1
|
Chen C, Chen Y, Zhai H, Xiao Y, Xu J, Gu Y, Han X, Wang C, Chen Q, Lu H. Cadmium exposure induces skeletal muscle insulin resistance through the reactive oxygen species-mediated PINK1/Parkin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116954. [PMID: 39208572 DOI: 10.1016/j.ecoenv.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Epidemiological studies have suggested a positive association between environmental cadmium (Cd) exposure and type 2 diabetes mellitus (T2DM). Skeletal muscle insulin resistance (IR) plays a critical role in the pathogenesis of T2DM. This study aimed to investigate the effects of chronic low-level Cd exposure on skeletal muscle IR and its potential mechanism. Rats were exposed to drinking water containing 2 or 10 mg/L Cd for 24 weeks. Differentiated L6 myotubes were treated with Cd for 72 h. Immunofluorescence, flow cytometry assay, RNA-sequencing, and Seahorse analysis were conducted to determine the effects of Cd and its underlying mechanism on relevant parameters, including insulin sensitivity, glucose uptake, oxidative stress, mitophagy, and mitochondrial function in skeletal muscle and L6 myotubes. N-acetyl-cysteine (NAC), a scavenger of reactive oxygen species (ROS), and mitophagy inhibitor Cyclosporin A (CsA) were used to confirm the role of oxidative stress in mitophagy and mitochondrial dysfunction caused by Cd. We found that rats exposed to 10 mg/L Cd exhibited hyperglycemia and skeletal muscle IR. Cd markedly increased IRS-1 phosphorylation at Ser612, while decreased levels of phosphorylated PI3K, Akt, AS160, inhibited GLUT4 translocation and glucose uptake. Mechanistically, Cd increased the intracellular ROS, hydrogen peroxide, and malondialdehyde levels and decreased antioxidase activity in L6 myotubes. Furthermore, Cd upregulated the mRNA and protein levels of LC3II/I, PINK1, and Parkin. In addition, Cd induced the formation of mitophagosomes, reduced the mitochondrial membrane potential, decreased the adenosine triphosphate content, and impaired the mitochondrial respiratory capacity. Strikingly, NAC ameliorated oxidative stress, excessive mitophagy, and the associated reduction in myotube insulin sensitivity, while inhibition of mitophagy by CsA alleviated skeletal muscle IR. In conclusion, this study reveals a previously unrecognized mechanism that chronic low-level Cd exposure may induce mitophagy by activating the PINK1/Parkin signal pathway by increasing ROS, thus causing skeletal muscle IR and elevated blood glucose.
Collapse
Affiliation(s)
- Chi Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hualing Zhai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yanyan Xiao
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junfei Xu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimeng Gu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Wang
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Li L, Cao J, Li L, Wu G, Xiao J. Associations of Blood Cadmium Levels With Osteoarthritis Among US Adults in NHANES 2013-2018. J Occup Environ Med 2024; 66:e333-e337. [PMID: 39102367 DOI: 10.1097/jom.0000000000003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a global public health problem, and limited information is available on the effects of Cd on OA. The purpose of this study is to explore the relationship between Cd and OA. METHOD Weighted multivariable logistic regression model, trend test, restricted cubic spline, and stratified analysis were used to study the association between BCd and OA. RESULTS In the two regression models of weighted multivariable logistic regression analysis, the correlation between BCd and OA was positive. Compared with the lowest quartile of BCd exposure, the highest quartile had a 2.03-fold (95% confidence interval, 1.67 to 2.47), displaying a dose-response relationship (P for trend <0.00001). The restrictive cubic spline shows a positive linear relationship between BCd and OA. CONCLUSION There was a positive linear relationship between BCd and OA and a dose-response relationship.
Collapse
Affiliation(s)
- Lijun Li
- From the Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China (Lijun L., Lin L., G.W., J.X.); The Second Affiliated Hospital, Hunan Provincial Key Clinical Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal cancer, Hengyang Medical School, University of South China, Hengyang, Hunan, China (L.L.); and The Affiliated Nanhua Hospital, Clinical Pharmacy Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China (J.C.)
| | | | | | | | | |
Collapse
|
3
|
Mi P, Dong H, Chen S, Gao X, Cao X, Liu Y, Wang H, Fan G. Blood cadmium level as a risk factor for chronic pain: NHANES database 1999-2004. Front Public Health 2024; 12:1340929. [PMID: 38835611 PMCID: PMC11148299 DOI: 10.3389/fpubh.2024.1340929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Objective The escalating prevalence of chronic pain poses a substantial socio-economic burden. Chronic pain primarily stems from musculoskeletal and nervous system impairments. Given cadmium's known toxicity to these systems, our study sought to investigate the correlation between blood cadmium levels and chronic pain. Methods The cross-sectional study was conducted from the National Health and Nutrition Examination Survey (NHANES, 1999-2004), and comprised US adults who participated in a chronic pain interview. We employed logistic regression models and smooth curve fitting to elucidate the relationship between blood cadmium levels and chronic pain. Results Our findings revealed a linear association between blood cadmium levels and chronic pain. Compared to the lower blood cadmium tertile 1 (<0.3 ug/dL), the adjusted odds ratios (ORs) for tertile 2 (0.3-0.4 ug/dL), and tertile 3 (≥0.5 ug/dL), were 1.11 (0.96-1.29) and 1.2 (1.03-1.39), respectively. Sensitivity analyses corroborated these results. Conclusion Elevated levels of blood cadmium are associated with a heightened risk of chronic pain among adults in the United States. Mitigating cadmium exposure could potentially decrease the risk of chronic pain, thereby enhancing strategies for chronic pain prevention and management.
Collapse
Affiliation(s)
- Panpan Mi
- Department of Orthopaedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Haoran Dong
- Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Shengle Chen
- Department of Orthopaedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xuan Gao
- Department of Orthopaedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xu Cao
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Yong Liu
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Huijie Wang
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Guofeng Fan
- Department of Orthopaedic, Hebei PetroChina Central Hospital, Langfang, China
| |
Collapse
|
4
|
Lei Y, Guo M, Xie J, Liu X, Li X, Wang H, Xu Y, Zheng D. Relationship between blood cadmium levels and bone mineral density in adults: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1354577. [PMID: 38577568 PMCID: PMC10991703 DOI: 10.3389/fendo.2024.1354577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Osteoporosis, a disease of reduced bone mass and microstructural deterioration leading to fragility fractures, is becoming more prevalent as aging progresses, significantly increasing the socioeconomic burden. In past studies, there has been a growing awareness of the harmful effects of heavy metals on bone, with cadmium being a significant exposure factor. The purpose of this study was to look into the association between adult bone mineral density(BMD) and blood cadmium levels. Methods Based on information from the 2013-2014, 2017-2018 NHANES, weighted multiple regression, generalized weighted modeling, and smoothed curve fitting were utilized to investigate the association between blood cadmium and femur BMD. Furthermore, subgroup analyses were conducted to investigate any differences in the associations between age, sex, race, chronic kidney disease, and diabetes. Results In 2,146 participants, blood cadmium levels and total femur [-0.02 (-0.03, -0.01), 0.0027], femoral neck [-0.01 (-0.02, -0.00), 0.0240], femoral trochanter [-0.01 (-0.02, -0.00), 0.0042], and intertrochanteric femoral trochanter [-0.02 (-0.03, -0.00), 0.0101] BMD were negatively correlated. Subgroup analyses showed that this association was more pronounced in women, non-Hispanic white people and other Hispanics, and those with chronic kidney disease and diabetes. Our results pointed to a negative relationship between femoral BMD and blood cadmium. This negative association varied by age, sex, race, diabetes, and chronic kidney disease. In particular, bone mineral density was more significantly negatively affected by blood cadmium levels in groups with diabetes and chronic kidney disease. Conclusion Our findings demonstrated a significant negative association between blood cadmium levels and bone mineral density in a population of U.S. adults.
