated for exhibition of anti-inflammatory activity by inhibiting the activation of NF-κB pathway. Taken together, OMEO could be used as a functional food ingredient with excellent antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Yun-Yeol Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Jangho Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Young-Jin Jang
- Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Hae-Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, Seoul 01133, Korea
| |
Collapse
|
28
|
Wang K, Tian J, Li Y, Liu M, Chao Y, Cai Y, Zheng G, Fang Y. Identification of Components in Citri Sarcodactylis Fructus from Different Origins via UPLC-Q-Exactive Orbitrap/MS. ACS OMEGA 2021; 6:17045-17057. [PMID: 34250362 PMCID: PMC8264930 DOI: 10.1021/acsomega.1c02124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
To systematically analyze the chemical constituents of Citri Sarcodactylis Fructus (CSF) from different origins, an efficient approach based on ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap/MS) detection for the discrimination of chemical components from of 15 batches of CSF from four main origins was used in this research. Through parent peaks, fragment peaks, fragmentation characteristics, and comparative analysis with the literature and reference standards, a total of 77 components from the methanol extracts including 18 coumarins, 24 flavonoids, seven organic acids, three limonoids, and 25 other compounds were detected and identified. Among them, 15 components have not been reported previously in the CSF. Notably, the stachydrine peak initially showed a higher content in the total ion current chromatogram. Overall, CSF produced in the Zhejiang province contained a richer variety of chemical compositions. These observations provided a theoretical basis for the further quality assessment and application of CSF.
Collapse
Affiliation(s)
- Kanghui Wang
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jingyuan Tian
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yueshan Li
- Department
of Pharmacy, Xinjiang Second Medical College, Xinjiang 834099, China
| | - Mengshi Liu
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yingxin Chao
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yi Cai
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Guodong Zheng
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yi Fang
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| |
Collapse
|
29
|
Finger Citron Extract Ameliorates Glycolipid Metabolism and Inflammation by Regulating GLP-1 Secretion via TGR5 Receptors in Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623379. [PMID: 33854556 PMCID: PMC8021467 DOI: 10.1155/2021/6623379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/03/2022]
Abstract
Finger citron (FC) is one of many traditional Chinese herbs that have been used to treat obesity. The aim of this study was to elucidate the pharmacological effects and mechanisms of FC on obese rats. Rats were fed with a high-fat diet as a model of obesity and treated with FC at three different dosages for 6 weeks. Pathology in liver tissue was observed. Glucose levels, lipids levels, and inflammatory indicators in serum were evaluated by enzyme‐linked immunosorbent assay. Furthermore, the expression of G protein-coupled receptor 5 (TGR5) pathway genes in rat colon tissue was detected by reverse transcription-polymerase chain reaction analysis (RT-PCR). Our result revealed that FC alleviates obesity by reducing body weight (BW) and waist circumference, managing inflammation and improving glycolipid metabolism, liver function, and liver lipid peroxidation in vivo. In addition, the mechanism of FC on obesity is possibly the stimulation of glucagon-like peptide-1 (GLP-1) secretion by activating the TGR5 pathway in intestinal endocrine cells. Our studies highlight the obesity reduction effects of FC and one of the mechanisms may be the activation of the TGR5 pathway in intestinal endocrine cells.
