1
|
Peng Q, Gong X, Jiang R, Yang N, Chen R, Dai B, Wang R. Performance and characterization of snail adhesive mucus as a bioflocculant against toxic Microcystis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115921. [PMID: 38183749 DOI: 10.1016/j.ecoenv.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Toxic Microcystis blooms are widespread in aquatic bodies, posing major threats to aquatic and human life. Recently, bioflocculants have attracted considerable attention as a promising biomaterial for Microcystis management. In search of a novel organism that can produce an efficient bioflocculant for controlling harmful algae sustainably, the native gastropod Cipangopaludina chinensis was co-cultured continuously with toxic Microcystis under different initial algal cell densities. The bioflocculation effect of snail mucus on toxic Microcystis, microcystin removal, and toxin accumulation in snails was investigated. In addition, the properties of the adhesive mucus were characterized using microscopic, X-ray diffraction, infrared spectroscopy, and polysaccharide and proteome analyses. Microcystis cells were captured and flocculated by the snail mucus; removal efficiencies of up to 89.9% and 84.8% were achieved for microalgae and microcystin-leucine arginine (MC-LR), respectively, when co-cultured with C. chinensis for only one day. After nine-day exposure, less than 5.49 µg/kg DW microcystins accumulated in the snails, indicating safety for human consumption. The snail mucus contained 104.3 µg/mg protein and 72.7 µg/mg carbohydrate, which provide several functional groups beneficial for Microcystis bioflocculation. The main monosaccharide subunits of polysaccharides are galactose, galactosamine, glucosamine, fucose, glucose, and mannose. Most of them are key components of polysaccharides in many bioflocculants. Gene Ontology analysis indicated the protein enrichment in binding processes and catalytic activity, which may account for Microcystis bioflocculation via protein binding or enzymatic reactions. The findings indicate that native C. chinensis secretes adhesive mucus that can act as bioflocculant for toxic Microcystis from ambient water and can be an effective and eco-friendly tool for Microcystis suppression.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Xinyue Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Ruixin Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Na Yang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Ruiting Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Binglin Dai
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Rui Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China.
| |
Collapse
|
2
|
Kutluyer Kocabaş F, Göktürk Aksu E, Kocabaş M. Evaluation of metal pollution related to human health risk in freshwater snail Viviparus contectus (Millet, 1813) as a potential bioindicator species in Lake Habitat (Turkey). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93686-93696. [PMID: 37515620 DOI: 10.1007/s11356-023-29062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Freshwater mollusks are employed as bioindicators for the assessment of water quality in biomonitoring studies since the water quality of natural resources is crucial for humans. The freshwater snail species known as Viviparus contectus (Viviparidae: Gastropoda) is one that people eat. Here, the levels of heavy metals (Cd, Cr, Pb, As, Zn, and Cu) in water and V. contectus samples were determined. An Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES, Spectro Arcos, vertical plasma) was used for the analysing the heavy metal concentrations in water and freshwater snail samples. The results of the current investigation demonstrated that freshwater snails accumulated metals in their water and soft tissues in the following orders: Pb > Cr = Zn = Cu = Cd = As and Zn > Cu > Pb > Cd > As = Cr. Autumn was the time of year when higher amounts of heavy metals (As, Cr, Cu, Zn, and Hg) were found. Pb content in the freshwater snail samples was strongly impacted by seasonal fluctuations (P 0.05). For adults, the EDI (estimated daily intake) values were lower than the TDI (tolerable daily intake) values, and the HI (hazard index) values were below 1. Freshwater snail samples had Zn and Pb levels that were over the FAO/WHO, Turkish Food Codex, JECFA, and EC limit values. Except for Pb, the water study shows mean metal concentrations below the USEPA, Turkish Pollution Control Regulation, and World Health Organisation maximum allowed levels. Aquatic ecosystems were negatively impacted by anthropogenic activities overall, and this study can provide a helpful data set for investigations on metallic contamination in water bodies and biomonitoring in freshwater ecosystems.
