1
|
Elbarbry F, Espiritu MJ, Soo K, Yee B, Taylor J. Inhibition of soluble epoxide hydrolase by natural isothiocyanates. Biochem Biophys Res Commun 2024; 725:150261. [PMID: 38897040 PMCID: PMC11260514 DOI: 10.1016/j.bbrc.2024.150261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
GOAL The long-term goal of our research is to develop safe and effective soluble epoxide hydrolase (sEH) inhibitors. The objective of this study is to evaluate the potency and selectivity of six natural isothiocyanates (ITCs) as sEH inhibitors. METHODS Molecular docking was used to model likely interactions between the ligands and receptors. The sEH inhibitory activity was tested using a validated fluorescence-based assay and PHOME as a substrate. To evaluate their selectivity as sEH inhibitors, the inhibitory potential of the ITCs was determined on microsomal epoxide hydrolase (mEH) and cytochrome P450 (CYP) enzymes in human liver microsomes. Probe substrates such as styrene oxide (mEH substrate) and established substrates for CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were used in this study. The metabolites of these substrates were analyzed using validated LC-MS/MS and HPLC-UV assays. RESULTS Molecular Docking revealed significant differences in binding site preference among the ITCs in silico and pointed to important interactions between the ligands and the catalytic residues of the sEH enzyme. In vitro, the ITCs showed varying degrees of sEH inhibition, but sulforaphane (SFN) and phenyl isothiocyanate (PITC) were the most potent inhibitors with IC50 values of 3.65 and 7.5 μM, respectively. mEH was not significantly inhibited by any of the ITCs. Erucin and iberin were the only ITCs that did not inhibit the activity of any of the tested CYP enzymes. CONCLUSION Our results demonstrate that natural ITCs have the potential to offer safe, selective, and potent sEH inhibition.
Collapse
Affiliation(s)
- Fawzy Elbarbry
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR, 97123, USA.
| | - Michael J Espiritu
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR, 97123, USA
| | - Kaylen Soo
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR, 97123, USA
| | - Baily Yee
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR, 97123, USA
| | - Jonathan Taylor
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR, 97123, USA
| |
Collapse
|
2
|
Phong NV, Thao NP, Vinh LB, Luyen BTT, Minh CV, Yang SY. Inhibition of Soluble Epoxide Hydrolase by Cembranoid Diterpenes from Soft Coral Sinularia maxima: Enzyme Kinetics, Molecular Docking, and Molecular Dynamics. Mar Drugs 2024; 22:373. [PMID: 39195489 DOI: 10.3390/md22080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is essential for converting epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs), into their dihydroxy forms. EETs play a crucial role in regulating blood pressure, mediating anti-inflammatory responses, and modulating pain, making sEH a key target for therapeutic interventions. Current research is increasingly focused on identifying sEH inhibitors from natural sources, particularly marine environments, which are rich in bioactive compounds due to their unique metabolic adaptations. In this study, the sEH inhibitory activities of ten cembranoid diterpenes (1-10) isolated from the soft coral Sinularia maxima were evaluated. Among them, compounds 3 and 9 exhibited considerable sEH inhibition, with IC50 values of 70.68 μM and 78.83 μM, respectively. Enzyme kinetics analysis revealed that these two active compounds inhibit sEH through a non-competitive mode. Additionally, in silico approaches, including molecular docking and molecular dynamics simulations, confirmed their stability and interactions with sEH, highlighting their potential as natural therapeutic agents for managing cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Le Ba Vinh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Bui Thi Thuy Luyen
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 11021, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, De Felice V, Lauro G, Casapullo A, Bifulco G, Iorizzi M. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods 2024; 13:2282. [PMID: 39063366 PMCID: PMC11276180 DOI: 10.3390/foods13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Laurus nobilis L. is commonly used in folk medicine in the form of infusion or decoction to treat gastrointestinal diseases and flatulence as a carminative, antiseptic, and anti-inflammatory agent. In this study, the essential oil (EO) composition of wild-grown L. nobilis L. leaves collected from seven different altitudinal locations in the Molise region and adjacent regions (Abruzzo and Campania) was investigated. EOs from the leaves were obtained by hydrodistillation and analyzed by GC-FID and GC/MS, and 78 compounds were identified. The major oil components were 1,8-cineol (43.52-31.31%), methyl-eugenol (14.96-4.07%), α-terpinyl acetate (13.00-8.51%), linalool (11.72-1.08%), sabinene (10.57-4.85%), α-pinene (7.41-3.61%), eugenol (4.12-1.97%), and terpinen-4-ol (2.33-1.25%). Chemometric techniques have been applied to compare the chemical composition. To shed light on the nutraceutical properties of the main hydrophobic secondary metabolites (≥1.0%) of laurel EOs, we assessed the in vitro antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity and the reducing antioxidant power by using a ferric reducing power (FRAP) assay. Furthermore, we highlighted the anti-inflammatory effects of seven EOs able to interfere with the enzyme soluble epoxide hydrolase (sEH), a key enzyme in the arachidonic acid cascade, in concentrations ranging from 16.5 ± 4.3 to 8062.3 ± 580.9 mg/mL. Thanks to in silico studies, we investigated and rationalized the observed anti-inflammatory properties, ascribing the inhibitory activity toward the disclosed target to the most abundant volatile phytochemicals (≥1.0%) of seven EOs.