Collapse
|
30
|
Zayed A, Badawy MT, Farag MA. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 2021; 355:129609. [PMID: 33799261 DOI: 10.1016/j.foodchem.2021.129609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Valorization of food byproducts has attracted recently considerable attention. Citrus fruits provide considerable non-edible residues reach 80% in juice production. They are considered agri-wastes to comprise peel, pulp and seeds. Previous investigations have focused on peel and pulp to recover value-added products. The review presents for the first-time phytochemical composition of Citrus seeds' products, i.e., oil and extracts. Fatty acids, phytosterols and tocopherols amounted as the major bioactives in Citrus seeds, in addition to limonoids, dietary fibers and flavonoids. Besides their nutritional values, these chemicals have promising applications including production of biodiesel, food enhancers and antioxidants, especially from mandarin and grapefruit seeds. Optimum conditions of the different Citrus seeds' valorization are discussed to improve extraction yield and lessen environmental hazards of solvent extraction. This review presents the best utilization practices for one of the largest cultivated fruit seeds worldwide and its different applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, El-guish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Marwa T Badawy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
31
|
Singh B, Singh JP, Kaur A, Yadav MP. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res Int 2021; 143:110231. [PMID: 33992345 DOI: 10.1016/j.foodres.2021.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Citrus peel (CP), a by-product of the citrus fruit processing, comprises nearly forty to fifty percent of the fruit portion. Interestingly, the essential oil (EO) is primarily concentrated in the peel portion of the citrus fruit. Extraction of CP essential oil (CPEO) is an effective way of utilizing the citrus fruit processing waste. The CPEO can be more efficiently recovered from CP waste by improving the efficiency of conventional extraction processes. The main components of CPEO include monoterpenes, sesquiterpenes and their oxygenated derivatives. Specifically, limonene is the major oil component identified in the peel of different citrus species. The health promoting biological activities of CPEO are functioning as antioxidant, anti-inflammatory, analgesic, antimicrobial and anticancer agents, thereby can be used as a source of functional components and preservatives for the development of nutritionally safe newer food products. This paper provides an in-depth knowledge about the chemical constituents and bioactivities of EOs extracted from peels of different citrus species.
Collapse
Affiliation(s)
- Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar 143002, Punjab, India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Madhav P Yadav
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
32
|
Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Nagoor Meeran M, Seenipandi A, Javed H, Sharma C, Hashiesh HM, Goyal SN, Jha NK, Ojha S. Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19? Heliyon 2021; 7:e05703. [PMID: 33490659 PMCID: PMC7810623 DOI: 10.1016/j.heliyon.2020.e05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite the tremendous social preventive measures. The therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. The identification of candidate drugs effective for COVID-19 is crucial, thus many natural products including phytochemicals are also being proposed for repurposing and evaluated for their potential in COVID-19. Among numerous phytochemicals, limonene (LMN), a dietary terpene of natural origin has been recently showed to target viral proteins in the in-silico studies. LMN is one of the main compounds identified in many citrus plants, available and accessible in diets and well-studied for its therapeutic benefits. Due to dietary nature, relative safety and efficacy along with favorable physicochemical properties, LMN has been suggested to be a fascinating candidate for further investigation in COVID-19. LMN showed to modulate numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. We hypothesized that given the pathogenesis of COVID-19 involving infection, inflammation, and immunity, LMN may have potential to limit the severity and progression of the disease owing to its immunomodulatory, anti-inflammatory, and antiviral properties. The present article discusses the possibilities of LMN in SARS-CoV-2 infections based on its immunomodulatory, anti-inflammatory, and antiviral properties. Though, the suggestion on the possible use of LMN in COVID-19 remains inconclusive until the in-silico effects confirmed in the experimental studies and further proof of the concept studies. The candidature of LMN in COVID-19 treatment somewhat appear speculative but cannot be overlooked provided favorable physiochemical and druggable properties. The safety and efficacy of LMN are necessary to be established in preclinical and clinical studies before making suggestions for use in humans.
Collapse
Affiliation(s)
- M.F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A. Seenipandi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Luo X, Wang J, Chen H, Zhou A, Song M, Zhong Q, Chen H, Cao Y. Identification of Flavoanoids From Finger Citron and Evaluation on Their Antioxidative and Antiaging Activities. Front Nutr 2020; 7:584900. [PMID: 33195374 PMCID: PMC7649818 DOI: 10.3389/fnut.2020.584900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Finger citron (Citrus medica L. var. sarcodactylis Swingle) is a traditional Chinese herb and considered as a healthy food. Flavonoids are the major bioactive substances in Finger citron. In this study, the major flavonoids of finger citron (FFC) were purified with AB-8 macroporous resins, and then three of them were identified as diosmetin-6-8-di-C-glucoside, hesperidin and diosmetin-6-C-glucoside, and other two were preliminarily inferred as limocitrol 3-alpha-l-arabinopyranosyl-(1->3)-galactoside and scutellarein 4′-methyl ether 7-glucoside by high-performance liquid chromatography and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry. Further, their antioxidation and antiaging activities were determined in vitro and in vivo. In vitro, chemical assays revealed that the purified FFC had strong antioxidative activity as demonstrated by its strong DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2-azinobis (3-ethyl-benzothiazoline-6-sulphonic acid) diammonium salt] radical scavenging activities and ORAC (oxygen radical absorbance capacity). In vivo, the purified FFC significantly increased the mean and maximum lifespan of Caenorhabditis elegans by 31.26 and 26.59%, respectively, and showed no side effects on their physiological functions. Under normal and oxidative stress conditions, purified FFC reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde, while increased superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans. Together, we successfully identified three major substances in purified FFC of finger citron and determined the excellent antiaging activity of FFC, which is attributed to its strong antioxidative activity and effect on homeostasis of ROS.
