1
|
Xu B, Luo Z, Niu X, Li Z, Lu Y, Li J. Fungi, immunosenescence and cancer. Semin Cancer Biol 2025; 109:67-82. [PMID: 39788169 DOI: 10.1016/j.semcancer.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Fungal microbes are a small but immunoreactive component of the human microbiome, which may influence cancer development, progression and therapeutic response. Immunosenescence is a process of immune dysfunction that occurs with aging, including lymphoid organ remodeling, contributing to alterations in the immune system in the elderly, which plays a critical role in many aspects of cancer. There is evidence for the interactions between fungi and immunosenescence in potentially regulating cancer progression and remodeling the tumor microenvironment (TME). In this review, we summarize potential roles of commensal and pathogenic fungi in modulating cancer-associated processes and provide more-detailed discussions on the mechanisms of which fungi affect tumor biology, including local and distant regulation of the TME, modulating antitumor immune responses and interactions with neighboring bacterial commensals. We also delineate the features of immunosenescence and its influence on cancer development and treatment, and highlight the interactions between fungi and immunosenescence in cancer. We discuss the prospects and challenges for harnessing fungi and immunosenescence in cancer diagnosis and/or treatment. Considering the limited understanding and techniques in conducting such research, we also provide our view on how to overcome challenges faced by the exploration of fungi, immunosenescence and their interactions on tumor biology.
Collapse
Affiliation(s)
- Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China
| | - Zan Luo
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, China; Voylin Institute for Translation Medicine, Xiamen, Fujian 361000, China
| | - Zhi Li
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yeping Lu
- Department of Neurosurgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, China.
| | - Junyu Li
- Department of Radiation Oncology, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Jiang Y, Wu Y, Zheng X, Yu T, Yan F. Current insights into yeast application for reduction of patulin contamination in foods: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70044. [PMID: 39437191 DOI: 10.1111/1541-4337.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
4
|
Ma K, Zhang H, Diao E, Qian S, Xie P, Mao R, Huwei S, Zhang L. Cysteine‐enhanced ultrasound degradation of patulin in acidic solution simulated
pH
of apple juice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kun Ma
- College of Food Scien ce & Engineering Shandong Agricultural University, Tai’an, 271018 PR China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
| | - Hui Zhang
- College of Food Scien ce & Engineering Shandong Agricultural University, Tai’an, 271018 PR China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation Huaiyin Normal University Huai’an, 223300 PR China
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation Huaiyin Normal University Huai’an, 223300 PR China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation Huaiyin Normal University Huai’an, 223300 PR China
| | - Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation Huaiyin Normal University Huai’an, 223300 PR China
| | - Song Huwei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Huaiyin Normal University Huai’an, 223300 PR China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation Huaiyin Normal University Huai’an, 223300 PR China
| | - Liming Zhang
- Research & Development Center of National Vegetable Processing Technology Liming Food Group Co., Ltd., Pizhou, 221354 Jiangsu PR China
| |
Collapse
|
5
|
miR-27b inhibition contributes to cytotoxicity in patulin-exposed HEK293 cells. Toxicon 2022; 210:58-65. [PMID: 35217024 DOI: 10.1016/j.toxicon.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Patulin (PAT) is a mycotoxin produced by Penicillium and other fungi that contaminate fruit. PAT targets the kidney and is associated with nephrotoxicity. Micro-RNAs (miRNA) may offer new insights into PAT-induced nephrotoxicity. Cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), involved in metabolism of dietary toxins is negatively regulated by miR-27b and linked with the nuclear factor kappa B (NF-κB) pathway and peroxisome proliferator activated receptor gamma (PPARɣ) in renal fibrosis. This study investigated the effects of PAT on miR-27b, CYP1B1, PPARɣ and cytotoxicity in human kidney (HEK293) cells. HEK293 cells were exposed to PAT (2.5 μM, 24h). Protein expression of CYP1B1, PPARɣ, NF-κB (p65), pNF-κB (p65) (phospho-Ser563) and cleaved PARP-1 was quantified using western blotting. QPCR evaluated mRNA levels of CYP1B1, IL-6, miR-27b, OGG1, mtDNA, TFAM and UCP2. Mitochondrial membrane potential and phosphatidylserine (PS) externalization was evaluated by flow cytometry while levels of ATP and caspase -9, -8, -3/7 activity was measured using luminometry. PAT significantly decreased miR-27b levels (p = 0.0014) and increased CYP1B1 mRNA (p = 0.0015) and protein (p = 0.0013) levels. PPARɣ protein expression was significantly increased (p = 0.0002) and associated with decreased NF-κB activation (p = 0.0273) and IL-6 mRNA levels (p = 0.0265). Finally, PAT significantly compromised mitochondrial repair mechanisms and increased apoptotic biomarkers. PAT altered miR-27b levels and PPARɣ, with associated changes to NF-κB activation, downstream IL-6 and CYP1B1 expression. These results show that PAT impairs detoxification mechanisms leading to mitochondrial damage and apoptosis. In conclusion, PAT altered the epigenetic environment and impaired detoxification processes, supporting a mechanism for nephrotoxic outcomes.