Collapse
Affiliation(s)
- Yi Lei
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Meiqian Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xueqing Liu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiang Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hongwu Wang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
5
|
Huang JW, Fang WH, Chen WL. Detrimental Association Between Blood Cadmium Concentration and Trabecular Bone Score. Biol Trace Elem Res 2023; 201:82-89. [PMID: 35137281 DOI: 10.1007/s12011-022-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/29/2022] [Indexed: 01/11/2023]
Abstract
Osteoporosis has been recognized as a significant cause of disability in the elderly leading to heavy socioeconomic burden. Current measurements such as dual-energy X-ray absorptiometry (DEXA) and bone mineral density (BMD) have limitations. In contrast, trabecular bone score (TBS) is an emerging tool for bone quality assessment. The objective of our study was to investigate the relationship between TBS and trace elements (cadmium and lead). We analyzed all subjects from the 2005-2006 and 2007-2008 National Health and Nutrition Examination Survey (NHANES) dataset and included a total of 8,244 participants in our study; 49.4% of the enrolled subjects were male. We used blood cadmium (Cd) and lead (Pb) concentrations to define environmental exposure. The main variables were TBS and BMD. Other significant demographic features were included as covariates and later adjusted using linear regression models to determine the association between TBS and four quartiles based on the blood trace element concentrations with or without sex differences. The fully adjusted regression model revealed a negative relationship between TBS and blood cadmium (B-Cd) significant for both males and females (both p < 0.05). The β-coefficient for males was -0.009 (95% confidence intervals (CI): (-0.015 to -0.004)) and -0.019 for female (95% CI: (-0.024 to -0.013)). We also found a dose-dependent relationship between TBS and B-Cd for both sexes (both trend's p < 0.05). Our study concluded that TBS could measure Cd-related bone quality deterioration for both males and females.
Collapse
Affiliation(s)
- Jun-Wei Huang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China.
| |
Collapse
|
6
|
Wang M, Liu J, Zhu G, Chen X. Low levels of cadmium exposure affect bone by inhibiting Lgr4 expression in osteoblasts and osteoclasts. J Trace Elem Med Biol 2022; 73:127025. [PMID: 35772369 DOI: 10.1016/j.jtemb.2022.127025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cadmium exposure is associated with bone loss. However, the mechanisms involved have not yet been fully understood. Leucine-rich repeat containing GPCR-4 (LGR4) can bind with the receptor activator of nuclear factors κB ligand (RANKL) and inhibit osteoclast formation. In addition, Lgr4 plays an important role in maintaining osteoblast activity. In the present study the effect of cadmium exposure on bone was investigated in terms of Lgr4 expression. METHODS Raw 264.7 cells and primary osteoblasts were exposed to cadmium (0-60 nM/L). The effects of cadmium on osteoclast formation and osteoblast activity were investigated. Osteoclast differentiation-related (Traf6, NFATc1) and osteoblast-related (RANKL; osteoprotegerin, OPG) gene and protein expression were determined. Lgr4 expression in osteoclasts and osteoblasts were also determined. A rat model was established to show the effects of cadmium (50 mg/L) on bone loss and Lgr4 expression in vivo. RESULTS Cadmium exposure inhibited osteoblast activities and stimulated osteoclast formation. Cadmium exposure also inhibited Lgr4 expression in both osteoclasts and osteoblasts. Low dose of RANKL added to the culture medium could promote osteoclast formation in cadmium-pretreated RAW264.7 cells. Blocking Lgr4 in osteoclasts only slightly inhibited cadmium-induced osteoclast formation in cadmium-pretreated RAW264.7 cells. Cadmium significantly upregulated the AKT/ERK signaling pathway. An in vivo study showed that cadmium exposure promoted osteoclast formation and inhibited Lgr4 expression. CONCLUSIONS Our data indicates that cadmium may induce bone loss by inhibiting Lgr4-related bone formation and promoting Lgr4-related osteoclast formation.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jingjing Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai 200032, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai 200032, China.
| |
Collapse
|
7
|
Wang Z, Li D, Mo L, Liang S, Liao X, Guo S, Yang X, Wei Q. Low-dose cadmium exposure promotes osteoclastogenesis by enhancing autophagy via inhibiting the mTOR/p70S6K1 signaling pathway. Toxicol Lett 2022; 367:9-18. [PMID: 35843418 DOI: 10.1016/j.toxlet.2022.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd)-induced bone damage may be mediated through activating osteoclastogenesis. However, the underlying mechanism is unknown. The purpose of this study was to explore the effect and possible mechanism of CdCl2-induced osteoclastogenesis in RAW264.7 cells. We found that a low concentration of CdCl2 (0.025 and 0.050 µM) did not affect the viability of RAW264.7 cells, but promoted osteoclastogenesis. A low concentration of CdCl2 increased the mRNA and protein expression of osteoclastogenesis-related genes. TRAP staining and transmission electron microscopy (TEM) also demonstrated that CdCl2 promoted osteoclastogenesis. A low concentration of CdCl2 upregulated the levels of LC3-II and Beclin-1, and decreased p62 expression. TEM showed relatively abundant autophagic vacuoles (autophagosomes) after CdCl2 exposure. A low concentration of CdCl2 downregulated the expression levels of Mtor and p70S6K1, and the relative protein expression ratios of p-mTOR/mTOR and p-p70S6K1/p70S6K1. When cells were treated with the autophagy inhibitor chloroquine (CQ) or mTOR activator MHY1485 combined with CdCl2, the expressions of osteoclastogenesis related-genes were decreased and autophagy was attenuated compared with cells treated with CdCl2 alone. Deficiencies in autophagosomes and osteoclasts were also observed. Taken together, the results indicate that a low concentration of CdCl2 promotes osteoclastogenesis by enhancing autophagy via inhibiting the mTOR/p70S6K1 signaling pathway.
Collapse
Affiliation(s)
- Zhaojie Wang
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Dongli Li
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Lijun Mo
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Shujun Liang
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Xuemei Liao
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Sihui Guo
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Xingfen Yang
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China.