Collapse
Affiliation(s)
- Xuguang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Haiqiang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Hanmin Chen
- Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Chen H, Yang H, Zhou A, Xiao S, Song M, Chen H, Cao Y. A Novel Continuous Phase‐Transition Extraction Effectively Improves the Yield and Quality of Finger Citron Essential Oil Extract. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiqiang Chen
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
- Guangdong Zhancui Food Co., Ltd. Chaozhou 515634 China
| | - Hui Yang
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
- Guangdong Zhancui Food Co., Ltd. Chaozhou 515634 China
| | - Aimei Zhou
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
- Guangdong Zhancui Food Co., Ltd. Chaozhou 515634 China
| | - Suyao Xiao
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
- Guangdong Zhancui Food Co., Ltd. Chaozhou 515634 China
| | - Mingyue Song
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
| | - Hanmin Chen
- Guangdong Zhancui Food Co., Ltd. Chaozhou 515634 China
| | - Yong Cao
- Department of Food Science, College of Food Science South China Agricultural University / Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou 510642 China
| |
Collapse
|
36
|
Essential Oil and Juice from Bergamot and Sweet Orange Improve Acne Vulgaris Caused by Excessive Androgen Secretion. Mediators Inflamm 2020; 2020:8868107. [PMID: 33082712 PMCID: PMC7559496 DOI: 10.1155/2020/8868107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Acne vulgaris is one of the most common chronic inflammatory skin diseases. Bergamot and sweet orange are rich in nutritional and functional components, which exhibit antioxidant, anti-inflammatory, and antiapoptotic effect. The aim of this study was to evaluate the potential effect of bergamot and sweet orange (juice and essential oil) on acne vulgaris caused by excessive secretion of androgen. Eighty male golden hamsters were randomly divided into 10 groups and received low or high dose of bergamot and sweet orange juice and essential oil, physiological saline, and positive drugs for four weeks, respectively. Results showed that all interventions could improve acne vulgaris by reducing the growth rate of sebaceous gland spots, inhibiting TG accumulation, decreasing the release of inflammatory cytokines (notably reducing IL-1α levels), promoting apoptosis in the sebaceous gland, and decreasing the ratio of T/E2. Among them, bergamot and orange essential oil may have better effects (dose dependent) on alleviating acne vulgaris than the corresponding juice. In view of the large population of acne patients and the widespread use of sweet orange and bergamot, this study is likely to exert an extensive and far-reaching influence.
Collapse
|
37
|
Biological Properties of a Citral-Enriched Fraction of Citrus limon Essential Oil. Foods 2020; 9:foods9091290. [PMID: 32937843 PMCID: PMC7555671 DOI: 10.3390/foods9091290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Lemon essential oil (LEO) is a well-known flavoring agent with versatile biological activities. In the present study, we have isolated and characterized four citral-enriched fractions of winter LEO. We reported that in murine and human macrophages the pre-treatment with a mix of these fractions (Cfr-LEO) reduces the expression of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 induced by LPS. In addition, Cfr-LEO counteracts LPS-induced oxidative stress, as shown by the increase in the GSH/GSSG ratio in comparison to cells treated with LPS alone. Overall, the results reported here encourage the application of EO fractions, enriched in citral, in the nutraceutical industry, not only for its organoleptic properties but also for its protective action against inflammation and oxidative stress.