Collapse
Affiliation(s)
- Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
4
|
Sun CP, Zhang XY, Morisseau C, Hwang SH, Zhang ZJ, Hammock BD, Ma XC. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem 2020; 64:184-215. [PMID: 33369424 DOI: 10.1021/acs.jmedchem.0c01507] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an α/β hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xin-Yue Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
5
|
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules 2020; 25:molecules25235488. [PMID: 33255197 PMCID: PMC7727688 DOI: 10.3390/molecules25235488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Collapse
Affiliation(s)
- Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Correspondence: ; Tel.: +079-2395-2073; Fax: +079-2397-2622
| |
Collapse
|
6
|
Gao D, Le Ba V, Rustam R, Cho CW, Yang SY, Su XD, Kim YH, Kang JS. Isolation of bioactive components with soluble epoxide hydrolase inhibitory activity from Stachys sieboldii MiQ. by ultrasonic-assisted extraction optimized using response surface methodology. Prep Biochem Biotechnol 2020; 51:395-404. [PMID: 32940554 DOI: 10.1080/10826068.2020.1821217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stachys sieboldii MiQ (SSM) is an important food and medicinal herb in Korea, used to improve memory of patients with senile dementia and cardiovascular diseases. However, little information on bioactive components from SSM or standardized extraction methods for these components is available. This study isolated and purified major components from SSM for the first time, and assessed their ability to inhibit soluble epoxide hydrolase (sEH). The results showed that acteoside is the most potent inhibitor of sEH, with an IC50 of 33.5 ± 0.5 μM. Additional active components, including harpagide, tryptophan, and 8-acetate-harpagide, along with acteoside, were tentatively identified using high-performance liquid chromatography photodiode array tandem mass spectrometry (HPLC-PDA-MS/MS) and quantified using an ultraviolet detector at 210 nm. Further, an ultrasonic-assisted extraction technique for extraction of four bioactive compounds in SSM was developed and optimized using response surface methodology (RSM). The optimal extraction conditions were: extraction time, 30.46 minutes; extraction temperature, 67.95 °C, and methanol concentration 53.85%. The prediction model of RSM was validated with laboratory experiments. The similarity between predicted and actual values was 97.84%. The extraction method is thus a rapid, environment-friendly, energy-saving method can be applied to extract bioactive components from SSM in large quantities.
