1
|
Singh A, Balech R, Barpete S, Gupta P, Bouhlal O, Tawkaz S, Kaul S, Tripathi K, Amri A, Maalouf F, Gupta S, Kumar S. Wild Lathyrus-A Treasure of Novel Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3028. [PMID: 39519947 PMCID: PMC11548535 DOI: 10.3390/plants13213028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Grasspea (Lathyrus sativus L.) is a climate-smart legume crop with adaptation to fragile agroecosystems. The genus Lathyrus is recognized for its vast genetic diversity, encompassing over 160 species, many of which are cultivated for various purposes across different regions of the world. Among these, Lathyrus sativus is widely cultivated as food, feed, and fodder in South Asia, Sub-Saharan Africa, and the Central and West Asia and North Africa (CWANA) regions. Its global cultivation has declined substantially due to the stigma posed by the presence of neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in its seeds and green foliage. Overconsumption for a longer period of grasspea seeds harvested from landraces may lead to a neurological disorder called neurolathyrism in humans. ODAP is an obstacle for grasspea expansion, but crop wild relatives (CWRs) have been found to offer a solution. The incorporation of CWRs, particularly Lathyrus cicera, and landraces into breeding programs may reduce the ODAP content in grasspea varieties to a safer level. Recent advances in genomics-assisted breeding have expanded the potential for utilizing challenging CWRs to develop grasspea varieties that combine ultra-low ODAP levels with improved yield, stability, and adaptability. Further progress in omics technologies-such as transcriptomics, proteomics, and metabolomics-along with genome sequencing and editing, has greatly accelerated the development of grasspea varieties with reduced or zero ODAP content, while also enhancing the plant's agronomic value. This review highlights the significance of utilizing CWRs in pre-breeding programs, and harnessing advanced tools and technologies to enhance the performance, adaptability, and resilience of grasspea in response to changing environmental conditions.
Collapse
Affiliation(s)
- Akanksha Singh
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| | - Rind Balech
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol 1108-2010, Lebanon
| | - Surendra Barpete
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amlaha 466113, India
| | - Priyanka Gupta
- Département de Phytologie, Institut de Biologie Intégrative et des Systèmes Pavillons Charles-Eugène Marchant, Université Laval, Québec, QC G1V 4G2, Canada
| | - Outmane Bouhlal
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| | - Sawsan Tawkaz
- International Center for Agricultural Research in the Dry Areas (ICARDA), 2 Port Said, Victoria Square, Maadi, Cairo 11140, Egypt
| | - Smita Kaul
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol 1108-2010, Lebanon
| | - Sanjeev Gupta
- Crop Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| |
Collapse
|
2
|
Bekele-Alemu A, Girma-Tola D, Ligaba-Osena A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid Limiting Wide Acceptance of the Underutilized Grass Pea ( Lathyrus sativus L.). Curr Issues Mol Biol 2024; 46:10570-10589. [PMID: 39329978 PMCID: PMC11430654 DOI: 10.3390/cimb46090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) and its association with neurolathyrism. Though some varieties with low β-ODAP have been developed through classical breeding, the β-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, β-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce β-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce β-ODAP content. Recently, two key enzymes (β-ODAP synthase and β-cyanoalanine synthase) have been identified in the biosynthetic pathway of β-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea β-ODAP synthase gene sequence and β-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The β-ODAP synthase converts the final intermediate L-DAPA into toxic β-ODAP, whist β-cyanoalanine synthase converts O-Acetylserine into β-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower β-ODAP levels.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Deribew Girma-Tola
- Department of Biology, College of Natural Sciences, Salale University, Fitche P.O. Box 245, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
3
|
Kusama-Eguchi K, Tokui Y, Minoura A, Yanai Y, Hirose D, Furukawa M, Kosuge Y, Miura M, Ohkoshi E, Makino M, Minagawa K, Matsuzaki K, Ogawa Y, Watanabe K, Ohsaki A. 2(3H)-Dihydrofranolactone metabolites from Pleosporales sp. NUH322 as anti-amyotrophic lateral sclerosis drugs. J Nat Med 2024; 78:146-159. [PMID: 37804412 DOI: 10.1007/s11418-023-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor disease with limited treatment options. A domestic fungal extract library was screened using three assays related to the pathophysiology of ALS with the aim of developing a novel ALS drug. 2(3H)-dihydrofuranolactones 1 and 2, and five known compounds 3-7 were isolated from Pleosporales sp. NUH322 culture media, and their protective activity against the excitotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamatergic agonist, was evaluated under low mitochondrial glutathione levels induced by ethacrynic acid (EA) and low sulfur amino acids using our developed ODAP-EA assay. Additional assays evaluated the recovery from cytotoxicity caused by transfected SOD1-G93A, an ALS-causal gene, and the inhibitory effect against reactive oxygen species (ROS) elevation. The structures of 1 and 2 were elucidated using various spectroscopic methods. We synthesized 1 from D-ribose, and confirmed the absolute structure. Isolated and synthesized 1 displayed higher ODAP-EA activities than the extract and represented its activity. Furthermore, 1 exhibited protective activity against SOD1-G93A-induced toxicity. An ALS mouse model, SOD1-G93A, of both sexes, was treated orally with 1 at pre- and post-symptomatic stages. The latter treatment significantly extended their lifespan (p = 0.03) and delayed motor deterioration (p = 0.001-0.01). Our result suggests that 1 is a promising lead compound for the development of ALS drugs with a new spectrum of action targeting both SOD1-G93A proteopathy and excitotoxicity through its action on the AMPA-type glutamatergic receptor.