| | - Qinzhi Wei
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
He S, Zhang K, Cao Y, Liu G, Zou H, Song R, Liu Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1608-1617. [PMID: 35257471 DOI: 10.1002/tox.23510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 μM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 μM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 μM and 5 μM Cd blocked the fusion of precursor cells; and 5 μM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Wang M, Wang X, Cui W, Zhu G, Liang Y, Chen X, Jin T. The association between hemoglobin level and osteoporosis in a Chinese population with environmental lead and cadmium exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1673-1682. [PMID: 34698982 DOI: 10.1007/s10653-021-01129-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Low hemoglobin (Hb) level or anemia is associated with osteoporosis and bone fracture. Cadmium (Cd) and lead (Pb) exposure are also risk factors of osteoporosis and anemia. However, the role of anemia in Cd/Pb related bone loss remains unclear. The aim of present study was to investigate the association between Hb level and bone loss in a population with environmental lead and cadmium exposure. One hundred and ninety-four women and 108 men with different levels of Cd/Pb exposure were included in our study. The Cd/Pb exposure was determined using graphite-furnace atomic absorption spectrometry. Forearm bone mineral density (BMD) was determined by peripheral dual-energy X-ray absortiometry. Hb concentration was determined using an automatic blood cellcounter. A logistic model was established to predict the risk of osteoporosis. The BMDs of women that had the highest quartile BCd and BPb were markedly lower than that with the lowest quartile (p < 0.05). The BMD and the prevalence of osteoporosis in men with anemia were lower and higher than that with normal Hb (p < 0.05), respectively. In men, age, BPb and anemia were independent risk factors for osteoporosis. The odds ratio (OR) of men with anemia was 11.28 (95%confidence interval (CI):1.94-65.54) and 19.56 (95%CI: 2.98-128.78) compared to those with normal Hb after adjusting for potential cofounders. No such association was found in women. The area under the curve was 0.88 (95%CI: 0.82-0.96) in predicting osteoporosis using the logistic model in men. Linear discriminant analysis also showed that 90.7% of osteoporosis was correctly classified. Our data show that anemia is associated with incident of osteoporosis in men but not in women that environmentally exposed to Pb and Cd.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xinru Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai, 200032, China
| | - Yihuai Liang
- Department of Occupational Medicine, School of Public Health, Shanghai Medical College of Fudan University, 150 Dongan road, Shanghai, 200032, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Taiyi Jin
- Department of Occupational Medicine, School of Public Health, Shanghai Medical College of Fudan University, 150 Dongan road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Fernández-Torres J, Zamudio-Cuevas Y, Martínez-Nava GA, Aztatzi-Aguilar OG, Sierra-Vargas MP, Lozada-Pérez CA, Suárez-Ahedo C, Landa-Solís C, Olivos-Meza A, Del Razo LM, Camacho-Rea MC, Martínez-Flores K. Impact of Cadmium Mediated by Tobacco Use in Musculoskeletal Diseases. Biol Trace Elem Res 2022; 200:2008-2015. [PMID: 34245425 DOI: 10.1007/s12011-021-02814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Tobacco use has a negative impact on health due to its relationship with the development of high-mortality diseases, such as pulmonary cancer. However, the effect of cadmium (Cd), present in tobacco smoke, on the development of joint diseases has been scarcely studied. The objective of this review is to discuss the evidence regarding the mechanisms by which Cd exposure, through tobacco smoke, may lead to the development of osteoarthritis (OA), osteoporosis (OP), and rheumatoid arthritis (RA). There's evidence suggesting a string association between moderate to severe OA development and tobacco use, and that a higher blood concentration of Cd can trigger oxidative stress (OS) and inflammation, favoring cartilage loss. At the bone level, the Cd that is inhaled through tobacco smoke affects bone mineral density, resulting in OP mediated by a decrease in the antioxidant enzymes, which favors the bone resorption process. In RA, tobacco use promotes the citrullination process through Cd exposure and increases OS and inflammation. Understanding how tobacco use can increase the damage at the articular level mediated by a toxic metal, i.e., Cd, is important. Finally, we propose prevention, control, and treatment strategies for frequently disabling diseases, such as OA, OP, and RA to reduce its prevalence in the population.
Collapse
Affiliation(s)
- J Fernández-Torres
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
- Biology Department, Facultad de Química, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Y Zamudio-Cuevas
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - G A Martínez-Nava
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - O G Aztatzi-Aguilar
- Department of Immunology and Environmental Medicine Research, National Institute of Respiratory Diseases, Calzada de Tlalpan No. 4502, Col. Belisario Domínguez Secc.16, C.P. 14080, México City, Mexico
| | - M P Sierra-Vargas
- Department of Immunology and Environmental Medicine Research, National Institute of Respiratory Diseases, Calzada de Tlalpan No. 4502, Col. Belisario Domínguez Secc.16, C.P. 14080, México City, Mexico
| | - C A Lozada-Pérez
- Rheumatology Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - C Suárez-Ahedo
- Hip and Knee Joint Reconstruction Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
- Orthopedic Department, Surgery Office, Hospital Médica Sur, Puente de Piedra No. 150, Col. Toriello Guerra, C.P.14050, México City, Mexico
| | - C Landa-Solís
- Tissue Engineering, Cell Therapy, and Regenerative Medicine, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - A Olivos-Meza
- Orthopedic Department, Surgery Office, Hospital Médica Sur, Puente de Piedra No. 150, Col. Toriello Guerra, C.P.14050, México City, Mexico
- Orthopedic Sports and Arthroscopy Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - L M Del Razo
- Toxicology Department, Cinvestav, Av. Politécnico Nacional2508, San Pedro Zacatenco, C.P. 07360, México City, Mexico
| | - M C Camacho-Rea
- Department of Animal Nutrition, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Col. Belisario Domínguez Secc. 16, C.P. 14080, México City, Mexico
| | - K Martínez-Flores
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico.
| |
Collapse
|
11
|
Li G, Cheng T, Yu X. The Impact of Trace Elements on Osteoarthritis. Front Med (Lausanne) 2022; 8:771297. [PMID: 35004740 PMCID: PMC8732765 DOI: 10.3389/fmed.2021.771297] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act.
Collapse
Affiliation(s)
- Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
|
13
|
Torres-Rodríguez HF, Graniel-Amador MA, Cruz-Camacho CJ, Cantú-Martínez AA, Martínez-Martínez A, Petricevich VL, Montes S, Castañeda-Corral G, Jiménez-Andrade JM. Characterization of pain-related behaviors, changes in bone microarchitecture and sensory innervation induced by chronic cadmium exposure in adult mice. Neurotoxicology 2022; 89:99-109. [DOI: 10.1016/j.neuro.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
14
|
Wang M, Wang X, Liu J, Wang Z, Jin T, Zhu G, Chen X. The Association Between Cadmium Exposure and Osteoporosis: A Longitudinal Study and Predictive Model in a Chinese Female Population. Front Public Health 2021; 9:762475. [PMID: 34912770 PMCID: PMC8666659 DOI: 10.3389/fpubh.2021.762475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: The association between cadmium exposure and osteoporosis has been rarely reported in longitudinal studies. In this study, we investigated the association between osteoporosis and cadmium exposure and developed predictive models in women in a longitudinal cohort. Materials and Methods: In total, 488 women living in southeastern China were included at baseline (1998). Cadmium in blood (BCd) and urine (UCd) and also renal dysfunction biomarkers and bone mineral density (BMD) were determined both at baseline and follow-up. A total of 307 subjects were finally included after excluding subjects that did not have exposure or effect biomarkers. Osteoporosis was defined based on T score ≤ -2.5. Multiple linear regression and multivariate logistic analysis were used to show the association between baseline data and follow-up osteoporosis. Based on the identified associated factors, nomograms were developed to graphically calculate the individual risk of osteoporosis. Results: The baseline BMD in subjects with osteoporosis was significantly lower than that in subjects without osteoporosis (0.59 vs. 0.71 g/cm2, p < 0.05). The prevalence of low bone mass at baseline was higher in subjects with osteoporosis than in those without osteoporosis (23.5 vs. 7.2%, p = 0.001). Logistic regression analysis demonstrated that age [odds ratio (OR) = 1.21, 95% confidence interval (CI): 1.16-1.27], UCd (OR = 1.03, 95% CI: 1.002-1.06) and the presence of low BMD (OR = 3.84, 95% CI: 1.49-9.89) were independent risk factors for osteoporosis. For those subjects with normal baseline BMD, age, UCd, and baseline BMD were also independent risk factors for osteoporosis. The OR value was 1.16 (95% CI: 1.10-1.22) for age, 2.27 (95% CI: 1.03-4.99) for UCd > 10 μg/g creatinine, and 0.39 (95% CI: 0.21-0.72) for BMDbaseline. We developed two nomograms to predict the risk of osteoporosis. The area under the curve was 0.88 (95% CI: 0.84-0.92) for total population and was 0.88 (95% CI: 0.84-0.92) for subjects with normal baseline BMD, respectively. Conclusion: Baseline age, UCd, and BMD were associated with follow-up osteoporosis in women. Nomograms showed good performance in predicting the risk of osteoporosis.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinru Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Taiyi Jin
- Department of Occupational and Environmental Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240:106-122. [PMID: 34688722 DOI: 10.1016/j.imlet.2021.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) represents a unique hazard because of the long biological half-life in humans (20-30 years). This metal accumulates in organs causing a continuum of responses, with organ disease/failure as extreme outcome. Some of the cellular and molecular alterations in target tissues can be related to immune-modulating potential of Cd. This metal may cause adverse responses in which components of the immune system function as both mediators and effectors of Cd tissue toxicity, which, in combination with Cd-induced alterations in homeostatic reparative activities may contribute to tissue dysfunction. In this work, current knowledge concerning inflammatory/autoimmune disease manifestations found to be related with cadmium exposure are summarized. Along with epidemiological evidence, animal and in vitro data are presented, with focus on cellular and molecular immune mechanisms potentially relevant for the disease susceptibility, disease promotion, or facilitating development of pre-existing pathologies.