Collapse
Affiliation(s)
| | | | - Mehmet Kocabaş
- Faculty of Forestry, Department of Wildlife Ecology and Management, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
3
|
Zhou K, Chen Z, Du X, Huang Y, Qin J, Wen L, Pan X, Lin Y. SMRT Sequencing Reveals Candidate Genes and Pathways With Medicinal Value in Cipangopaludina chinensis. Front Genet 2022; 13:881952. [PMID: 35783279 PMCID: PMC9243326 DOI: 10.3389/fgene.2022.881952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cipangopaludina chinensis is an economically important aquatic snail with high medicinal value. However, molecular biology research on C. chinensis is limited by the lack of a reference genome, so the analysis of its transcripts is an important step to study the regulatory genes of various substances in C. chinensis. Herein, we conducted the first full-length transcriptome analysis of C. chinensis using PacBio single-molecule real-time (SMRT) sequencing technology. We identified a total of 26,312 unigenes with an average length of 2,572 bp, of which the largest number of zf-c2h2 transcription factor families (120,18.24%) were found, and also observed that the majority of the 8,058 SSRs contained 4-7 repeat units, which provided data for subsequent work on snail genetics Subsequently, 91.86% (24,169) of the genes were successfully annotated to the four major databases, while the highest homology was observed with Pomacea canaliculata. Functional annotation revealed that the majority of transcripts were enriched in metabolism, signal transduction and Immune-related pathways, and several candidate genes involved in drug metabolism and immune response were identified (e.g., CYP1A1, CYP2J, CYP2U1, GST, ,PIK3, PDE3A, PRKAG). This study lays a foundation for future molecular biology research and provides a reference for studying genes associated with the medicinal value of C. chinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Lin
- *Correspondence: Xianhui Pan, ; Yong Lin,
| |
Collapse
|
4
|
Zhou K, Qin J, Pang H, Chen Z, Huang Y, Li W, Du X, Wen L, Pan X, Lin Y. Comparison of the composition and function of gut microbes between adult and juvenile Cipangopaludina chinensis in the rice snail system. PeerJ 2022; 10:e13042. [PMID: 35282274 PMCID: PMC8916024 DOI: 10.7717/peerj.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Cipangopaludina chinensis is an important economic value snail species with high medicinal value. The gut microbes of aquatic animals plays a vital role in food digestion and nutrient absorption. Herein, we aimed at high-throughput sequencing of 16S rRNA to further investigate whether there were differences in the composition and function of gut microbes of adult and juvenile C. chinensis snails, as well as sediments. This study found that the microbial diversity of the sediment was significantly higher than that of the snails gut (P < 0.001), but there was no significant difference between the gut flora of adult and juvenile snails (P > 0.05). A total of 47 phyla and 644 genera were identified from all samples. Proteobacteria and Verrucomicrobia were the two dominant phyla in all samples, and overall relative abundances was 48.2% and 14.2%, respectively. Moreover, the relative abundances of Aeromonas and Luteolibacter in the gut of juvenile snails (30.8%, 11.8%) were higher than those of adults (27.7%, 10.6%) at the genus level (P > 0.05). Then, four indicator genera were found, namely Flavobacterium, Silanimonas, Geobacter and Zavarzinella, and they abundance in the gut of juvenile snails was significantly higher than that of adults (P < 0.05). This results imply the potential development of Silanimonas as a bait for juvenile snail openings. We observed that Aeromonas was the primary biomarker of the snail gut and sediments (P < 0.001), and it may be a cellulose-degrading bacteria. Function prediction revealed significantly better biochemical function in the snail gut than sediments (P < 0.001), but no significant differences in adult and juvenile snail (P > 0.05). In conclusion, studies show that the snail gut and sediment microbial composition differ, but the two were very similar. The microbial composition of the snail gut was relatively stable and has similar biological functions. These findings provide valuable information for in-depth understanding of the relationship between snails and environmental microorganisms.