Collapse
|
38
|
Fu C, Liu M, Li Y, Wang K, Yang B, Deng L, Tian J, Yang G, Zheng G. UPLC-Q-Exactive Orbitrap MS Analysis for Identification of Lipophilic Components in Citri Sarcodactylis Fructus from Different Origins in China Using Supercritical CO 2 Fluid Extraction Method. ACS OMEGA 2020; 5:11013-11023. [PMID: 32455222 PMCID: PMC7241013 DOI: 10.1021/acsomega.0c00854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 05/04/2023]
Abstract
To thoroughly evaluate the quality of Citri Sarcodactylis Fructus (CSF) and acquire knowledge of the lipophilic components of CSF from different origins, a simple and efficient approach based on supercritical fluid extraction (SFE) combined with ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap/MS) detection for the discrimination of components from CSF was set up for the first time in this work. Eight batches of CSF samples from five main producing areas were extracted by SFE under optimized conditions, and then SFE extracts were dissected via UPLC-Q-Exactive Orbitrap/MS. The results indicated that 39 lipophilic compounds were successfully separated and unambiguously or tentatively identified, where 4 coumarins, 6 polymethoxyflavones, 3 phthalides, 6 terpenes, and 4 phenolics were not reported formerly. It was illustrated that CSF may be abundant in polymethoxyflavones, as in coumarins. Moreover, there were significant differences in the components of CSF from different origins. Especially, coumarin, dehydrocostus lactone, atractylenolide II, and atractylenolide I were exclusively found in CSF from the Guangdong province; isopsoralen was almost exclusively found in CSF from the Guangxi province; and ferulic acid was exclusively found in CSF from the Zhejiang province. These observations indicated that SFE joint with UPLC-Q-Exactive Orbitrap/MS owing to the potential of characterizing the lipophilic components could be used to promote quality assessment and chemotaxonomic investigation in phytology sciences of CSF.
Collapse
Affiliation(s)
- Chengxiao Fu
- Center
of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Mengshi Liu
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Yueshan Li
- School
of Health and Wellness, Guangzhou Huaxia
Technical College, Guangzhou 510935, P. R. China
| | - Kanghui Wang
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Bo Yang
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Lijing Deng
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Jingyuan Tian
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Guoping Yang
- Center
of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
- . Phone/Fax: +86-0731-88618931
| | - Guodong Zheng
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
- . Phone/Fax: +86-020-37103256
| |
Collapse
|
39
|
Sousa C, Leitão AJ, Neves BM, Judas F, Cavaleiro C, Mendes AF. Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Sci Rep 2020; 10:7199. [PMID: 32350292 PMCID: PMC7190660 DOI: 10.1038/s41598-020-64032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mint species are widely used in traditional and conventional medicine as topical analgesics for osteoarthritic pain and for disorders of the gastrointestinal and respiratory tracts which are all associated with chronic inflammation. To identify the structural determinants of anti-inflammatory activity and potency which are required for chemical optimization towards development of new anti-inflammatory drugs, a selected group of monoterpenes especially abundant in mint species was screened by measuring bacterial lipopolysacharide (LPS)-induced nitric oxide (NO) production in murine macrophages. Nine compounds significantly decreased LPS-induced NO production by more than 30%. IC50 values were calculated showing that the order of potency is: (S)-(+)-carvone > (R)-(-)-carvone > (+)-dihydrocarveol > (S)-8-hydroxycarvotanacetone > (R)-8-hydroxycarvotanacetone > (+)-dihydrocarvone > (-)-carveol > (-)-dihydrocarveol > (S)-(-)-pulegone. Considering the carbon numbering relative to the common precursor, limonene, the presence of an oxygenated group at C6 conjugated to a double bond at C1 and an isopropenyl group and S configuration at C4 are the major chemical features relevant for activity and potency. The most potent compound, (S)-(+)-carvone, significantly decreased the expression of NOS2 and IL-1β in macrophages and in a cell model of osteoarthritis using primary human chondrocytes. (S)-(+)-carvone may be efficient in halting inflammation-related diseases, like osteoarthritis.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Alcino Jorge Leitão
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Fernando Judas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Orthopaedics Department and Bone Bank, University and Hospital Centre of Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Chemical Engineering Department, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
40
|
Kang HK, Hyun CG. Anti-inflammatory Effect of d-(+)-Cycloserine Through Inhibition of NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Kyu Kang
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|
41
|