Collapse
|
16
|
Ma Y, Ran D, Shi X, Zhao H, Liu Z. Cadmium toxicity: A role in bone cell function and teeth development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144646. [PMID: 33485206 DOI: 10.1016/j.scitotenv.2020.144646] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a widespread environmental contaminant that causes severe bone metabolism disease, such as osteoporosis, osteoarthritis, and osteomalacia. The present review aimed to explore the molecular mechanisms of Cd-induced bone injury starting from bone cell function and teeth development. Cd inhibits the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts, and directly causes BMSC apoptosis. In the case of osteoporosis, Cd mainly affects the activation of osteoclasts and promotes bone resorption. Cd-induces osteoblast injury and oxidative stress, which causes DNA damage, mitochondrial dysfunction, and endoplasmic reticulum stress, resulting in apoptosis. In addition, the development of osteoarthritis (OA) might be related to Cd-induced chondrocyte damage. The high expression of metallothionein (MT) might reduce Cd toxicity toward osteocytes. The toxicity of Cd toward teeth mainly focuses on enamel development and dental caries. Understanding the effect of Cd on bone cell function and teeth development could contribute to revealing the mechanisms of Cd-induced bone damage. This review explores Cd-induced bone disease from cellular and molecular levels, and provides new directions for removing this heavy metal from the environment.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xueni Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
17
|
Ma Y, Ran D, Cao Y, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. The effect of P2X7 on cadmium-induced osteoporosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124251. [PMID: 33168313 DOI: 10.1016/j.jhazmat.2020.124251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), an environmental pollutant, induces osteoporosis by directly destroying bone tissue, but its direct damaging effect on bone cells is not fully illustrated. Here, we treated mouse bone marrow stem cells (BMSC) and bone marrow macrophages (BMM) with Cd, and gave BALB/c mice Cd in water. Long-term Cd exposure significantly inhibited BMSC osteogenesis and osteoclast differentiation in vitro, and induced osteoporosis in vivo. Cd exposure also reduced P2X7 expression dramatically. However, P2X7 deletion significantly inhibited osteoblast and osteoclast differentiation; P2X7 overexpression obviously reduced the suppression effect of Cd on osteoblast and osteoclast differentiation. The suppression of P2X7-PI3K-AKT signaling aggravated the effect of Cd. In mice, short-term Cd exposure did not result in osteoporosis, but bone formation was inhibited, RANKL expression was increased, and osteoclasts were significantly increased in vivo. In vitro, short-term Cd exposure not only increased osteoclast numbers, but also promoted osteoclast adhesion function at late-stage osteoclast differentiation. Cd exposure also reduced P2X7 expression in vivo and in vitro. Our results demonstrate that short-term Cd exposure does not affect osteoblast and osteoclast apoptosis in vivo and in vitro, but long-term Cd exposure significantly increases bone tissue apoptosis. Overall, our results describe a novel mechanism for Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| |
Collapse
|
18
|
Wallin M, Barregard L, Sallsten G, Lundh T, Sundh D, Lorentzon M, Ohlsson C, Mellström D. Low-level cadmium exposure is associated with decreased cortical thickness, cortical area and trabecular bone volume fraction in elderly men: The MrOS Sweden study. Bone 2021; 143:115768. [PMID: 33232837 DOI: 10.1016/j.bone.2020.115768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
It is well known that high-level exposure to cadmium can cause bone disease such as osteoporosis, osteomalacia and fractures. However, the effect of low-level exposure, as found in the general population (mainly derived from diet and smoking), has only been assessed recently. The aim of this study was to examine if cadmium exposure in the general Swedish population causes other bone changes than decreased areal bone mineral density as measured by traditional DXA technology, e.g. changes in microstructure and geometry, such as cortical thickness or area, cortical porosity and trabecular bone volume. The study population consisted of 444 men, aged 70-81 years at inclusion year 2002-2004, from the Swedish cohort of the Osteoporotic Fractures in Men Study (MrOS). Cadmium was analyzed in baseline urine samples (U-Cd). Different parameters of bone geometry and microstructure were measured at the distal tibia at follow-up in 2009, including examination with high-resolution peripheral quantitative computed tomography (HR-pQCT). Associations between bone parameters and U-Cd in tertiles were estimated in multivariable analyses, including potential confounding factors (age, smoking, BMI, and physical activity). We found significant associations between U-Cd and several bone geometry or microstructure parameters, with 9% lower cortical thickness (p = 0.03), 7% lower cortical area (p = 0.04), and 5% lower trabecular bone volume fraction (p = 0.02) in the third tertile of U-Cd, using the first tertile as the reference. Furthermore, significant negative associations were found between log-transformed U-Cd and cortical thickness, cortical area, trabecular number and trabecular bone volume fraction, and a significant positive association with trabecular separation. The results indicate that low-level Cd exposure in the general population has negative effects on both cortical and trabecular bone.
Collapse
Affiliation(s)
- Maria Wallin
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Lundh
- Department of Occupational and Environmental Medicine, Skåne University Hospital, Lund, Sweden
| | - Daniel Sundh
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Geriatric Medicine Clinic, Sahlgrenska University Hospital Mölndal, Sweden
| | - Claes Ohlsson
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Mirkov I, Popov Aleksandrov A, Ninkov M, Tucovic D, Kulas J, Zeljkovic M, Popovic D, Kataranovski M. Immunotoxicology of cadmium: Cells of the immune system as targets and effectors of cadmium toxicity. Food Chem Toxicol 2021; 149:112026. [PMID: 33508420 DOI: 10.1016/j.fct.2021.112026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) has been listed as one of the most toxic substances affecting numerous tissues/organs, including the immune system. Due to variations in studies examining Cd effects on the immune system (exposure regime, experimental systems, immune endpoint measured), data on Cd immunotoxicity in humans and experimental animals are inconsistent. However, it is clear that Cd can affect cells of the immune system and can modulate some immune responses. Due to the complex nature of the immune system and its activities which are determined by multiple interactions, the underlying mechanisms involved in the immunotoxicity of this metal are still vague. Here, the current knowledge regarding the interaction of Cd with cells of the immune system, which may affect immune responses as well as potential mechanisms of consequent biological effects of such activities, is reviewed. Tissue injury caused by Cd-induced effects on innate cell activities depicts components of the immune system as mediators/effectors of Cd tissue toxicity. Cd-induced immune alterations, which may compromise host defense against pathogenic microorganisms and homeostatic reparative activities, stress this metal as an important health hazard.