Collapse
|
6
|
Diao E, Ma K, Qian S, Zhang H, Xie P, Mao R, Song H. Removal of patulin by thiol-compounds: A review. Toxicon 2022; 205:31-37. [PMID: 34822873 DOI: 10.1016/j.toxicon.2021.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/20/2023]
Abstract
Patulin (PAT) is a toxic mycotoxin usually contaminated apple juices, which leads to a serious food safety issue in the world. Thiol-compounds are a class of compounds containing the thiol (-SH) group themselves or obtained the -SH group by physical or chemical modification. They have the ability to efficiently remove patulin in apple juices with manifested negligible effects on juice quality. This review investigates the latest development in the removal of patulin using thiol-compounds, including the removal efficiencies and mechanisms of patulin, the factors influencing the removal efficiency of patulin, as well as the toxicities of thiol-compounds and safety of juices after detoxification. This review shows that thiol-compounds are promising materials for the removal or degradation of patulin in the contaminated juices.
Collapse
Affiliation(s)
- Enjie Diao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China.
| | - Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shiquan Qian
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Hui Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Peng Xie
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Ruifeng Mao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Huwei Song
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| |
Collapse
|
7
|
López-Fernández O, Bohrer BM, Munekata PES, Domínguez R, Pateiro M, Lorenzo JM. Improving oxidative stability of foods with apple-derived polyphenols. Compr Rev Food Sci Food Saf 2021; 21:296-320. [PMID: 34897991 DOI: 10.1111/1541-4337.12869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023]
Abstract
Consumers demand healthy and natural food products. Thus, naturally derived antioxidants are emerging as a promising alternative to the use of present ingredients. Apples and apple derivative products (e.g., apple juice, apple cider, apple sauce, and others) are widely consumed throughout the world for a variety of different reasons and supply a large quantity of polyphenolic compounds. The extraction of polyphenolic compounds from apples and their incorporation into processed foods as naturally sourced ingredients could be a preferred alternative to commonly used commercial antioxidants that are used in many foods. In addition, they could have a positive impact on the environment and on the economy due to the utilization of byproducts generated during processing of apples, like apple pomace. In terms of the extraction procedures for the antioxidant compounds found in apples, the most efficient processes are methods that use ultrasound as the extraction tool. With this technique, greater yields are achieved, and less extraction time is required when compared with other, more conventional, extraction methods. However, parameters such as the extraction solvent, temperature during extraction, and extraction time must be suitably optimized in order to obtain the best performance and the highest antioxidant capacity. From an application standpoint, the use of apple-derived polyphenol extracts as a naturally derived food additive has documented applications for bread, meat, fish, cookies, and juices and there is evidence of increased antioxidant capacity, reduced rate of lipid oxidation, and increased storage time without compromising on sensory properties.
Collapse
Affiliation(s)
| | - Benjamin M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Thermal Stability and Degradation Kinetics of Patulin in Highly Acidic Conditions: Impact of Cysteine. Toxins (Basel) 2021; 13:toxins13090662. [PMID: 34564666 PMCID: PMC8471958 DOI: 10.3390/toxins13090662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036-0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012-0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.