Collapse
Affiliation(s)
- Kangqi Zhou
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Junqi Qin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | | | - Zhong Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | | | - Xuesong Du
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Luting Wen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xianhui Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
5
|
Mullakkalparambil Velayudhan J, Mondal D, Raja R, Kumar B, Mandal RSK, Bhatt S, Singh KP, Madhesh K. Hepatoprotectant potential of sodium alginate coated catechin nanoparticles (SACC-NPs) in rat model. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1749076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Debabrata Mondal
- Division of Medicine, Indian Veterinary Research Institute, ICAR-IVRI, Izatnagar, Uttar Pradesh, India
| | - Raguvaran Raja
- Division of Medicine, Indian Veterinary Research Institute, ICAR-IVRI, Izatnagar, Uttar Pradesh, India
| | - Bipin Kumar
- Division of Medicine, Indian Veterinary Research Institute, ICAR-IVRI, Izatnagar, Uttar Pradesh, India
| | - Ravi Shankar Kumar Mandal
- Division of Medicine, Indian Veterinary Research Institute, ICAR-IVRI, Izatnagar, Uttar Pradesh, India
| | - Sonam Bhatt
- Division of Medicine, Indian Veterinary Research Institute, ICAR-IVRI, Izatnagar, Uttar Pradesh, India
| | | | | |
Collapse
|
6
|
Wang S, Xu J, Wang C, Li J, Wang Q, Kuang H, Yang B, Chen R, Luo Z. Paeoniae radix alba polysaccharides obtained via optimized extraction treat experimental autoimmune hepatitis effectively. Int J Biol Macromol 2020; 164:1554-1564. [PMID: 32735927 DOI: 10.1016/j.ijbiomac.2020.07.214] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
The extraction process of Paeoniae radix alba polysaccharides (PRAP) was optimized as the liquid-solid ratio of 10.65 mL/g, the extraction time of 2.10 h, and the 2 extraction repetitions through a response surface methodology. The chemical profiles of the obtained PRAP were characterized by measuring the contents of total carbohydrates, total phenolics, uronic acid and protein, and by analyzing the FT-IR spectrum and monosaccharide composition. To determine the therapeutic effects of PRAP on experimental autoimmune hepatitis (EAH), we established an EAH mice model. After treated with PRAP, liver and spleen injuries were reduced, and hepatocyte regeneration and liver function were improved. Further study of the mechanism by which PRAP treats EAH showed that PRAP significantly inhibited oxidative stress in the livers of EAH model mice. More importantly, PRAP inhibited immune inflammatory reactions in EAH model mice, including the hepatic infiltration of inflammatory CD4+ and CD8+ T cells, as well as overexpression of inflammatory cytokines IL-2, IL-6 and IL-10, via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Siyu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Jiazhi Xu
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Changfu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China.
| | - Jianchun Li
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Qiuhong Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Rongying Chen
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Zhongwen Luo
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Chakraborty K, Salas S. First report of a glycosaminoglycan-xylopyranan from the buccinid gastropod mollusk Babylonia spirata attenuating proinflammatory 5-lipoxygenase. J Food Biochem 2019; 44:e13082. [PMID: 31633813 DOI: 10.1111/jfbc.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
A previously undescribed xylated glycosaminoglycan characterized as β-D-Xylop(1 → 3)-(⋯ → 4)-GlcpA(1 → 3)-GlcpNAc(1 → ⋯) was purified from the buccinid gastropod Babylonia spirata and was evaluated for pharmacological properties using different in vitro models. The glycosaminoglycan-xylopyranan displayed prospective free radical quenching activities (IC50 < 0.7 mg/ml), whereas it exhibited potentially greater attenuation against the inductive proinflammatory enzyme 5-lipoxygenase (5-LOX, IC50 0.36 mg/ml) than the synthetic nonsteroidal anti-inflammatory drug aspirin (0.42). Gel permeation chromatography analysis specified the average molecular mass of the purified polysaccharide to be 231.88 kDa. The linkage sites, anomeric configuration, and the sequence of sugar residues of the purified xylated glycosaminoglycan were attributed by the inter-residue correlation obtained via two-dimensional nuclear resonance spectroscopic techniques. The results specified that the studied compound was composed of GlcpA(1 → 3)-GlcpNAc (1 → ⋯) disaccharide repeating unit in the glycosaminoglycan backbone, with the xylose residues branching as C-3 substituents of the GlcpA. . PRACTICAL APPLICATIONS: The edible marine buccinid mollusk Babylonia spirata is a gastropod species of economic significance in the coastal regions of peninsular India. A previously unreported xylated glycosaminoglycan with a β-D-Xylop(1 → 3)-(⋯ → 4)-GlcpA(1 → 3)-GlcpNAc(1 → ⋯) framework was isolated to homogenity and was found to possess potential antioxidant and 5-lipoxygenase attenuation activities. The isolated metabolite might be anticipated as potential naturally-derived bioactive constituent in functional food and pharmaceutical applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
| | - Soumya Salas
- Department of Chemistry, Mangalore University, Mangalagangothri, India
| |
Collapse
|
9
|
Antihyperlipidemic and hepatoprotective properties of alkali- and enzyme-extractable polysaccharides by Dictyophora indusiata. Sci Rep 2019; 9:14266. [PMID: 31582800 PMCID: PMC6776539 DOI: 10.1038/s41598-019-50717-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a very common disease throughout the world, usually gives rise to severe liver damages. The current experiment was to investigate the antihyperlipidemic and hepatoprotective properties of alkali- and enzyme-extractable Dictyophora indusiata polysaccharides (Al-DPS and En-DPS) on the hyperlipidemic mice. The results of animal experiment in vivo showed that treatment with Al-DPS or En-DPS could improve the excessive level of lipid profiles in serum and liver, as well as strengthen antioxidant status. In addition, the histopathological observations of liver testified that polysaccharides were capable of attenuating hepatic cell injury. The primary structural features of Al-DPS and En-DPS were demonstrated by HPGPC, HPLC, FT-IR and NMR. Glucose tolerance test manifested that polysaccharides were able to restrain the rise of blood sugar. The results indicated that Al-DPS and En-DPS may be considered as novel compounds to treat hyperlipidemia and also act as hepatoprotective agents.