Collapse
Affiliation(s)
- Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia; Université Côte D'Azur, Institute of Biology Valrose, Nice (iBV), INSERM U1091, 06107, Nice, France
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia.
| |
Collapse
|
20
|
Ma Y, Ran D, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141638. [PMID: 32858297 DOI: 10.1016/j.scitotenv.2020.141638] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a common environmental pollutant that accumulates in the bone and kidneys and causes severe health and social problems. However, the effects of Cd on the occurrence of osteoporosis and its mechanism of action in this process are unclear. To test whether Cd-induced osteoporosis is mediated via P2X7/PI3K/AKT signaling, duck bone marrow mesenchymal stem cells (BMSCs) and bone marrow macrophage cells (BMMs) were treated with Cd for 5 days, and duck embryos were treated with Cd. Micro-CT analysis indicated that Cd-induced osteoporosis occurs in vivo, and histopathology and immunohistochemical analyses also revealed that Cd induced bone damage and the downregulation of osteogenic and bone resorption-related proteins. Cd exposure significantly inhibited the differentiation of BMSCs and BMMs into osteoblasts and osteoclasts in vitro, and promoted osteoblast and osteoclast apoptosis. Cd exposure significantly downregulated the P2X7/PI3K/AKT signaling pathway in vivo and in vitro, and inhibition of this signaling pathway significantly aggravated osteoblast and osteoclast differentiation. Cd exposure also upregulated the OPG/RANKL ratio in vivo and in vitro, further inhibiting osteoclast differentiation. These results demonstrate that Cd causes osteoporosis in duck by inhibiting P2X7/PI3K/AKT signaling and increasing the OPG/RANKL ratio. These results establish a previously unknown mechanism of Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
21
|
Cadmium exposure negatively affects the microarchitecture of trabecular bone and decreases the density of a subset of sympathetic nerve fibers innervating the developing rat femur. Biometals 2020; 34:87-96. [PMID: 33145678 DOI: 10.1007/s10534-020-00265-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is toxic to the skeletal system resulting in bone loss and pain. We aimed at determining the effect of chronic Cd exposure on bone density and microarchitecture along with changes in the density of a subset of sensory and sympathetic nerve fibers innervating the developing rat femur. Newborn male Wistar rats were injected daily for 49 days with CdCl2 (1 mg/kg i.p.) or saline solution (control group). At the day of sacrifice, levels of Cd in the right femur, liver and kidney were determined by atomic absorption spectrophotometry. Additionally, microCT followed by immunohistochemical analyses were performed in the left femur. Results showed Cd accumulation in trabecular bone neared levels seen in liver and kidney. Cd concentration in cortical bone was significantly lower versus trabecular bone. MicroCT analysis revealed that Cd-exposed rats had a significant decrease in trabecular bone parameters at the distal femoral metaphysis; however, most of the cortical bone parameters were not significantly affected. Cd-exposed rats showed a significant loss of TH+ sympathetic nerve fibers, but not of CGRP+ sensory nerve fibers, at the level of bone marrow of the femoral diaphysis as compared to control rats. This study shows that Cd negatively affects bone density and microarchitecture of trabecular bone and decreases the density of sympathetic nerve fibers innervating rat femur. Future studies are warranted to determine the toxigenic mechanisms of Cd on sympathetic nerves and how sympathetic denervation influences bone loss in animals exposed to Cd.
Collapse
|
22
|
Zhang S, Sun L, Zhang J, Liu S, Han J, Liu Y. Adverse Impact of Heavy Metals on Bone Cells and Bone Metabolism Dependently and Independently through Anemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000383. [PMID: 33042736 PMCID: PMC7539179 DOI: 10.1002/advs.202000383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Mounting evidence is revealing that heavy metals can incur disordered bone homeostasis, leading to the development of degenerative bone diseases, including osteoporosis, osteoarthritis, degenerative disk disease, and osteomalacia. Meanwhile, heavy metal-induced anemia has been found to be intertwined with degenerative bone diseases. However, the relationship and interplay among these adverse outcomes remain elusive. Thus, it is of importance to shed light on the modes of action (MOAs) and adverse outcome pathways (AOPs) responsible for degenerative bone diseases and anemia under exposure to heavy metals. In the current Review, the epidemiological and experimental findings are recapitulated to interrogate the contributions of heavy metals to degenerative bone disease development which may be attributable dependently and independently to anemia. A few likely mechanisms are postulated for anemia-independent degenerative bone diseases, including dysregulated osteogenesis and osteoblastogenesis, imbalanced bone formation and resorption, and disturbed homeostasis of essential trace elements. By contrast, remodeled bone microarchitecture, inhibited erythropoietin production, and disordered iron homeostasis are speculated to account for anemia-associated degenerative bone disorders upon heavy metal exposure. Together, this Review aims to elaborate available literature to fill in the knowledge gaps in understanding the detrimental effects of heavy metals on bone cells and bone homeostasis through different perspectives.
Collapse
Affiliation(s)
- Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Yajun Liu
- Beijing Jishuitan HospitalPeking University Health Science CenterBeijing100035China
| |
Collapse
|
23
|
Liu W, Le CC, Wang D, Ran D, Wang Y, Zhao H, Gu J, Zou H, Yuan Y, Bian J, Liu Z. Ca 2+/CaM/CaMK signaling is involved in cadmium-induced osteoclast differentiation. Toxicology 2020; 441:152520. [PMID: 32522522 DOI: 10.1016/j.tox.2020.152520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Environmental cadmium (Cd) pollution can ultimately lead to chronic toxicity via food consumption. Previous studies have demonstrated that long-term low-dose Cd exposure decreases bone mineral density and bone mineralization. Cd may increase receptor activator of nuclear factor-κ B ligand (RANKL) expression by osteoclasts, and inhibit the expression of osteoprotegerin. However, the molecular mechanism underlying Cd toxicity toward osteoclasts is unclear. In this study, bone marrow monocytes were isolated from C57BL/6 mice and treated with macrophage colony-stimulating factor and RANKL to induce the formation of osteoclasts. The results show that low-dose Cd exposure induced osteoclast differentiation. Cd also increased the intracellular calcium concentration of osteoclasts by triggering release of calcium ions from the endoplasmic reticulum into the cytoplasm. Furthermore, the elevation of intracellular calcium levels was shown to activate the calmodulin (CaM)/calmodulin-dependent protein kinase (CaMK) pathway. NFATc1 is a downstream protein of CaM/CaMK signaling, as well as a key player in osteoclast differentiation. Overall, we conclude that Cd activates the CaM/CaMK/NFATc1 pathway and regulates osteoclast differentiation by increasing intracellular calcium concentration. Our data provide new insights into the mechanisms underlying osteoclast differentiation following Cd exposure. This study provides a theoretical basis for future investigations into the therapeutic application of CaMK inhibitors in osteoporosis induced by Cd exposure.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Chung Chi Le
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Dong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z. Effect of cadmium on osteoclast differentiation during bone injury in female mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:487-494. [PMID: 31793751 DOI: 10.1002/tox.22884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that represents an occupational hazard and environmental pollutant toxic heavy metal, which can cause osteoporosis following accumulation in the body. The purpose of this study was to investigate the effect of Cd on bone tissue osteoclast differentiation in vivo. Female BALB/c mice were randomly divided into three groups and given drinking water with various concentrations of Cd (0, 5, and 25 mg/L) for 16 weeks, after which the mice were sacrificed after collecting urine and blood. The level of Cd, calcium (Ca), phosphorus (P), trace elements, and some biochemical indicators were measured, and the bone was fixed in a 4% formaldehyde solution for histological observation. Bone marrow cells were isolated to determine the expression of osteoclast-associated mRNA and proteins. Cd was increased in the blood, urine, and bone in response to Cd in drinking water in a dose-dependent manner. The content of iron (Fe), manganese (Mn), and zinc (Zn) was significantly increased, whereas Ca and P were decreased in bone compared to the control group. Cd affected the histological structure of the bone, and induced the upregulation and downregulation of tartrate-resistant acid phosphatase 5b (TRACP-5b) and estradiol in the serum, respectively. Cd had no significant effect on the alkaline phosphatase activity in the serum. The expression of osteoclast marker proteins, including TRACP, cathepsin K, matrix metalloprotein 9, and carbonic anhydrases were all increased in the Cd-treated bone marrow cells. Cd significantly increased the expression of receptor activator of nuclear factor kappa B ligand (RANKL), but had lower effect on the expression of osteoprotegerin (OPG) in both bone marrow cells and bone tissue. Thus, Cd exposure destroyed the bone microstructure, promoted the formation of osteoclasts in the bone tissue, and accelerated bone resorption, in which the OPG/RANKL pathway may play an important role.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Liling Zhuo
- Department of Life Science, Zaozhuang College, Zaozhuang, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Boughammoura S, Ben Mimouna S, Chemek M, Ostertag A, Cohen-Solal M, Messaoudi I. Disruption of Bone Zinc Metabolism during Postnatal Development of Rats after Early Life Exposure to Cadmium. Int J Mol Sci 2020; 21:ijms21041218. [PMID: 32059372 PMCID: PMC7072778 DOI: 10.3390/ijms21041218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 11/16/2022] Open
Abstract
This current study was conducted to investigate whether bone tissue impairment induced by early life exposure to cadmium (Cd) during postnatal development could result from disruption to zinc (Zn) metabolism. For this reason, the offspring from mothers receiving either tap water, Cd, Zn or Cd + Zn during gestation and lactation periods were euthanized at PND21 and PND70. At the end of the lactation period (PND21), our results showed that exposure to Cd increased Cd accumulation and Zn depletion in the femur. Furthermore, calcium (Ca) level was reduced. At the molecular level, Cd induced an increase of MT-1 expression and caused an upregulation of ZIP2 accompanied with a down-regulation of ZnT5. Runx2, ALP, colα-1 and Oc mRNA levels were also decreased. In plasma, IGF-1 and osteocalcin concentrations were decreased. Further, Cd altered femoral growth by generating changes in the growth plate. Consequently, the toxic effect of Cd persisted at adult age (PND70) by decreasing bone volume (%BV/TV), bone mineral density (BMD) and Ca content and by increasing trabecular separation (Tb.Sp) in the distal femur. Interestingly, Zn supply provided total or partial corrections of several toxic effects of Cd. These data suggest that the increases of Zn bioavailability as well as the reduction of Cd accumulation in the femur following the changes in ZIP2 and ZnT5 expression are part of the mechanism involved in Zn protection against Cd toxicity on bone tissue.