Collapse
|
9
|
Zoghi A, Darani KK, Hekmatdoost A. Effects of Pretreatments on Patulin Removal from Apple Juices Using Lactobacilli: Binding Stability in Simulated Gastrointestinal Condition and Modeling. Probiotics Antimicrob Proteins 2021; 13:135-145. [PMID: 32572682 DOI: 10.1007/s12602-020-09666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, researchers have reported the presence of patulin as a mycotoxin in commercial apple products, especially apple juices. The aim of this study was to assess adsorption of patulin from artificially contaminated apple juice using two lactic acid bacteria (LAB) strains of Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014. Furthermore, effects of five physical and chemical pretreatments on the patulin adsorption were investigated. Results demonstrated that patulin adsorption abilities of both strains increased with NaOH pretreatment but decreased after autoclaving. The NaOH-treated L. plantarum ATCC 8014 showed the best removal rate (59.74%) after 48 h of refrigerated storage, compared with the NaOH-treated L. acidophilus ATCC 4356 (52.36%). Moreover, stability of the LAB-patulin complex was assessed in simulated gastrointestinal tract conditions and a low quantity of patulin was released into the solution. The patulin adsorption process by NaOH-treated L. plantarum ATCC 8014 followed Freundlich isotherm model and pseudo-second-order kinetic model. Fourier transform infrared spectroscopy showed that polysaccharide and protein components of the L. plantarum ATCC 8014 cell wall played key roles in patulin adsorption. The major functional groups of the cell wall that were involved in adsorbing patulin included -OH/-NH, -CH2, C=O, and C-O groups. The current results suggest that NaOH-treated L. plantarum ATCC 8014 cells include the potential to detoxify patulin-contaminated apple juices.
Collapse
Affiliation(s)
- Alaleh Zoghi
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P.O. Box 193954741, Tehran, Iran
| | - Kianoush Khosravi Darani
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P.O. Box 193954741, Tehran, Iran.
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Mahato DK, Kamle M, Sharma B, Pandhi S, Devi S, Dhawan K, Selvakumar R, Mishra D, Kumar A, Arora S, Singh NA, Kumar P. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021; 198:12-23. [PMID: 33933519 DOI: 10.1016/j.toxicon.2021.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin patulin is primarily produced as a secondary metabolite by numerous fungal species and predominantly by Aspergillus, Byssochlamys, and Penicillium species. It is generally associated with fungal infected food materials. Penicillium expansum is considered the only fungal species liable for patulin contamination in pome fruits, especially in apples and apple-based products. This toxin in food poses serious health concerns and economic threat, which has aroused the need to adopt effective detection and mitigation strategies. Understanding its origin sources and biosynthetic mechanism stands essential for efficiently designing a management strategy against this fungal contamination. This review aims to present an updated outline of the sources of patulin occurrence in different foods and their biosynthetic mechanisms. It further provides information regarding the detrimental effects of patulin on human and agriculture as well as its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Raman Selvakumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| | - Diwakar Mishra
- Department of Dairy Technology, Birsa Agricultural University, Dumka, 814145, Jharkhand, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Namita Ashish Singh
- Department of Microbiology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| |
Collapse
|
11
|
Pillay Y, Ghazi T, Raghubeer S, Nagiah S, Chuturgoon AA. Patulin activates the NRF2 pathway by modulation of miR-144 expression in HEK293 cells. Mycotoxin Res 2021; 37:97-103. [PMID: 33403569 DOI: 10.1007/s12550-020-00418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
Patulin (PAT) is a mycotoxin produced by various fungal species that commonly contaminate apples and other fruit products. PAT is associated with glutathione (GSH) depletion and oxidative stress. Cytoprotective and antioxidant (AO) enzymes limit toxic outcomes and confer resistance to oxidative stress by influencing the expression of cytoprotective genes. The induction of these genes is tightly regulated by transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2), a potential target of microRNA (miR)-144. This study aims to determine a possible role for miR-144 in NRF2 pathway activation following PAT exposure in human embryonic kidney (HEK293) cells. HEK293 cells were exposed to varying PAT concentrations (0, 0.2, 0.5, 1 μmol/L; 24 h). Protein expression of Keap1, NRF2, and phosphorylated (p) NRF2 (ser40) was quantified using western blotting. Gene expression of NRF2, SOD2, CAT, GPx, NQO1, GSTA1, HMOX, and miR-144 were evaluated by qPCR. PAT significantly decreased miR-144 (p = 0.0249) and concomitantly increased NRF2 protein expression, stability, and activation as evidenced by increased pNRF2 (p = 0.0216) expression and decreased total NRF2 (p = 0.0237). This was consistent with qPCR data which showed increased transcript levels of NRF2 (p = 0.0378) as well as the target genes CAT (p = 0.0273), NQO1 (p = 0.0156), HMOX (p = 0.0249), and GSTA1 (p = 0.0237). No changes were observed in Keap1 expression (p = 0.6444). This study implicates microRNAs in a mechanistic role in PAT-induced toxicity. PAT decreased miR-144 expression leading to NRF2 pathway activation and elevated AO gene expression.