Karami S, Shamshiri S, Abdollahi M, Rahimi R. An Evidence-based Review of Medicinal Plants used in Traditional Persian Medicine for Treatment of Osteoarthritis. Curr Drug Discov Technol 2020; 18:244-271. [PMID: 32178613 DOI: 10.2174/1570163817666200316105658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is known to be the leading cause of pain and disability in the elderly. The prevalence of this disease in adults over 60 years was 9.6% in men and 18% in women. The therapeutic goals of this disease generally include pain relief with the least side effects, improvement of articular function and improvement of life, in which pharmacological and nonpharmacological treatments are performed in different protocols. Due to the common side effects of pain relievers and complaints after invasive joint surgeries, there is a growing interest in the use of Traditional and Complementary protocols in OA treatment. In this paper, different sources of Traditional Persian Medicine (TPM) were searched to obtain any evidence evaluating any medicinal plants in the management of OA. Over 250 effective medicinal plants for the treatment of OA have been introduced in these sources, and by searching electronic databases including PubMed and Scopus, we have found that of these plants, 39 have direct or indirect evidence in the treatment of this complication by different mechanism of actions such as effect on Body mass index (BMI), obesity and dyslipidemia, anti-inflammatory, anti-nociceptive and antioxidant activity. The most important medicinal plants with direct evidence in the management of OA are Allium sativum, Commiphora mukul, Linum usitatissimum, Matricaria chamomilla, Nigella sativa, Zingiber officinale, and Piper nigrum. Medicinal plants seem to be a valuable source for discovering and identifying new drugs for treatment of OA; however, since most of the studies are preclinical, further clinical trials are required to achieve more conclusive results.
Collapse
Affiliation(s)
- Soodeh Karami
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Wang H, Liu K, Chi Z, Zhou X, Ren G, Zhou R, Li Y, Tang X, Wang XJ. Interplay of MKP-1 and Nrf2 drives tumor growth and drug resistance in non-small cell lung cancer. Aging (Albany NY) 2019; 11:11329-11346. [PMID: 31811110 PMCID: PMC6932920 DOI: 10.18632/aging.102531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
Alterations in KEAP1/ NF-E2 p45-related factor 2 (NFE2L2/Nrf2) signaling pathway have been reported in 23% lung adenocarcinoma patients, suggesting that deregulation of the pathway is a major cancer driver. Here we report that mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) drives tumor growth and drug resistance by up regulating transcription factor Nrf2. In non-small cell lung cancer (NSCLC) cells and xenografts, MKP-1 knockdown triggered the down-regulation of the metabolic enzymes and cytoprotective proteins, which are the target genes of Nrf2. Consequently, the cell growth was markedly inhibited with decrease of tumor metabolisms and GSH contents. Moreover, MKP-1 silencing sensitized NSCLC cells to cisplatin treatment. Mechanistically, MKP-1 inhibited the ubiquitylation of Nrf2 via a direct interaction with the transcription factor. Nrf2 was hence stabilized and its transcriptional program was activated. Notably, Nrf2 elevated MKP-1 expression at transcriptional level. In human lung adenoma tumor samples, high levels of expression of MKP-1, Nrf2, and its target gene heme oxygenase 1 were closely correlated. Thus, MKP-1 and Nrf2 form a forward feedback loop in lung cancer cells, which stabilizing and activating Nrf2 to promote anabolic metabolism and GSH biosynthesis. This study uncovers a novel role of MKP-1 in the malignant evolution of cancers.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Kaihua Liu
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Zhexu Chi
- Department of Biochemistry, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xihang Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Guoping Ren
- Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Ren Zhou
- Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China.,Department of Pathology and Path-physiology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yinyan Li
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
43
|
Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways. Int Immunopharmacol 2019; 75:105802. [DOI: 10.1016/j.intimp.2019.105802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023]
|
44
|
Montironi ID, Reinoso EB, Paullier VC, Siri MI, Pianzzola MJ, Moliva M, Campra N, Bagnis G, Ferreira LaRocque-de-Freitas I, Decote-Ricardo D, Freire-de-Lima CG, Raviolo JM, Cariddi LN. Minthostachys verticillata essential oil activates macrophage phagocytosis and modulates the innate immune response in a murine model of Enterococcus faecium mastitis. Res Vet Sci 2019; 125:333-344. [DOI: 10.1016/j.rvsc.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
|
45
|
Li ZH, Cai M, Yang K, Sun PL. Kinetic study of d-limonene release from finger citron essential oil loaded nanoemulsions during simulated digestion in vitro. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019; 24:molecules24081577. [PMID: 31013583 PMCID: PMC6515347 DOI: 10.3390/molecules24081577] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, antibacterial activity of finger citron essential oil (FCEO, Citrus medica L. var. sarcodactylis) and its mechanism against food-borne bacteria were evaluated. A total of 28 components in the oil were identified by gas chromatography-mass spectrometry, in which limonene (45.36%), γ-terpinene (21.23%), and dodecanoic acid (7.52%) were three main components. For in vitro antibacterial tests, FCEO exhibited moderately antibacterial activity against common food-borne bacteria: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus. It showed a better bactericidal effect on Gram-positive bacteria than Gram-negative. Mechanisms of the antibacterial action were investigated by observing changes of bacteria morphology according to scanning electron microscopy, time-kill analysis, and permeability of cell and membrane integrity. Morphology of tested bacteria was changed and damaged more seriously with increased concentration and exposure time of FCEO. FCEO showed a significant reduction effect on the growth rate of surviving bacteria and lead to lysis of the cell wall, intracellular ingredient leakage, and consequently, cell death.