Collapse
Affiliation(s)
- Sana Boughammoura
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
- Correspondence: ; Tel.: +21673465405; Fax: +21673465404
| | - Safa Ben Mimouna
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| | - Marouen Chemek
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| | - Agnes Ostertag
- Bioscar Inserm U1132 and université de Paris, hôpital Lariboisière, 75010 Paris, France; (A.O.); (M.C.-S.)
| | - Martine Cohen-Solal
- Bioscar Inserm U1132 and université de Paris, hôpital Lariboisière, 75010 Paris, France; (A.O.); (M.C.-S.)
| | - Imed Messaoudi
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| |
Collapse
|
26
|
Zhang X, Li X, Sheng Z, Wang S, Li B, Tao S, Zhang Z. Effects of Combined Exposure to Cadmium and High-Fat Diet on Bone Quality in Male Mice. Biol Trace Elem Res 2020; 193:434-444. [PMID: 30968337 DOI: 10.1007/s12011-019-01713-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/28/2019] [Indexed: 01/13/2023]
Abstract
This study investigated the effects of combined exposure to low-dose cadmium and high-fat diet on femoral bone quality in male mice. Eight-week-old male SPF C57BL/6J mice were randomly divided into four groups: normal control group (Con), low-cadmium group (Cd), high-fat diet group (HFD), and high-fat diet plus low-dose cadmium group (HFD + Cd); the second and fourth groups were treated intraperitoneally with CdCl2 (1.0 mg/kg body weight) twice weekly for 20 weeks. Assays related to bone quality were performed. Body weight of HFD plus Cd mice was significantly lower than HFD mice. Femoral length was not different among groups, but femoral weight was decreased in the HFD plus Cd group compared with other three groups. Level of Cd in bone was significantly increased in HFD plus Cd group. There was no difference in cortical BMD among groups; however, cortical bone quality parameters were decreased in HFD plus Cd group. Cd and HFD each reduced trabecular bone quality and together had further detrimental effects on these bone parameters. Based on biomechanical analysis, femoral bone strength was decreased, being more brittle and less resistant to biomechanical forces in the HFD plus Cd mice. HFD plus Cd mice had lower OPG mRNA expression and higher RANKL mRNA expression than others. HFD or Cd can cause adverse effects on bone and together had further detrimental effects associated with RANKL/OPG signaling.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaoyin Li
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhijie Sheng
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Shuai Wang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Bingyan Li
- Experimental Center of Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
27
|
Yessica Eduviges ZC, Martínez-Nava G, Reyes-Hinojosa D, Mendoza-Soto L, Fernández-Torres J, López-Reyes A, Olivos-Meza A, Armienta-Hernández MA, Ruíz-Huerta EA, de Jesús González-Guadarrama M, Sandoval BV, Landa-Solís C, Sánchez-Sánchez R, Suarez-Ahedo C, Lozada-Pérez CA, Gutiérrez-Ruiz MC, Clavijo-Cornejo D, Pineda C, Jacobo-Albavera L, Domínguez-Pérez M, Martínez-Flores K. Impact of cadmium toxicity on cartilage loss in a 3D in vitro model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103307. [PMID: 31830724 DOI: 10.1016/j.etap.2019.103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is the gradual loss of articular cartilage and decrease in subchondral space. One of the risk factors Exposure to cadmium (Cd) through tobacco smoke has been identified as a major OA risk factor. There are no reports addressing the role of Cd in OA progression at the molecular level. Our findings revealed that Cd can promote the activation of metalloproteinases (MMP1, MMP3, MMP9 y MMP13), affecting the expression of COL2A1 and ACAN, and decreasing the presence of glycosaminoglycans and proteoglycans through an inflammatory response related to IL-1β y a IL-6, as well as oxidative by producing ROS like O2-• and H2O2. In conclusion, our findings suggest a cytotoxic role of Cd in the articular cartilage, which could affect OA development.
Collapse
Affiliation(s)
- Zamudio-Cuevas Yessica Eduviges
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Gabriela Martínez-Nava
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Daniel Reyes-Hinojosa
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Luzia Mendoza-Soto
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Javier Fernández-Torres
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Alberto López-Reyes
- Gerosciences, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Anell Olivos-Meza
- Orthopedic Sports Medicine and Arthroscopy Service, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - María Aurora Armienta-Hernández
- Departament of Natural Resources, Institute of Geophysics, UNAM. Circuito de la investigación Científica s/n, Ciudad Universitaria, Cd. Universitaria, C.P. 04150. Mexico City, Mexico
| | - Esther Aurora Ruíz-Huerta
- Departament of Natural Resources, Institute of Geophysics, UNAM. Circuito de la investigación Científica s/n, Ciudad Universitaria, Cd. Universitaria, C.P. 04150. Mexico City, Mexico
| | - María de Jesús González-Guadarrama
- Departament of Natural Resources, Institute of Geophysics, UNAM. Circuito de la investigación Científica s/n, Ciudad Universitaria, Cd. Universitaria, C.P. 04150. Mexico City, Mexico
| | - Bertha Vargas Sandoval
- Microscopy Laboratory, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Carlos Landa-Solís
- Tissue Engineering and Cell Therapy and Regenerative Medicine Unit, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Roberto Sánchez-Sánchez
- Tissue Engineering and Cell Therapy and Regenerative Medicine Unit, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Carlos Suarez-Ahedo
- Departament of Adult Joint Reconstruction, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - Carlos Alberto Lozada-Pérez
- Rheumatology Service, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Department of Health Sciences, Autonomous Metropolitan University, Laboratory of Experimental Medicine, Unit of Translational Medicine, Institute of Biomedical Research, UNAM, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Denise Clavijo-Cornejo
- Division of Musculoskeletal and Rheumatic Disorders. National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders. National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periférico Sur 4809, Col. Arenal Tepepan, C.P. 14610, Mexico
| | - Mayra Domínguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periférico Sur 4809, Col. Arenal Tepepan, C.P. 14610, Mexico
| | - Karina Martínez-Flores
- Synovial Fluid, National Institute of Rehabilitation, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, Mexico.