Collapse
Affiliation(s)
- Yashodani Pillay
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4041, South Africa
| | - Shanel Raghubeer
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4041, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4041, South Africa.
| |
Collapse
|
12
|
Pillay Y, Nagiah S, Phulukdaree A, Krishnan A, Chuturgoon AA. Patulin suppresses α 1-adrenergic receptor expression in HEK293 cells. Sci Rep 2020; 10:20115. [PMID: 33208818 PMCID: PMC7674415 DOI: 10.1038/s41598-020-77157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin contaminant of apple products linked to impaired metabolic and kidney function. Adenosine monophosphate activated protein kinase (AMPK), abundantly expressed in the kidney, intercedes metabolic changes and renal injury. The alpha-1-adrenergic receptors (α1-AR) facilitate Epinephrine (Epi)-mediated AMPK activation, linking metabolism and kidney function. Preliminary molecular docking experiments examined potential interactions and AMPK-gamma subunit 3 (PRKAG3). The effect of PAT exposure (0.2-2.5 µM; 24 h) on the AMPK pathway and α1-AR was then investigated in HEK293 human kidney cells. AMPK agonist Epi determined direct effects on the α1-AR, metformin was used as an activator for AMPK, while buthionine sulphoximine (BSO) and N-acetyl cysteine (NAC) assessed GSH inhibition and supplementation respectively. ADRA1A and ADRA1D expression was determined by qPCR. α1-AR, ERK1/2/MAPK and PI3K/Akt protein expression was assessed using western blotting. PAT (1 µM) decreased α1-AR protein and mRNA and altered downstream signalling. This was consistent in cells stimulated with Epi and metformin. BSO potentiated the observed effect on α1-AR while NAC ameliorated these effects. Molecular docking studies performed on Human ADRA1A and PRKAG3 indicated direct interactions with PAT. This study is the first to show PAT modulates the AMPK pathway and α1-AR, supporting a mechanism of kidney injury.
Collapse
Affiliation(s)
- Yashodani Pillay
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Anand Krishnan
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemical Pathology, University of Free State, Bloemfontein, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa. .,Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of KwaZulu-Natal, George Campbell Building, Durban, 4041, South Africa.
| |
Collapse
|
13
|
Lien KW, Ling MP, Pan MH. Probabilistic risk assessment of patulin in imported apple juice and apple-containing beverages in Taiwan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4776-4781. [PMID: 32458424 DOI: 10.1002/jsfa.10536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/22/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In Taiwan, nearly 90% of apples and raw ingredients for apple-based products are imported. Apple juices (137 samples) and apple-containing beverages (35 samples) were collected in Taiwan from imported food and analyzed for patulin content. RESULTS The results revealed that the incidence levels of patulin for apple juice and apple-containing beverages are 5.84% and 5.71%. The mean contamination levels were 1.7 and 1.4 μg kg-1 for apple juice and apple-containing beverages. One sample exceeded 50 μg kg-1 , the maximum permissible limit according to the Taiwan Sanitation Standard for the Tolerance of Mycotoxins in Foods. The estimated intake of patulin for consumers ranged from 5.4 to 18.0 ng kg-1 body weight per day for apple juice and between 6.1 and 11.2 ng kg-1 body weight for apple-containing beverages. The highest average patulin intake was observed among infants aged 0-3 years, followed by children aged 4-12 years old. Finally, the hazard index (HI) for the 50th, 90th, and 95th percentiles are 0.0186, 0.1201, and 0.2048, respectively, for infants aged 0-3 years. CONCLUSION The dietary intake of patulin from imported apple juices and apple-containing beverages is well below the safety levels and does not present a risk for adult and children consumers. However, it is important to point out that we only analyzed imported apple juices and apple-containing beverages. More studies are necessary to establish if the HI for patulin will still remain below 1 when other foods and beverages are included in the risk calculations. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keng-Wen Lien
- Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| |
Collapse
|
14
|
Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon 2020; 184:83-93. [DOI: 10.1016/j.toxicon.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