Collapse
Affiliation(s)
- Dan Gao
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Vinh Le Ba
- College of Pharmacy, Chungnam National University, Daejeon, South Korea.,Institute of Marine Biochemistry (IMBC), Vietnam Academic of Science and Technology (VAST), Hanoi, Vietnam
| | - Rustamov Rustam
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Xiang Dong Su
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
7
|
He X, Zhao WY, Shao B, Zhang BJ, Liu TT, Sun CP, Huang HL, Wu JR, Liang JH, Ma XC. Natural soluble epoxide hydrolase inhibitors from Inula helenium and their interactions with soluble epoxide hydrolase. Int J Biol Macromol 2020; 158:S0141-8130(20)33090-7. [PMID: 32360461 DOI: 10.1016/j.ijbiomac.2020.04.227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 04/25/2020] [Indexed: 12/26/2022]
Abstract
The inhibition of soluble epoxide hydrolase (sEH) is regarded as a promising therapeutic approach to treat inflammation and its related disorders. In present work, we investigated inhibitory effects of forty-nine kinds of traditional Chinese medicines against sEH. Inula helenium showed significant inhibitory effect against sEH, and the extract of I. helenium were isolated to obtain eight compounds, including 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3), 8-hydroxy-9-isobutyryloxy-10(2)-methylbutyrylthymol (4), dehydrocostus lactone (5), alantolactone (6), costunolide (7), and isoalantolactone (8). Among them, 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) showed significantly inhibitory activities on sEH with half maximal inhibitory concentration (IC50) from 5.88 ± 0.97 μM to 11.63 ± 0.58 μM. The inhibition kinetics suggested that 4H-tomentosin (1) and xanthalongin (2) were mixed-competitive type inhibitors with inhibition constant (Ki) values of 7.02 and 6.57 μM, respectively, and linoleic acid (3) was a competitive type inhibitor with a Ki values of 3.52 μM. The potential interactions of 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) with sEH were analyzed by molecular docking, which indicated that these bioactive compounds had interactions with key amino acid residues Tyr343, Ile363, Tyr383, and His524.
Collapse
Affiliation(s)
- Xin He
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bo Shao
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tian-Tian Liu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Hui-Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jia-Rong Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Hao Liang
- Zhendong Pharmaceutical Research Institute Co. Ltd., Changzhi, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Chi Ma
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Hashimoto K. Role of Soluble Epoxide Hydrolase in Metabolism of PUFAs in Psychiatric and Neurological Disorders. Front Pharmacol 2019; 10:36. [PMID: 30761004 PMCID: PMC6363819 DOI: 10.3389/fphar.2019.00036] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays a key role in the pathogenesis of a number of psychiatric and neurological disorders. Soluble epoxide hydrolases (sEH), enzymes present in all living organisms, metabolize epoxy fatty acids (EpFAs) to corresponding 1,2-diols by the addition of a molecule of water. Accumulating evidence suggests that sEH in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation. Preclinical studies demonstrated that protein expression of sEH in the prefrontal cortex, striatum, and hippocampus from mice with depression-like phenotype was higher than control mice. Furthermore, protein expression of sEH in the parietal cortex from patients with major depressive disorder was higher than controls. Interestingly, Ephx2 knock-out (KO) mice exhibit stress resilience after chronic social defeat stress. Furthermore, the sEH inhibitors have antidepressant effects in animal models of depression. In addition, pharmacological inhibition or gene KO of sEH protected against dopaminergic neurotoxicity in the striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in an animal model of Parkinson’s disease (PD). Protein expression of sEH in the striatum from MPTP-treated mice was higher than control mice. A number of studies using postmortem brain samples showed that the deposition of protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of patients from PD and dementia with Lewy bodies (DLB). Moreover, the expression of the sEH protein in the striatum from patients with DLB was significantly higher compared with controls. Interestingly, there was a positive correlation between sEH expression and the ratio of phosphorylated α-synuclein to α-synuclein in the striatum. In the review, the author discusses the role of sEH in the metabolism of PUFAs in inflammation-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Cytochrome P450 4A11 inhibition assays based on characterization of lauric acid metabolites. Food Chem Toxicol 2018; 112:205-215. [DOI: 10.1016/j.fct.2017.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023]
|
10
|
Santos JM, Park JA, Joiakim A, Putt DA, Taylor RN, Kim H. The role of soluble epoxide hydrolase in preeclampsia. Med Hypotheses 2017; 108:81-85. [DOI: 10.1016/j.mehy.2017.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|