Collapse
|
10
|
Pallerla P, Yellu NR, Bobbala RK. Hepatoprotective studies on methanolic extract fractions of Lindernia ciliata and development of qualitative analytical profile for the bioactive extract. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate.
Results
Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis.
Conclusions
All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.
Collapse
|
11
|
Kim YS, Kim EK, Dong X, Shin WB, Park JS, Kim SJ, Go EA, Byun HG, Park PJ. Antioxidant Activities of Viviparus Contectus Extract Against Tert-Butylhydroperoxide-Induced Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:611-626. [DOI: 10.1007/978-981-13-8023-5_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Xiong Q, Zhu L, Zhang F, Li H, Wu J, Liang J, Yuan J, Shi Y, Zhang Q, Hu Y. Protective activities of polysaccharides from Cipangopaludina chinensis against high-fat-diet-induced atherosclerosis via regulating gut microbiota in ApoE-deficient mice. Food Funct 2019; 10:6644-6654. [DOI: 10.1039/c9fo01530b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The supplementation of sulfated polysaccharides extracted from C. chinensis slows down the development of atherosclerosis caused by high-fat-diet-induced AS via regulating gut microbiota.
Collapse
|
13
|
Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, Huang S, Wang X, Hou S, Xu T, Chen J, Zhang D, Shi Y, Li H, Li S. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 2018; 60:48-63. [PMID: 30285473 DOI: 10.1080/10408398.2018.1512472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Jian Liang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Lian He
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, PR China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Shaozhen Hou
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tingting Xu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Danyan Zhang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yingying Shi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Hailun Li
- Nephrological Department, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, PR China
| | - Shijie Li
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
14
|
Anti-inflammatory and anti-angiogenic activities of a purified polysaccharide from flesh of Cipangopaludina chinensis. Carbohydr Polym 2017; 176:152-159. [DOI: 10.1016/j.carbpol.2017.08.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/04/2023]
|
15
|
The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice. Int J Biol Macromol 2017; 97:46-54. [DOI: 10.1016/j.ijbiomac.2017.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/17/2022]
|
16
|
An efficient method for decoloration of polysaccharides from the sprouts of Toona sinensis (A. Juss.) Roem by anion exchange macroporous resins. Food Chem 2017; 217:461-468. [DOI: 10.1016/j.foodchem.2016.08.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/09/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022]
|
17
|
Ramnath MG, Thirugnanasampandan R, Mathusalini S, Mohan PS. Hepatoprotective and Cytotoxic Activities of Abietic Acid from Isodon wightii (Bentham) H. Hara. Pharmacognosy Res 2016; 8:206-8. [PMID: 27365991 PMCID: PMC4908851 DOI: 10.4103/0974-8490.182920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Isodon (Lamiaceae) is a known source of bioactive terpenoids. Diterpenoids isolated from Isodon wightii (Bentham) H. Hara showed antibacterial, antiacetylcholinesterase, antioxidant, anticancer, and anticarcinogenic activities, etc., Hepatoprotective activity of ABA against lipopolysaccharide (LPS) induced liver injury in BALB/c mice was studied. Cytotoxic activity of ABA was tested against cervical cancer cells (HeLa) using MTT assay followed by propidium iodide (PI) staining to identify apoptosis. Histopathological analysis revealed that 1.5 ॖg/mL LPS induced liver damage was attenuated by ABA in a dose dependent manner. ABA showed cytotoxicity with IC50 value of 176.28 ± 0.02 ॖg/mL and PI staining of treated cells showed apoptosis. This study proves that ABA would be a promising natural compound for herbal drug preparation. SUMMARY In the present study, abietic acid isolated from I. wightii had potent hepatoprotective effect on LPS induced liver damage in BALB/c mice. Abietic acid also showed cytotoxic activity on HeLa cells followed by apoptosis induction confirmed by PI staining. Abbreviation Used: ABA: Abietic acid; LPS: Lipopolysacharride; PBS: Phosphate buffer saline; PI: Propidium iodide; NMR: Nuclear magnetic resonance; COSY: Correlation spectroscopy; HSQC: Heteronuclear single quantum correlation; HMBC: Heteronuclear multi - bond correlation; MTT: 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide.