Collapse
|
47
|
Liu SD, Song MH, Yun W, Lee JH, Kim HB, Cho JH. Effect of carvacrol essential oils on immune response and inflammation-related genes expression in broilers challenged by lipopolysaccharide. Poult Sci 2019; 98:2026-2033. [PMID: 30590708 DOI: 10.3382/ps/pey575] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/08/2018] [Indexed: 02/06/2023] Open
Abstract
This experiment was conducted to study the effects of orally administered carvacrol essential oils on immune response and inflammation-related genes expression in broilers challenged by lipopolysaccharide (LPS). Eighty 28-day-old (1.28 ± 0.15 kg) ROSS 308 broilers were assigned to a 2 × 2 factorial arrangement of treatments (20 pens of 1 chick/trt). Factors were carvacrol essential oil (orally administered or non-orally administered) and LPS (challenged or non-challenged). Individually housed broilers were randomly assigned (n = 20 broilers per treatment: 10 males and 10 females) to four treatments: (1) basic diet (CTR), (2) basic diet + carvacrol (CAR), (3) basic diet + LPS-challenge (LPS), (4) basic diet + carvacrol + LPS-challenge (CAR+LPS). All were fed with the same diet. The experimental period was for 15 d, after which injecting LPS significantly up-regulated the gene expression levels of TNF-α (P < 0.05), IL-1β (P < 0.05), IL-6 (P < 0.05), IL-8 (P < 0.05), TLR2 (P < 0.05), TLR4 (P < 0.05), NF-κB p65 (P < 0.05), AVBD-9 (P < 0.05), and SIgA(P < 0.05) compared with the CTR group; the broilers were challenged by LPS after oral administration of carvacrol, they had significant lower on the gene expression levels of TNF-α (P < 0.05), IL-1β (P < 0.05), IL-6 (P < 0.05), TLR4 (P < 0.05), NF-κB p65 (P < 0.05), and AVBD-9 (P < 0.05) than the LPS group. In conclusion, the broilers orally administrated carvacrol essential oils inhibited the secretion of inflammatory cytokines caused by LPS, affected the pathway of TLRs/NF-κB, and showed an anti-inflammatory function.
Collapse
Affiliation(s)
- S D Liu
- Division of Food and Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - M H Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - W Yun
- Division of Food and Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - J H Lee
- Division of Food and Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - H B Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea
| | - J H Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| |
Collapse
|
48
|
Anti-Inflammatory Activities of Leaf Oil from Cinnamomum subavenium In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1823149. [PMID: 30915347 PMCID: PMC6402240 DOI: 10.1155/2019/1823149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/13/2019] [Indexed: 11/18/2022]
Abstract
The study determined the chemical constituents and anti-inflammatory effects of leaf oil from Cinnamomum subavenium (CS-LO) that has been used in folk medicine to treat various symptoms including inflammation. The anti-inflammatory effects of the oil were evaluated by LPS-stimulated RAW264.7 cells and the Carr-induced hind mouse paw edema model, respectively. In vitro, nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-6, and IL-1β were significantly decreased by CS-LO, and the expression of nuclear factor-κB (NF-κB) protein was blocked as well. In in vivo, the malondialdehyde (MDA) and paw edema levels were decreased by CS-LO, and the same result came up on the NO and tumor necrosis factor (TNF-a) of serum at the 5th h after Carr injection. In addition, iNOS and COX-2 immunoreactive cells of the paw tissue were decreased significantly by CS-LO (200 mg/kg) in histological examination. The present findings indicated that CS-LO have anti-inflammatory properties, and the effects might be caused through inhibiting iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression via affecting NF-κB pathway, which will provide a power scientific basis for CS-LO to be used as the treatment of inflammatory diseases.