11
|
Kitamura S, Morisseau C, Harris TR, Inceoglu B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One 2017; 12:e0176571. [PMID: 28472063 PMCID: PMC5417501 DOI: 10.1371/journal.pone.0176571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Todd R. Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Liu JY, Morisseau C, Huang H, Hammock BD. Screening of soluble epoxide hydrolase inhibitory ingredients from traditional Chinese medicines for anti-inflammatory use. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:475-482. [PMID: 27702689 PMCID: PMC5584568 DOI: 10.1016/j.jep.2016.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inhibition of soluble epoxide hydrolase (sEH) has been extensively reported to be anti-inflammatory in multiple animal models. Some anti-inflammatory traditional Chinese medicines (TCMs) and a few natural compounds were also found to be inhibitory to sEH in vitro. AIM OF THE STUDY To determine whether the active intergradient (AI) against sEH of anti-inflammatory TCMs in vitro is anti-inflammatory in vivo and the sEH inhibitory action of the AI contributes to its anti-inflammatory effect in vivo. MATERIALS AND METHODS In vitro inhibition assay of the sEH was conducted for the methanol and ethanol extracts of 27 anti-inflammatory TCMs. Two potent extracts were subject to further separation guided by bioassay to afford promising AI against sEH in vitro [Fr.5 of the crude ethanol extract of Rhizoma coptidis (FFCERC)]. Finally, the in vivo anti-inflammatory effect and sEH inhibitory potency of FFCERC was evaluated in a lipopolysacchride (LPS)-challenged murine model of acute systemic inflammation. The inflammatory status was characterized by the inflammatory cytokines TNF-α and interleukin-6 (IL-6) and sEH inhibitory function was evaluated by the plasma levels of epoxyeicosantrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), which are the sEH mediated substrates and products, respectively. RESULTS At the concentration of 25µg/mL, the crude ethanol extracts of 6 TCMs including Herba Asari, Radix Polygalae, Fructus Amomi, Radix Astragali, Radix Scutellariae, and Rhizoma Coptidis were potent against sEH. The crude extracts of Herba Asari and Rhizoma Coptidis were selected for further separation to afford FFCERC as the most promising AI for in vivo evaluation. Oral administration of FFCERC attenuated the significant increase in TNF-α and IL-6 caused by LPS challenge in a dose-dependent manner. In parallel, oral administration of FFCERC shifted the changes in plasma levels of EETs and DHETs caused by LPS-challenge like a synthetic sEH inhibitor. CONCLUSIONS A sEH inhibitory AI from Rhizoma Coptidis is anti-inflammatory and the inhibition of sEH contributes to this biological effect, indicating that sEH may be at least one of multiple therapeutic targets for relevant TCMs.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Mid Yanchang Rd, Shanghai 200072, PR China; Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States.
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Huazhang Huang
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
13
|
Thao NP, Luyen BTT, Kim JH, Jo AR, Dat NT, Kiem PV, Minh CV, Kim YH. Identification, characterization, kinetics, and molecular docking of flavonoid constituents from Archidendron clypearia (Jack.) Nielsen leaves and twigs. Bioorg Med Chem 2016; 24:3125-32. [PMID: 27246857 DOI: 10.1016/j.bmc.2016.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/29/2023]
Abstract
In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, we found that the methanolic extract of the leaves and twigs of Archidendron clypearia (Jack.) Nielsen (Fabaceae) significantly inhibits sEH in vitro. In a phytochemical investigation of the water layer of A. clypearia, we isolated two new chalcones, clypesides A-B (1-2), 13 flavonoid derivatives (3-15) and established their structures based on an extensive 1D and 2D NMR, CD data, and MS analysis. All of the flavonoid derivatives inhibited sEH enzymatic activity in a dose-dependent manner, with IC50 values ranging from 10.0±0.4 to 30.1±2.1μM. A kinetic analysis of compounds 4, 8-10, 12, 13, and 15 revealed that the compounds 8-10 were non-competitive, 4, 13, and 15 were mixed-type, and 12 was competitive inhibitors. Additionally, molecular docking increased our understanding of their receptor-ligand binding. These results demonstrated that flavonoid derivatives from A. clypearia are potential sEH inhibitors.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Bui Thi Thuy Luyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun 440-310, Republic of Korea
| | - Ah Reum Jo
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Nguyen Tien Dat
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
14
|
Manickam M, Pillaiyar T, Boggu P, Venkateswararao E, Jalani HB, Kim ND, Lee SK, Jeon JS, Kim SK, Jung SH. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase. Eur J Med Chem 2016; 117:113-24. [PMID: 27092411 DOI: 10.1016/j.ejmech.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/12/2023]
Abstract
Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH.