| |
Collapse
|
28
|
Reyes-Hinojosa D, Lozada-Pérez CA, Zamudio Cuevas Y, López-Reyes A, Martínez-Nava G, Fernández-Torres J, Olivos-Meza A, Landa-Solis C, Gutiérrez-Ruiz MC, Rojas Del Castillo E, Martínez-Flores K. Toxicity of cadmium in musculoskeletal diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103219. [PMID: 31494513 DOI: 10.1016/j.etap.2019.103219] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 05/20/2023]
Abstract
Epidemiological studies have reported that exposure to toxic metals like cadmium (Cd) may promote the development of musculoskeletal diseases, such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA), among others. The objective of this review is to summarize the molecular mechanisms of inflammation and oxidative stress activated by Cd at the bone level, particularly in osteoporosis, RA, and OA. Cadmium can increase bone resorption, affect the activity of osteoclasts and calcium (Ca) absorption, and impair kidney function, which favors the development of osteoporosis. In the case of RA, Cd interferes with the activity of antioxidant proteins, like superoxide dismutase (SOD) and catalase (CAT). It also promotes an inflammatory state, inducing the process of citrullination, which affects the proteins of immune response. On the other hand, accumulation of Cd in the tissues and blood of smokers has been related to the development of some musculoskeletal diseases. Therefore, knowing the negative impact of Cd toxicity at the articular level can help understand the damage mechanisms it produces, leading to the development of such diseases.
Collapse
Affiliation(s)
- D Reyes-Hinojosa
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico
| | - C A Lozada-Pérez
- Rheumatology Service, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Y Zamudio Cuevas
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico
| | - A López-Reyes
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico
| | - G Martínez-Nava
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico
| | - J Fernández-Torres
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico
| | - A Olivos-Meza
- Orthopedic Sports Medicine and Arthroscopy Service, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - C Landa-Solis
- Tissue Engineering Cell Therapy and Regenerative Medicine Unit, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - M C Gutiérrez-Ruiz
- Department of Health Sciences, Autonomous Metropolitan University, Mexico City, Mexico; Laboratory of Experimental Medicine, Unit of Translational Medicine, Institute of Biomedical Research, UNAM, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - E Rojas Del Castillo
- Departament of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, UNAM, Mexico City, Mexico
| | - K Martínez-Flores
- Synovial Fluid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, C.P. 14389, Mexico City, Mexico.
| |
Collapse
|
29
|
Chen X, Wang Z, Zhu G, Nordberg GF, Jin T, Ding X. The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:435-443. [PMID: 30185939 DOI: 10.1038/s41370-018-0057-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/28/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Bone is one of the target organs for cadmium toxicity. However, few studies have shown the association between cumulative cadmium intake and prevalence of osteoporosis and bone fracture. In the present study, we evaluated the association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. A total of 790 subjects (488 women and 302 men) living in a control area and two cadmium-polluted areas were included. The cumulative cadmium intake was estimated by a food survey. The bone mineral density was determined by using single-photon absorptiometry. The cumulative cadmium intakes were 0.48, 2.14, and 11.00 g for men, and 0.42, 2.11, and 11.12 g in women in control, and moderately and heavily polluted areas, respectively. In women, the odds ratios (ORs) of subjects with a cadmium intake between 2.21 and 10.63 g and >10.63 g were 1.30 (95% CI: 0.58-2.94) and 2.36 (95% CI: 1.14-5.16), compared with those with a cadmium intake < 0.58 g after adjusting to the confounders for osteoporosis. The ORs of subjects with a cadmium intake >10.63 g were 2.34 (95% CI: 1.23-4.38) for all of the women and 2.62 (95% CI: 1.02-5.58) in women ≥ 60 years old, compared with those with a cadmium intake <10.63 g after adjusting to the confounders for bone fractures. In men, similar trends were observed, but no statistical significance was found. In addition, those subjects with renal tubular dysfunction showed high risk of bone fracture. Our results indicate that a high level of cumulative cadmium intake is associated with an increased rate of osteoporosis and fractures among women.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 # hanzhong Road, Nanjing, 210029, China
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 # hanzhong Road, Nanjing, 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China.
| | - Gunnar F Nordberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Taiyi Jin
- Department of Occupational Medicine, School of Public Health, Fudan University, 150 Dongan Road, Shanghai, 200032, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China.
| |
Collapse
|
30
|
Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X, Xia H, Li J, Yang X, Liu Q. Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20061519. [PMID: 30917596 PMCID: PMC6471709 DOI: 10.3390/ijms20061519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl₂) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl₂, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl₂ inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl₂ in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl₂. Moreover, during differentiation, the protein levels of Wnt3a, β-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl₂. The current research shows that CdCl₂ suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/β-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl₂.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yingjian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rui Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Ping Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Xiangyu Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Haibo Xia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Junjie Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
31
|
Taha MM, Mahdy-Abdallah H, Shahy EM, Ibrahim KS, Elserougy S. Impact of occupational cadmium exposure on bone in sewage workers. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2018; 24:101-108. [PMID: 30222069 DOI: 10.1080/10773525.2018.1518745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is one of the environmental risk factors for bone loss. The present study included 40 sewage workers occupationally exposed to Cd. Forty nonexposed men were included as a control group. Current smokers represented 65% and 47.5% of the exposed and control groups, respectively. The study aimed to investigate the hazard of occupational Cd exposure on bone health. This was achieved through measuring serum and urinary Cd, and calcium (Ca), in addition to serum osteoprotegerin (OPG) and estrogen receptor-α gene. Results showed significant elevation in serum Cd, OPG, and urinary Ca levels in the exposed compared to the controls. Bony aches and joint pain were more prevalent among the exposed workers. Serum and urinary Cd increased in exposed smokers relative to control smokers. Also, serum OPG levels showed significant rise among exposed smoker and nonsmoker compared to control smoker and nonsmoker groups. Serum Cd level increased significantly in PP and pp genotypes in exposed workers compared to controls, while elevated levels of serum OPG was observed in PP and Pp genotypes in exposed workers relative to controls. Urinary Cd exhibited significant rise in both PP and pp genotypes in exposed workers, while Ca excretion was elevated in pp genotype only. The study reflected an association of genetic predisposition and Cd exposure in progression of osteoporosis. Further research is needed to explain the mechanisms of Cd impact on bone. The role of smoking is important and hence smoking cessation programs are essential for sewage workers.