15
|
Vin K, Rivière G, Leconte S, Cravedi JP, Fremy JM, Oswald IP, Roudot AC, Vasseur P, Jean J, Hulin M, Sirot V. Dietary exposure to mycotoxins in the French infant total diet study. Food Chem Toxicol 2020; 140:111301. [DOI: 10.1016/j.fct.2020.111301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/15/2022]
|
16
|
Anal AK, Perpetuini G, Petchkongkaew A, Tan R, Avallone S, Tofalo R, Nguyen HV, Chu-Ky S, Ho PH, Phan TT, Waché Y. Food safety risks in traditional fermented food from South-East Asia. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Abdallah MF, Audenaert K, Lust L, Landschoot S, Bekaert B, Haesaert G, De Boevre M, De Saeger S. Risk characterization and quantification of mycotoxins and their producing fungi in sugarcane juice: A neglected problem in a widely-consumed traditional beverage. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
de Oliveira Garcia S, Sibaja KVM, Nogueira WV, Feltrin ACP, Pinheiro DFA, Cerqueira MBR, Badiale Furlong E, Garda-Buffon J. Peroxidase as a simultaneous degradation agent of ochratoxin A and zearalenone applied to model solution and beer. Food Res Int 2020; 131:109039. [PMID: 32247492 DOI: 10.1016/j.foodres.2020.109039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the action of the commercial peroxidase (POD) enzyme (Armoracia rusticana) on the simultaneous degradation of ochratoxin A (OTA) and zearalenone (ZEA) in model solution and beer. For this purpose, the reaction parameters for POD action were optimized, POD application in the degradation of mycotoxins in model solution and beer was evaluated and the kinetic parameters of POD were defined (Michaelis-Menten constant - KM and maximal velocity - Vmax). In the reaction conditions (pH 7, ionic strength of 25 mM, incubation at 30 °C, addition of 26 mM H2O2 and 1 mM potassium ion), POD (0.6 U mL-1) presented the maximum activity for simultaneous degradation of OTA and ZEA of 27.0 and 64.9%, respectively, in model solution after 360 min. The application of POD in beer resulted in the simultaneous degradation of OTA and ZEA of 4.8 and 10.9%, respectively. The kinetic parameters KM and Vmax for degradation of OTA and ZEA were 50 and 10,710 nM and 0.168 and 72 nM min-1, respectively. Therefore, POD can be a promising alternative to mitigate the contamination of OTA and ZEA in model solution and beer, minimizing their effects in humans.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Karen Vanessa Marimón Sibaja
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Wesclen Vilar Nogueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Ana Carla Penteado Feltrin
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Maristela Barnes Rodrigues Cerqueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Eliana Badiale Furlong
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| | - Jaqueline Garda-Buffon
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| |
Collapse
|
19
|
Arenas-Huertero F, Zaragoza-Ojeda M, Sánchez-Alarcón J, Milić M, Šegvić Klarić M, Montiel-González JM, Valencia-Quintana R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front Microbiol 2019; 10:2347. [PMID: 31681212 PMCID: PMC6798329 DOI: 10.3389/fmicb.2019.02347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to present information about the role of activation of aflatoxins and other mycotoxins, of the aryl hydrocarbon receptor (AhR) pathway. Aflatoxins and other mycotoxins are a diverse group of secondary metabolites that can be contaminants in a broad range of agricultural products and feeds. Some species of Aspergillus, Alternaria, Penicilium, and Fusarium are major producers of mycotoxins, some of which are toxic and carcinogenic. Several aflatoxins are planar molecules that can activate the AhR. AhR participates in the detoxification of several xenobiotic substances and activates phase I and phase II detoxification pathways. But it is important to recognize that AhR activation also affects differentiation, cell adhesion, proliferation, and immune response among others. Any examination of the effects of aflatoxins and other toxins that act as activators to AhR must consider the potential of the disruption of several cellular functions in order to extend the perception thus far about the toxic and carcinogenic effects of these toxins. There have been no Reviews of existing data between the relation of AhR and aflatoxins and this one attempts to give information precisely about this dichotomy.