Collapse
Affiliation(s)
- Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thanigaimalai Pillaiyar
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - PullaReddy Boggu
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Eeda Venkateswararao
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Hitesh B Jalani
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Nam-Doo Kim
- DGMIF, New Drug Development Center, 80, Cheombok-ro, Dong-gu, Daegu 41061, South Korea
| | - Seul Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Jang Su Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Sang Kyum Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
15
|
Khanh PN, Duc HV, Huong TT, Son NT, Ha VT, Van DT, Tai BH, Kim JE, Jo AR, Kim YH, Cuong NM. Alkylphloroglucinol derivatives and triterpenoids with soluble epoxide hydrolase inhibitory activity from Callistemon citrinus. Fitoterapia 2016; 109:39-44. [DOI: 10.1016/j.fitote.2015.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
|
16
|
Thao NP, Luyen BTT, Kim JH, Jo AR, Yang SY, Dat NT, Van Minh C, Kim YH. Soluble epoxide hydrolase inhibitory activity by rhizomes of Kaempferia parviflora Wall. ex Baker. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1525-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Sun YN, Li W, Song SB, Yan XT, Zhao Y, Jo AR, Kang JS, Young Ho K. A new phenolic derivative with soluble epoxide hydrolase and nuclear factor-kappaB inhibitory activity from the aqueous extract of Acacia catechu. Nat Prod Res 2015; 30:2085-92. [DOI: 10.1080/14786419.2015.1114937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ya Nan Sun
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Wei Li
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Seok Bean Song
- Gyeongbuk Institute for Bio-industry (GIB), Andong City, Korea
| | - Xi Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling, China
| | - Yan Zhao
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - A. Reum Jo
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Kim Young Ho
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| |
Collapse
|
18
|
Kim JH, Cho CW, Tai BH, Yang SY, Choi GS, Kang JS, Kim YH. Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina. Molecules 2015; 20:21405-14. [PMID: 26633335 PMCID: PMC6331899 DOI: 10.3390/molecules201219774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022] Open
Abstract
Selaginellin derivatives 1–3 isolated from Selaginellatamariscina were evaluated for their inhibition of soluble epoxide hydrolase (sEH) to demonstrate their potential for the treatment of cardiovascular disease. All selaginellin derivatives (1–3) inhibited sEH enzymatic activity and PHOME hydrolysis, in a dose-dependent manner, with IC50 values of 3.1 ± 0.1, 8.2 ± 2.2, and 4.2 ± 0.2 μM, respectively. We further determined that the derivatives function as non-competitive inhibitors. Moreover, the predicted that binding sites and interaction between 1–3 and sEH were solved by docking simulations. According to quantitative analysis, 1–3 were confirmed to have high content in the roots of S. tamariscina; among them, selaginellin 3 exhibited the highest content of 189.3 ± 0.0 μg/g.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Bui Huu Tai
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Caugiay, Hanoi 364-545, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Gug-Seoun Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
19
|
Kim JH, Morgan AMA, Tai BH, Van DT, Cuong NM, Kim YH. Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of Glycosmis stenocarpa. J Enzyme Inhib Med Chem 2015; 31:640-4. [DOI: 10.3109/14756366.2015.1057719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
- Virology Unit, Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Jeollabuk-Do, Republic of Korea,
| | | | - Bui Huu Tai
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
- Institute of Marine Biochemistry, and
| | - Doan Thi Van
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
| |
Collapse
|
20
|
Xu M, Hao H, Jiang L, Long F, Wei Y, Ji H, Sun B, Peng Y, Wang G, Ju W, Li P. In vitro inhibitory effects of ethanol extract of Danshen (Salvia miltiorrhiza) and its components on the catalytic activity of soluble epoxide hydrolase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:444-51. [PMID: 25925966 DOI: 10.1016/j.phymed.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH) has been demonstrated to be a key enzyme involved in the pathologic development of several cardiovascular diseases and inflammation, and inhibition of sEH is therefore very helpful or crucial for the treatment of ischemia-reperfusion injury, cardiac hypertrophy, hypertension and inflammation. Danshen, the dried root of Salvia miltiorrhiza (Fam. Labiatae), has been used for the treatment of cardiovascular and cerebrovascular diseases in China and other countries for hundreds of years. Recent studies indicated that Danshen and its preparations also have potential for the management of inflammation. However, little information is available about the possibility of Danshen and its components on sEH inhibition. PURPOSE