Collapse
Affiliation(s)
- Mona M Taha
- a Environmental and Occupational Medicine Department , National Research Centre , Giza , Egypt
| | - Heba Mahdy-Abdallah
- a Environmental and Occupational Medicine Department , National Research Centre , Giza , Egypt
| | - Eman M Shahy
- a Environmental and Occupational Medicine Department , National Research Centre , Giza , Egypt
| | - Khadiga S Ibrahim
- a Environmental and Occupational Medicine Department , National Research Centre , Giza , Egypt
| | - Safaa Elserougy
- a Environmental and Occupational Medicine Department , National Research Centre , Giza , Egypt
| |
Collapse
|
32
|
Ghrelin protects against depleted uranium-induced bone damage by increasing osteoprotegerin/RANKL ratio. Toxicol Appl Pharmacol 2018; 343:62-70. [DOI: 10.1016/j.taap.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/10/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
|
33
|
Wang J, Wu X, Duan Y. Magnesium Lithospermate B Protects against Lipopolysaccharide-Induced Bone Loss by Inhibiting RANKL/RANK Pathway. Front Pharmacol 2018; 9:64. [PMID: 29472860 PMCID: PMC5810254 DOI: 10.3389/fphar.2018.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccharide (LPS) can induce bone loss by stimulating bone resorption. Natural compounds have great potential for the treatment of osteolytic bone diseases. Magnesium lithospermate B (MLB) plays an important role in protecting against oxidative damage and also has potential anti-inflammatory pharmacological properties. However, its role in LPS-induced bone loss is still unknown. In the present study, we observed the effects of MLB on LPS-induced bone damage and investigated the possible mechanisms. The bone loss models were established by LPS administration in male Sprague–Dawley rats. MLB (200 mg/kg body weight) was given by subcutaneous injection. MicroCT analysis, biomarker assay, histological examination and immunohistochemical staining were performed at the 8th weeks. In addition, RAW264.7 cells were treated with LPS in the presence or absence of MLB. The osteoclast formation, resorption activity and differentiation-related genes [(receptor activator of nuclear factor kappa-B (RANK), Traf6, Fra-1, and c-src)] expression were evaluated. LPS induced bone loss shown as the decrease in bone volume fraction and trabecular number, and increase in trabecular separation. LPS also markedly enhanced the osteoclast formation and resorption activity compared with the control. MLB significantly abolished the LPS-induced bone microstructure damage (p < 0.05) and osteoclast formation. MLB also inhibited the increases of serum tartrate-resistant acid phosphatase 5b, RANK ligand (RANKL) and TNF-α level enhanced by LPS (p < 0.05). Immunohistochemical staining indicated that MLB attenuated the high expression of RANKL and RANK stimulated by LPS. In addition, MLB significantly abolished the LPS-enhanced osteoclast formation, resorption activity, RANK, Traf6, Fra-1, and c-src expression in vitro. Our data demonstrate that MLB can suppress LPS-induced bone loss via inhibiting RANKL/RANK related osteoclast formation.
Collapse
Affiliation(s)
- Jihai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhenghou, China
| | - Xuejian Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhenghou, China
| | - Yongzhuang Duan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhenghou, China
| |
Collapse
|
34
|
Chen X, Ren S, Zhu G, Wang Z, Wen X. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:162-168. [PMID: 28738286 DOI: 10.1016/j.etap.2017.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
Environmental level of cadmium (Cd) exposure can induce bone loss. Emodin, a naturally compound found in Asian herbal medicines, could influence osteoblast/osteoclast differentiation. However, the effects of emodin on Cd-induced bone damage are not clarified. The aim of this study was to investigate the role of emodin on Cd-induced osteoporosis. Sprague-Dawley male rats were divided into three groups which were given 0mg/L, 50mg Cd/L and 50mg Cd/L plus emodin (50mg/kg body weight). Bone histological investigation, microCT analysis, metabolic biomarker determination and immunohistochemical staining were performed at the 12th week. The bone mass and bone microstructure index of rats treated with Cd were obviously lower than in control. Cd markedly enhanced the osteoclast formation compared with control. Emodin significantly abolished the Cd-induced bone microstructure damage (p<0.05), osteoclast formation and increase of tartrate-resistant acid phosphatase 5b level (p<0.05). Our data further showed that emodin attenuated the Cd-induced inhibition of osteoprotegerin expression and stimulation of receptor activator for nuclear factor-κ B ligand expression. Our data show that emodin suppresses the Cd-induced osteoporosis by inhibiting osteoclast formation.
Collapse
Affiliation(s)
- Xiao Chen
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Dialysis, Shanghai 200032, China; Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xiaolin Wen
- Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China.
| |
Collapse
|
35
|
Ferreira CM, Pinto IS, Alves GM, Sedeghi SM, Soares HM. Aqueous complexation studies of lead(II) and cadmium(II) with 1,3-bis(tris(hydroxymethyl)methylamino)propane pH buffer. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.963570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Carlos M.H. Ferreira
- Faculdade de Engenharia, REQUIMTE – Departamento de Engenharia Química, Universidade do Porto, Porto, Portugal
| | - Isabel S.S. Pinto
- Faculdade de Engenharia, REQUIMTE – Departamento de Engenharia Química, Universidade do Porto, Porto, Portugal
| | - Georgina M.S. Alves
- Faculdade de Engenharia, REQUIMTE – Departamento de Engenharia Química, Universidade do Porto, Porto, Portugal
| | - Seyedeh Maryam Sedeghi
- Faculdade de Engenharia, REQUIMTE – Departamento de Engenharia Química, Universidade do Porto, Porto, Portugal
| | - Helena M.V.M. Soares
- Faculdade de Engenharia, REQUIMTE – Departamento de Engenharia Química, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Duranova H, Martiniakova M, Omelka R, Grosskopf B, Bobonova I, Toman R. Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta Vet Scand 2014; 56:64. [PMID: 25279860 PMCID: PMC4189194 DOI: 10.1186/s13028-014-0064-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 09/08/2014] [Indexed: 01/19/2023] Open
Abstract
Background Chronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system. Histologically, primary and secondary osteons as basic structural elements of compact bone can also be affected by several toxicants leading to changes in bone vascularization and mechanical properties of the bone. The current study was designed to investigate the effect of subchronic peroral exposure to Cd on femoral bone structure including histomorphometry of the osteons in adult male rats. In our study, 20 one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group, young males received a drinking water containing 30 mg of CdCl2/L, for 90 days. Ten one-month-old males without Cd intoxication served as a control group. After 90 days of daily peroral exposure, body weight, femoral weight, femoral length, cortical bone thickness and histological structure of the femora were analysed. Results We found that subchronic peroral application of Cd had no significant effect on body weight, femoral length and cortical bone thickness in adult rats. On the other hand, femoral weight was significantly increased (P < 0.05) in Cd-intoxicated rats. These rats also displayed different microstructure in the middle part of the compact bone where vascular canals expanded into central area of substantia compacta and supplied primary and secondary osteons. Additionally, a few resorption lacunae which are connected with an early stage of osteoporosis were identified in these individuals. Histomorphometrical evaluations showed that all variables (area, perimeter, maximum and minimum diameter) of the primary osteons’ vascular canals, Haversian canals and secondary osteons were significantly decreased (P < 0.05) in the Cd group rats. This fact points to alterations in bone vascularization. Conclusions Subchronic peroral exposure to Cd significantly influences femoral weight and histological structure of compact bone in adult male rats. It induces an early stage of osteoporosis and causes reduced bone vascularization. Histomorphometrical changes of primary and secondary osteons allow for the conclusion that the bone mechanical properties could be weakened in the Cd group rats. The current study significantly expands the knowledge on damaging action of Cd on the bone.
Collapse
|
37
|
Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X. Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 2014; 65:260-8. [PMID: 24394482 DOI: 10.1016/j.fct.2013.12.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/30/2013] [Accepted: 12/13/2013] [Indexed: 01/18/2023]
Abstract
The exposure to chemical mixtures is a common and important determinant of toxicity and receives concern for their introduction by inhalation and ingestion. However, few in vivo mixture studies have been conducted to understand the health effects of chemical mixtures compared with single chemicals. In this study, the acute and 90day sub-chronic toxicity tests of combined Pb and Cd were conducted. In the acute toxicity test, the LD50 value of Pb(NO3)2 and CdCl2 mixture by the oral route was 2696.54mg/kg by Bliss method. The sub-chronic treatment revealed that the low-dose combination of Pb and Cd exposures can significantly change the physiological and biochemical parameters of the blood of Sprague-Dawley (SD) rats with dose-response relationship and causes microcytic hypochromic anemia and the damages of liver and kidney of the SD rats to various degrees. Histopathological exams showed that the target organs of Pb and Cd were testicle, liver, and kidneys. These observations suggest that Pb and Cd are practically additive-toxic for the SD rats in oral acute toxicity studies. The lowest observed adverse-effect level in rats may be lower than a dose of 29.96mg/(kgbwday) when administered orally for 90 consecutive days.
Collapse
Affiliation(s)
- Guiping Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shujun Dai
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China; College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hongke Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiao Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Li
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinghong Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|