Collapse
Affiliation(s)
- Francisco Arenas-Huertero
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Montserrat Zaragoza-Ojeda
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Juana Sánchez-Alarcón
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - José M. Montiel-González
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Rafael Valencia-Quintana
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
20
|
Dias JV, da Silva RC, Pizzutti IR, dos Santos ID, Dassi M, Cardoso CD. Patulin in apple and apple juice: Method development, validation by liquid chromatography-tandem mass spectrometry and survey in Brazilian south supermarkets. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Vidal A, Ouhibi S, Ghali R, Hedhili A, De Saeger S, De Boevre M. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol 2019; 129:249-256. [DOI: 10.1016/j.fct.2019.04.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023]
|
22
|
Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120. [PMID: 30857445 DOI: 10.1080/03602532.2019.1589493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patulin is a mycotoxin produced by a number of filamentous fungal species. It is a polyketide secondary metabolite which can gravely cause human health problems and food safety issues. This review deals with the occurrence of patulin in major food commodities from 2008 to date, including historical aspects, source, occurrence, regulatory limits and its toxicity. Most importantly, an overview of the recent research progress about the biodegradation strategies for contaminated food matrices is provided. The physical and chemical approaches have some drawbacks such as safety issues, possible losses in the nutritional quality, chemical hazards, limited efficacy, and high cost. The biological decontamination based on elimination or degradation of patulin using yeast, bacteria, and fungi has shown good results and it seems to be attractive since it works under mild and environment-friendly conditions. Further studies are needed to make clear the detoxification pathways by available potential biosorbents and to determine the practical applications of these methods at a commercial level to remove patulin from food products with special reference to their effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Marina Sajid
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Sajid Mehmood
- d State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection , Northwest A&F University , Yangling , China
| | - Yahong Yuan
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Tianli Yue
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| |
Collapse
|
23
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
24
|
Kim M, Shukla S, Oh Y, Chung SH, Kim M. Comparative Diminution of Patulin Content in Apple Juice With Food-Grade Additives Sodium Bicarbonate, Vinegar, Mixture of Sodium Bicarbonate and Vinegar, Citric Acid, Baking Powder, and Ultraviolet Irradiation. Front Pharmacol 2018; 9:822. [PMID: 30150932 PMCID: PMC6099155 DOI: 10.3389/fphar.2018.00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
This study aimed to determine an optimal method for patulin (PAT) reduction for application in apple juice production. PAT levels in spiked apple juice (100 μg/L) were measured after treatment with citric acid, sodium bicarbonate, vinegar, mixture of sodium bicarbonate and vinegar, baking powder, and ultraviolet (UV) irradiation. Treatments with sodium bicarbonate and UV irradiation were most effective in reducing PAT; however, UV irradiation reduced the yellowness (b∗) of apple juice. However, sodium bicarbonate treatment affected quality attributes including soluble solids, pH, and color of apple juice. The color and odor of apple juice treated with sodium bicarbonate could be recovered via addition of citric acid. The present results suggest that sodium bicarbonate could be considered an additive in apple juice for PAT reduction.