Collapse
|
18
|
Han Y, Wu J, Liu T, Hu Y, Zheng Q, Wang B, Lin H, Li X. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida. Int J Biol Macromol 2016; 83:42-9. [PMID: 26616455 DOI: 10.1016/j.ijbiomac.2015.11.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 01/13/2023]
Abstract
The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities.
Collapse
Affiliation(s)
- Yun Han
- School of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shangdong, PR China.
| | - Jun Wu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, Shangdong, PR China
| | - Tingting Liu
- Affiliated Huaian Hospital of Xuzhou Medical College, Huaian 223002, Jiangsu, PR China
| | - Youdong Hu
- Affiliated Huaian Hospital of Xuzhou Medical College, Huaian 223002, Jiangsu, PR China
| | - Qiusheng Zheng
- School of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shangdong, PR China
| | - Binsheng Wang
- School of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shangdong, PR China
| | - Haiyan Lin
- School of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shangdong, PR China
| | - Xia Li
- Affiliated Huaian Hospital of Xuzhou Medical College, Huaian 223002, Jiangsu, PR China.
| |
Collapse
|
19
|
Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis. Carbohydr Polym 2016; 136:875-83. [DOI: 10.1016/j.carbpol.2015.09.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 01/08/2023]
|
20
|
Wang Z, Zhao Y, Su T, Zhang J, Wang F. Characterization and antioxidant activity in vitro and in vivo of polysaccharide purified from Rana chensinensis skin. Carbohydr Polym 2015; 126:17-22. [DOI: 10.1016/j.carbpol.2015.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 03/07/2015] [Indexed: 01/08/2023]
|
21
|
Liu C, Chen J, Li E, Fan Q, Wang D, Li P, Li X, Chen X, Qiu S, Gao Z, Li H, Hu Y. The comparison of antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide (CP) and sulfated CP. Int Immunopharmacol 2015; 24:299-305. [DOI: 10.1016/j.intimp.2014.12.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/24/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022]
|
22
|
Characterization and hepatoprotective effect of polysaccharides from Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou sarcocarp. Food Chem Toxicol 2014; 74:76-84. [DOI: 10.1016/j.fct.2014.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/21/2022]
|
23
|
Liu J, Lu JF, Wen XY, Kan J, Jin CH. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int J Biol Macromol 2014; 72:1479-84. [PMID: 25316429 DOI: 10.1016/j.ijbiomac.2014.09.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/09/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
In this study, the antioxidant activity and hepatoprotective effect of inulin and catechin grafted inulin (catechin-g-inulin) against carbon tetrachloride (CCl4)-induced acute liver injury were investigated. Results showed that both inulin and catechin-g-inulin had moderate scavenging activity on superoxide radical, hydroxyl radical and H2O2, as well as lipid peroxidation inhibition effect. The antioxidant activity decreased in the order of Vc > catechin >catechin-g-inulin > inulin. Administration of inulin and catechin-g-inulin could significantly reduce the elevated levels of serum aspartate transaminase, alanine transaminase and alkaline phosphatase as compared to CCl4 treatment group. Moreover, inulin and catechin-g-inulin significantly increased the levels of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and total antioxidant capacity, whereas markedly decreased the malondialdehyde level when compared with CCl4 treatment group. Notably, catechin-g-inulin showed higher hepatoprotective effect than inulin. In addition, the hepatoprotective effect of catechin-g-inulin was comparable to positive standard of silymarin. Our results suggested that catechin-g-inulin had potent antioxidant activity and potential protective effect against CCl4-induced acute liver injury.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jian-feng Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiao-yuan Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chang-hai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
24
|
Ji P, Wei Y, Xue W, Hua Y, Zhang M, Sun H, Song Z, Zhang L, Li J, Zhao H, Zhang W. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. Int J Biol Macromol 2014; 67:195-200. [DOI: 10.1016/j.ijbiomac.2014.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/05/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
25
|
Liu J, Wen XY, Lu JF, Kan J, Jin CH. Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. Int J Biol Macromol 2014; 65:97-106. [DOI: 10.1016/j.ijbiomac.2014.01.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
|