Collapse
|
49
|
Raha S, Kim SM, Lee HJ, Lee SJ, Heo JD, Saralamma VVG, Ha SE, Kim EH, Mun SP, Kim GS. Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in Sprague‑Dawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells. Int J Mol Med 2019; 43:393-403. [PMID: 30387810 PMCID: PMC6257863 DOI: 10.3892/ijmm.2018.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
To date, Korean hinoki cypress (Chamaecyparis obtusa), has been widely used for household and commercial purposes. Although the medicinal efficacy of hinoki cypress essential oil has been observed, that of the essential oil‑derived terpenes, which exhibit a mechanism that acts against lung inflammation, remains to be fully elucidated. The present study investigated the anti‑inflammatory effect of hinoki cypress leaf extracted essential oil on lipopolysaccharide (LPS)‑stimulated WI38 fibroblast cells by inhibiting the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) pathway, which exhibited lung tissue protection through the olfactory administration of essential oil in Sprague‑Dawley rats. GC/MS analysis derived 24 terpenes from the essential oil. The morphological observations revealed that, upon LPS stimulation of WI38 fibroblast cells, inflammation was induced, whereas the condition of the cells reverted to normal in the essential oil extract pre‑treated group. The results of western blot analysis revealed the inhibition of inducible nitric oxide synthase, activation of cyclooxygnase‑2, and the degradation of cytosolic p65 and inhibitor of NF‑κB‑α in the LPS‑stimulated group. Additionally, confocal imaging of nuclei revealed the translocation of phosphorylated p65, which was recovered in the cytosol in the phytoncide essential oil pre‑treated group. Histopathological observation revealed that the alveolar capacity was enhanced in the essential oil olfactory administered rat group, compared with that in the normal rat group. These findings suggest that terpenes in essential oil from the Chamaecyparis obtusa leaf have therapeutic potential against respiratory inflammation‑related disease.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Ho Jeong Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | | | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongsang 52833
| | - Sung Phil Mun
- Department of Wood Science and Technology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| |
Collapse
|
50
|
Wang Q, Lu D, Fan L, Li Y, Liu Y, Yu H, Wang H, Liu J, Sun G. COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1α/PKM2 pathway. Int J Mol Med 2019; 43:475-488. [PMID: 30365092 DOI: 10.3892/ijmm.2018.3936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The pyruvate kinase M2 isoform (PKM2) is a key component of aerobic glycolysis and has been reported to regulate apoptosis. However, it is unclear whether PKM2 is involved in cyclooxygenase‑2 (COX‑2) induced apoptosis‑resistance in hepatocellular carcinoma (HCC) cells. In the present study, it was observed that COX‑2 and PKM2 were significantly elevated in hepatocellular carcinoma tissues compared with adjacent liver tissues (P<0.05). Furthermore, their expression was positively associated with worse clinicopathological characteristics, which indicates poor prognosis in patients with HCC. COX‑2 knockdown significantly reduced the expression of PKM2 and hypoxia inducible factor‑1α (HIF‑1α) at the mRNA and protein levels in addition to inhibiting proliferation (P<0.05), whereas apoptosis was notably increased. Furthermore, HIF‑1α and PKM2‑knockdown increased cell apoptosis without inhibiting COX‑2 expression. PKM2 inhibition did not have a marked effect on COX‑2 and HIF‑1α expression. In conclusion, the results of the present study suggested that HIF‑1α/PKM2 pathway‑associated metabolic changes may facilitate COX‑2‑induced apoptosis resistance in HCC cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Donghui Lu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuhuan Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|