Collapse
Affiliation(s)
- Minkyeong Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Youngsook Oh
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Soo Hyun Chung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, South Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
25
|
Gonçalves BL, Coppa CFSC, Neeff DVD, Corassin CH, Oliveira CAF. Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1457056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna Leonel Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Diane Valganon de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
26
|
Torović L, Dimitrov N, Lopes A, Martins C, Alvito P, Assunção R. Patulin in fruit juices: occurrence, bioaccessibility, and risk assessment for Serbian population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:985-995. [PMID: 29279001 DOI: 10.1080/19440049.2017.1419580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper reports the first study of patulin occurrence in fruit juices and risk assessment related to patulin intake by children, adolescents and adults in Serbia. During 3 consecutive years (2013-2015), 142 fruit (apple or multi-fruit) juices were collected from the market and analysed using HPLC-UV. Patulin was found in 51.4% of juices with 0.7% of the samples in excess of the legal limit of 50 μg kg-1 (mean 4.3 μg kg-1). Apple juices showed significantly higher percentage of contaminated samples (74.0% vs 27.5%), as well as higher mean patulin content (6.4 vs 2.1 μg kg-1) when compared with the multi-fruit ones. Bioaccessibility of patulin in fruit juices was studied using the standardised in vitro digestion method. A mean of 21.6% of the initial patulin amount reached the end of the intestinal phase showing a significant reduction of this toxin during the human digestion process. Risk assessment of patulin intake by Serbian children, adolescents and adults, conducted by deterministic and probabilistic approaches and including the bioaccessibility results, revealed no health concern. Although patulin alone does not represent risk, further research should consider its co-occurrence with other toxic substances in food and potential adverse effects of their mixtures.
Collapse
Affiliation(s)
- Ljilja Torović
- a University of Novi Sad, Faculty of Medicine , Department of Pharmacy , Novi Sad , Serbia.,b Institute of Public Health of Vojvodina, Center for Hygiene and Human Ecology , Novi Sad , Serbia
| | - Nina Dimitrov
- a University of Novi Sad, Faculty of Medicine , Department of Pharmacy , Novi Sad , Serbia
| | - André Lopes
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,d Faculty of Sciences , University of Lisbon , Lisboa , Portugal
| | - Carla Martins
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,e CESAM , University of Aveiro , Aveiro , Portugal.,f National School of Public Health , NOVA University of Lisbon , Lisboa , Portugal
| | - Paula Alvito
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,e CESAM , University of Aveiro , Aveiro , Portugal
| | - Ricardo Assunção
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,e CESAM , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
27
|
Advances of organic products over conventional productions with respect to nutritional quality and food security. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Iqbal SZ, Malik S, Asi MR, Selamat J, Malik N. Natural occurrence of patulin in different fruits, juices and smoothies and evaluation of dietary intake in Punjab, Pakistan. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Organic food and the impact on human health. Crit Rev Food Sci Nutr 2017; 59:704-714. [PMID: 29190113 DOI: 10.1080/10408398.2017.1394815] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the last decade, the production and consumption of organic food have increased steadily worldwide, despite the lower productivity of organic crops. Indeed, the population attributes healthier properties to organic food. Although scientific evidence is still scarce, organic agriculture seems to contribute to maintaining an optimal health status and decreases the risk of developing chronic diseases. This may be due to the higher content of bioactive compounds and lower content of unhealthy substances such as cadmium and synthetic fertilizers and pesticides in organic foods of plant origin compared to conventional agricultural products. Thus, large long-term intervention studies are needed to determine whether an organic diet is healthier than a diet including conventionally grown food products. This review provides an update of the present knowledge of the impact of an organic versus a conventional food diet on health.
Collapse
Affiliation(s)
- Sara Hurtado-Barroso
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| | - Anna Tresserra-Rimbau
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| | - Anna Vallverdú-Queralt
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain
| | - Rosa María Lamuela-Raventós
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| |
Collapse
|
30
|
Torović L, Dimitrov N, Assunção R, Alvito P. Risk assessment of patulin intake through apple-based food by infants and preschool children in Serbia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2023-2032. [PMID: 28783008 DOI: 10.1080/19440049.2017.1364434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study reports for the first time in Serbia the occurrence of patulin in apple-based food and the risk assessment associated with patulin intake by infants and preschool children. In total, 214 samples of infant fruit juices (48), infant purée (66), and juices for children (small package with straw, 100) were collected over 3 years (2013-15) and analysed using HPLC with ultraviolet detection. Patulin was found in 43.8% of infant juices and 16.7% of infant purée, with all values below the legal limit of 10 μg kg-1 (maximum 8.3 and 7.7 μg kg-1, respectively). The proportion of contaminated samples among fruit juices for children was 43.0%, with the highest patulin concentration at 30.2 μg kg-1, not exceeding the maximum allowed level of 50 μg kg-1. Risk assessment of patulin intake by Serbian infants and preschool children, conducted by deterministic and probabilistic approaches, revealed a hazard quotient well below 1, indicating a tolerable exposure level and no health concern.