Collapse
Affiliation(s)
- Kuniko Kusama-Eguchi
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan.
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan.
| | - Yuki Tokui
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
| | - Ai Minoura
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yuta Yanai
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Dai Hirose
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Megumi Furukawa
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Emika Ohkoshi
- Department of Natural Products Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Aomori, 030-0943, Japan
| | - Mitsuko Makino
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Kimino Minagawa
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Keiichi Matsuzaki
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yoshio Ogawa
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Kazuko Watanabe
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Ayumi Ohsaki
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
4
|
Edwards A, Njaci I, Sarkar A, Jiang Z, Kaithakottil GG, Moore C, Cheema J, Stevenson CEM, Rejzek M, Novák P, Vigouroux M, Vickers M, Wouters RHM, Paajanen P, Steuernagel B, Moore JD, Higgins J, Swarbreck D, Martens S, Kim CY, Weng JK, Mundree S, Kilian B, Kumar S, Loose M, Yant L, Macas J, Wang TL, Martin C, Emmrich PMF. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nat Commun 2023; 14:876. [PMID: 36797319 PMCID: PMC9935904 DOI: 10.1038/s41467-023-36503-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, β-L-oxalyl-2,3-diaminopropionic acid (β-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce β-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.
Collapse
Affiliation(s)
- Anne Edwards
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Isaac Njaci
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Biosciences eastern and central Africa International Livestock Research Institute Hub, ILRI campus, Naivasha Road, P.O. 30709, Nairobi, 00100, Kenya
- Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
| | - Abhimanyu Sarkar
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- National Institute of Agricultural Botany, 93 Laurence Weaver Road, Cambridge, CB3 0LE, UK
| | - Zhouqian Jiang
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- School of Traditional Chinese Medicine, Capital Medical University, You An Men, Beijing, 100069, PR China
| | | | - Christopher Moore
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | - Martin Rejzek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Petr Novák
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| | - Marielle Vigouroux
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Martin Vickers
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Roland H M Wouters
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Pirita Paajanen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | - Jonathan D Moore
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Janet Higgins
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UZ, UK
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38098, San Michele all' Adige (TN), Italy
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sagadevan Mundree
- Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113, Bonn, Germany
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Avenue Hafiane Cherkaoui, Rabat, Morocco
| | - Matt Loose
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Levi Yant
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Jiří Macas
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Peter M F Emmrich
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
- Biosciences eastern and central Africa International Livestock Research Institute Hub, ILRI campus, Naivasha Road, P.O. 30709, Nairobi, 00100, Kenya.
- Norwich Institute for Sustainable Development, School of International Development, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
5
|
Plants with neurotoxic potential in undernourished subjects. Rev Neurol (Paris) 2019; 175:631-640. [DOI: 10.1016/j.neurol.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
|
6
|
Kusama-Eguchi K. [Research in Motor Neuron Diseases Caused by Natural Substances: Focus on Pathological Mechanisms of Neurolathyrism]. YAKUGAKU ZASSHI 2019; 139:609-615. [PMID: 30930396 DOI: 10.1248/yakushi.18-00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diseases of the motor-conducting system that cause moving disability affect socio-economic activity as well as human dignity. Neurolathyrism, konzo, and amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC) have attracted researchers to study the pathology of motor neuron (MN) diseases such as ALS. I have been studying neurolathyrism, which is caused by overconsumption of a legume grass pea (Lathyrys sativus L.). Among people who consume the legume as a food staple, many developed life-long paraparesis in their legs. β-N-oxalyl-l-α,β- diaminopropionic (l-β-ODAP; BOAA), contained in this plant, is a neurotoxic analog of l-glutamic acid. We have clarified that in addition to the causal involvement of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamatergic receptor in MN death, a toxic role of group I metabotropic glutamate receptors as well as transient receptor potential channels were involved in the MN insult by l-β-ODAP using primary MN culture. We have also established a neurolathyrism rat model by repeated, peripheral l-β-ODAP treatment to newborn rats under mild stress. Rats showing hind-leg paraparesis with an incidence rate of around 25% were useful to study the in vivo pathology of MN disease. MNs of these rats were greatly decreased at their lumbo/sacral segments at various ages. Intra-parenchymal hemorrhage was consistently observed in paraparetic rats but not in cripple-free, treated rats. MN were depleted even at an acute period around bleeding spots, suggesting catastrophic neuro-vascular-glial interaction in this MN disease. Summaries of konzo and ALS-PDCs studies are also introduced.