AND METHODS Danshen extracts and its constituents were tested for sEH inhibition using its physiological substrate, 8,9-EET, based on a LC-MS/MS assay in this study. RESULTS Among the tested 15 compounds, tanshinone IIA and cryptotanshinone were found to be the potent (Ki = 0.87 μM) and medium (Ki = 6.7 μM) mixed-type inhibitors of sEH, respectively. Salvianolic acid C (Ki = 8.6 μM) was proved to be a moderate noncompetitive sEH inhibitor. In consistent with the inhibition results of the pure compounds, the 75% ethanol extract of Danshen (EE, IC50 = 86.5 μg/ml) which contained more tanshinone IIA and cryptotanshinone exhibited more potent inhibition on sEH than the water extract (WE, IC50 > 200 μg/ml) or 1 M NaHCO3 (BE, IC50 > 200 μg/ml) extract. CONCLUSION These data indicated that using the ethanol fraction of Danshen and increasing the amounts of tanshinone IIA, cryptotanshinone and salvianolic acid C, especially the contents of tanshinone IIA in Danshen extract or preparations to enhance the inhibitory effects on sEH might be efficient ways to improve its cardiovascular protective and anti-inflammatory effects, and that herbal medicines could be an untapped reservoir for sEH-inhibition agents and developing sEH inhibitors from the cardiovascular protective and anti-inflammatory herbs is a promising approach.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Lifeng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang Long
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yidan Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Bingting Sun
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Ying Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
21
|
Kitamura S, Morisseau C, Inceoglu B, Kamita SG, De Nicola GR, Nyegue M, Hammock BD. Potent natural soluble epoxide hydrolase inhibitors from Pentadiplandra brazzeana baillon: synthesis, quantification, and measurement of biological activities in vitro and in vivo. PLoS One 2015; 10:e0117438. [PMID: 25659109 PMCID: PMC4319826 DOI: 10.1371/journal.pone.0117438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/23/2014] [Indexed: 12/05/2022] Open
Abstract
We describe here three urea-based soluble epoxide hydrolase (sEH) inhibitors from the root of the plant Pentadiplandra brazzeana. The concentration of these ureas in the root was quantified by LC-MS/MS, showing that 1, 3-bis (4-methoxybenzyl) urea (MMU) is the most abundant (42.3 μg/g dry root weight). All of the ureas were chemically synthesized, and their inhibitory activity toward recombinant human and recombinant rat sEH was measured. The most potent compound, MMU, showed an IC50 of 92 nM via fluorescent assay and a Ki of 54 nM via radioactivity-based assay on human sEH. MMU effectively reduced inflammatory pain in a rat nociceptive pain assay. These compounds are among the most potent sEH inhibitors derived from natural sources. Moreover, inhibition of sEH by these compounds may mechanistically explain some of the therapeutic effects of P. brazzeana.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Shizuo G. Kamita
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Gina R. De Nicola
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Bologna, Italy
| | - Maximilienne Nyegue
- Départment of Biochemistry and Départment of Microbiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Li W, Kim JH, Zhou W, Shim SH, Ma JY, Kim YH. Soluble epoxide hydrolase inhibitory activity of phenolic components from the rhizomes and roots of Gentiana scabra. Biosci Biotechnol Biochem 2015; 79:907-11. [PMID: 25588498 DOI: 10.1080/09168451.2014.1002451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two new (1 and 2) and seven known phenolic compounds were isolated from a methanol extract of the rhizomes and roots of Gentiana scabra. Their structures were identified by spectroscopic analysis and comparing with reported values. The inhibitory effects of each compound on soluble epoxide hydrolase (sEH) were evaluated. Among them, compounds 2, 6, and 9 potently inhibited sEH activity.
Collapse
Affiliation(s)
- Wei Li
- a School of Biotechnology , Yeungnam University , Gyeongsan , Korea
| | | | | | | | | | | |
Collapse
|
23
|
Kim JH, Tai BH, Yang SY, Kim JE, Kim SK, Kim YH. Soluble Epoxide Hydrolase Inhibitory Constituents fromSelaginella tamariscina. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Bui Huu Tai
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
- Institute of Marine Biochemistry; Vietnam Academy of Science and Technology; Hanoi Vietnam
| | - Seo Young Yang
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Ji Eun Kim
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Young Ho Kim
- College of Pharmacy; Chungnam National University; Daejeon 305-764 Republic of Korea
| |
Collapse
|
24
|
Sun YN, Li W, Kim JH, Yan XT, Kim JE, Yang SY, Kim YH. Chemical constituents from the root of Polygonum multiflorum and their soluble epoxide hydrolase inhibitory activity. Arch Pharm Res 2014; 38:998-1004. [DOI: 10.1007/s12272-014-0520-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/16/2014] [Indexed: 12/19/2022]
|