Collapse
Affiliation(s)
- Ljilja Torović
- a University of Novi Sad , Faculty of Medicine, Department of Pharmacy , Novi Sad , Serbia.,b Centre for Hygiene and Human Ecology , Institute of Public Health of Vojvodina , Novi Sad , Serbia
| | - Nina Dimitrov
- a University of Novi Sad , Faculty of Medicine, Department of Pharmacy , Novi Sad , Serbia
| | - Ricardo Assunção
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,d IIFA, Instituto de Investigação e Formação Avançada , Universidade de Évora, Palácio do Vimioso , Évora , Portugal.,e CESAM, Centre for Environmental and Marine Studies, University of Aveiro , Campus Universitário de Santiago , Aveiro , Portugal
| | - Paula Alvito
- c Food and Nutrition Department , National Institute of Health Dr. Ricardo Jorge , Lisboa , Portugal.,e CESAM, Centre for Environmental and Marine Studies, University of Aveiro , Campus Universitário de Santiago , Aveiro , Portugal
| |
Collapse
|
31
|
Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Ioi JD, Zhou T, Tsao R, F Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins (Basel) 2017; 9:E157. [PMID: 28492465 PMCID: PMC5450705 DOI: 10.3390/toxins9050157] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.
Collapse
Affiliation(s)
- J David Ioi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
33
|
Li X, Li H, Li X, Zhang Q. Determination of trace patulin in apple-based food matrices. Food Chem 2017; 233:290-301. [PMID: 28530578 DOI: 10.1016/j.foodchem.2017.04.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Patulin is a toxic metabolite of a number of fungi; its toxicity is serious and its contamination in food is a worldwide problem, especially in apple-based food. Effective control of patulin contamination strongly depends on reliable analytical methods. In this review, various analytical methods, especially those that have appeared in the last ten years, are summarized, including the highly reproducible chromatography and mass-spectrometry-based methods, highly selective sensor-based methods and indirect quantitative PCR methods. This review also summarizes the promising features of novel materials in sample preparation for patulin determination.
Collapse
Affiliation(s)
- Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Hongmei Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Xiaomin Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
34
|
Patulin and ochratoxin A co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food Chem Toxicol 2016; 96:205-14. [PMID: 27497766 DOI: 10.1016/j.fct.2016.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
Patulin (PAT) and ochratoxin A (OTA) are well known enteropathogenic mycotoxins that are present in several foodstuffs. Processed cereal-based foods are among the first solid foods eaten by children, a particularly vulnerable population group. There is a lack of knowledge related to the co-occurrence of PAT and OTA in food intended for children consumption and their potential interactions during the digestion process. The present study aims to evaluate, for the first time, the co-occurrence of PAT and OTA in processed cereal-based foods for children consumption, the bioaccessibility of these two mycotoxins, and the contribution of the bioaccessibility data for human health risk assessment. PAT and OTA incidence were 75% and 50%, respectively. These mycotoxins co-occurred in 40% of analysed samples. Bioaccessibility assays revealed mean values of 52% and 56% for PAT, alone and combined with OTA; and 100% and 106% for OTA, alone and combined with PAT. Considering the human health risk assessment, and taking into account the co-occurrence and the bioaccessibility results, this study indicates a tolerable exposure to these mycotoxins representing a low risk for Portuguese children. The present work reinforces the importance of a holistic approach for risk assessment which gathers data from occurrence, exposure and bioaccessibility.
Collapse
|
35
|
Wang Y, Wen Y, Ling YC. Graphene Oxide-Based Magnetic Solid Phase Extraction Combined with High Performance Liquid Chromatography for Determination of Patulin in Apple Juice. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Berthiller F, Burdaspal P, Crews C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2012-2013. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.
Collapse
Affiliation(s)
- F. Berthiller
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera de Majadahonda a Pozuelo km 5, 228220 Majadahonda, Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Instituto Adolfo Lutz, Laboratrio I de Ribeiro Preto, Av Dr Arnaldo 355, CEP 14085-410, Ribeiro Preto SP, Brazil
| | - R. Krska
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - J. Stroka
- Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|