Collapse
|
7
|
Holbrook TC, Gilliam LL, Stein FP, Morgan SE, Avery AL, Confer AW, Panciera RJ. Lathyrus hirsutus (Caley Pea) intoxication in a herd of horses. J Vet Intern Med 2015; 29:294-8. [PMID: 25594329 PMCID: PMC4858080 DOI: 10.1111/jvim.12515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Caley Pea (Lathyrus hirsutus) is potentially toxic to horses, but large case series are not reported. OBJECTIVES To describe the clinical signs of horses intoxicated with Lathyrus hirsutus and speculate on the neuroanatomical lesion localization and pathogenesis based upon the observed clinical signs. ANIMALS Twenty-two of 25 horses ranging in age from 6 to 34 months were affected. Five affected horses were presented to the OSUCHVS for evaluation and treatment after having been attended at the ranch by a local veterinarian (ALA). An additional horse that had been euthanized was also presented for necropsy. METHODS A case series is presented. Diagnostic evaluation included: physical examination, complete blood count, serum biochemistry, CSF analysis, EMG, ERG, upper airway endoscopy, muscle biopsy, and serum vitamin E analysis. The grain ration consumed by the affected horses was analyzed for ionophores and cultured for fungi: the hay was examined for toxic plants. RESULTS Bermuda grass hay consumed by the horses contained large quantities of mature Lathyrus hirsutus. Acute clinical signs conform to earlier descriptions of Lathyrus hirsutus intoxication in cattle. Residual neurologic signs were characterized by incoordination in the rhythmicity of multiple gaits. Evidence of mild neurogenic muscle atrophy was recognized in 1 of 5 horses biopsied. CONCLUSIONS AND CLINICAL IMPORTANCE Caley Pea intoxication may occur within days of seed pod consumption. The neurologic signs are unique and suggest involvement of the upper motor neuron system and regions of the spinal cord influencing voluntary motor movement. Drought conditions during plant growth may increase the risk of toxicosis.
Collapse
Affiliation(s)
- T C Holbrook
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK
| | | | | | | | | | | | | |
Collapse
|
8
|
Koenig JH, Goto JJ, Ikeda K. Novel NMDA receptor-specific desensitization/inactivation produced by ingestion of the neurotoxins, β-N-methylamino-L-alanine (BMAA) or β-N-oxalylamino-L-alanine (BOAA/β-ODAP). Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:43-50. [PMID: 25193276 DOI: 10.1016/j.cbpc.2014.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/16/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
The environmental neurotoxins BMAA (β-N-methylamino-L-alanine) and BOAA (β-N-oxalylamino-L-alanine) are implicated as possible causative agents for the neurodegenerative diseases, amyotrophic lateral sclerosis/ParkinsonismDementia complex (ALS/PDC) and neurolathyrism, respectively. Both are structural analogs of the neurotransmitter, glutamate, and bind postsynaptic glutamate receptors. In this study, the effect of ingestion of these toxins on the response of a singly-innervated, identified, glutamatergic postsynaptic cell in a living, undissected Drosophila is observed by intracellular recording. Previously we have reported that ingested BMAA behaves as an NMDA agonist that produces an abnormal NMDA response in the postsynaptic cell. It is shown here that BOAA also behaves as an NMDA agonist, and produces an effect very similar to that of BMAA on the postsynaptic response. In response to a single stimulus, the amplitude of the NMDA component is decreased, while the time to peak and duration of the NMDA component are greatly increased. No discernable effect on the AMPA component of the response was observed. Furthermore, both BMAA and BOAA cause an NMDAR-specific desensitization in response to repetitive stimulation at the physiological frequency for the postsynaptic cell (5 Hz). The possibility that this phenomenon may represent a response to excessive Ca(2+) entry through NMDAR channels is discussed. This desensitization phenomenon, as well as the abnormal NMDAR gating characteristics induced by BMAA, appears to be rescued during higher frequency stimulation (e.g. 10, 20 Hz).
Collapse
Affiliation(s)
- Jane H Koenig
- Division of Neurosciences, Beckman Research Institute of the City of Hope Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | - Joy J Goto
- Department of Chemistry, California State University, Fresno. 2555 East San Ramon Ave., MS SB 70, Fresno CA 93740, USA.
| | - Kazuo Ikeda
- Division of Neurosciences, Beckman Research Institute of the City of Hope Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|