1
|
Neurodegeneration in a Regulatory Context: The Need for Speed. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
Djekkoun N, Depeint F, Guibourdenche M, El Khayat El Sabbouri H, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Hamdad F, Bach V, Benkhalifa M, Khorsi-Cauet H. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. TOXICS 2022; 10:toxics10030138. [PMID: 35324763 PMCID: PMC8949051 DOI: 10.3390/toxics10030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
An increasing burden of evidence is pointing toward pesticides as risk factors for chronic disorders such as obesity and type 2 diabetes, leading to metabolic syndrome. Our objective was to assess the impact of chlorpyrifos (CPF) on metabolic and bacteriologic markers. Female rats were exposed before and during gestation and during lactation to CPF (1 mg/kg/day). Outcomes such as weight, glucose and lipid profiles, as well as disturbances in selected gut bacterial levels, were measured in both the dams (at the end of the lactation period) and in their female offspring at early adulthood (60 days of age). The results show that the weight of CPF dams were lower compared to the other groups, accompanied by an imbalance in blood glucose and lipid markers, and selected gut bacteria. Intra-uterine growth retardation, as well as metabolic disturbances and perturbation of selected gut bacteria, were also observed in their offspring, indicating both a direct effect on the dams and an indirect effect of CPF on the female offspring. Co-treatment with inulin (a prebiotic) prevented some of the outcomes of the pesticide. Further investigations could help better understand if those perturbations mimic or potentiate nutritional risk factors for metabolic syndrome through high fat diet.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Flore Depeint
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Marion Guibourdenche
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Hiba El Khayat El Sabbouri
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Aurélie Corona
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Larbi Rhazi
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Jerome Gay-Queheillard
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Leila Rouabah
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Farida Hamdad
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Correspondence: ; Tel.: +33-322-827-896
| |
Collapse
|
3
|
Ueda RMR, de Souza VM, Magalhães LR, Chagas PHN, Veras ASC, Teixeira GR, Nai GA. Neurotoxicity associated with chronic exposure to dichlorophenoxyacetic acid (2,4-D) - a simulation of environmental exposure in adult rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:695-705. [PMID: 34125002 DOI: 10.1080/03601234.2021.1939622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is the second most widely used herbicide in the world. The objective of this study was to evaluate the neurotoxic effects and the possible role of the dysregulation of apoptosis in the genesis of brain damage in chronic exposure to 2,4-D in rats. Eighty adult male rats were distributed into eight groups (n = 10) and exposed orally (contaminated feed) and via inhalation, with two groups exposed to distilled water (control) and six to 2,4-D in three distinct concentrations. They were exposed for 6 months. A neurobehavioral assessment was performed, and the brain was collected for histopathology and immunohistochemistry. The animals in the control groups showed greater motility in the open-field test and a greater number of entries in the elevated-plus-maze test than those exposed to 2,4-D (p < 0.05). Neuronal necrosis was more incident in animals exposed to 2,4-D (p < 0.05). There was a negative correlation between the expression of BAX and the measurement of the cerebral cortex thickness (r = -0.713; p = 0.047). Regardless of the route of exposure, 2,4-D led to a deficit in neurobehavioral tests and decreased thickness of the cerebral cortex associated with increased expression of the pro-apoptotic protein BAX.
Collapse
Affiliation(s)
- Rose Meire R Ueda
- Faculty of Psychology, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Verena M de Souza
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Letícia R Magalhães
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Pedro Henrique N Chagas
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Allice S C Veras
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Presidente Prudente, São Paulo, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Presidente Prudente, São Paulo, Brazil
| | - Gisele A Nai
- Department of Pathology and Graduate Program in Animal Science, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
4
|
Li Y, Fang R, Liu Z, Jiang L, Zhang J, Li H, Liu C, Li F. The association between toxic pesticide environmental exposure and Alzheimer's disease: A scientometric and visualization analysis. CHEMOSPHERE 2021; 263:128238. [PMID: 33297185 DOI: 10.1016/j.chemosphere.2020.128238] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. The association between environmental factors (e.g., pesticide) and AD has attracted considerable attention. However, no systematic analysis has been performed and make it difficult to provide deeper insights of AD correlated with pesticide exposure. Hence, this study utilized a bibliometric and visual approach that included map collaborations, co-citations, and keywords, to identifying the knowledge structure, hot topics and the research trends based on 372 publications from the Web of Science Core Collection and PubMed databases. The results showed that 116 institutions from 52 countries published articles in this field. The United States and Israel played a leading role with numerous publications in related journals, as well as prolific institutions and authors, respectively. Three hot topics in pesticide-induced AD were recognized based on co-occurrence keywords detection, including acetylcholinesterase (AChE) inhibitor, oxidative stress, and AChE. Moreover, analysis of keywords burst suggests that some potential molecular mechanisms and therapy targets of pesticide-induced AD, especially for mitochondrial dysfunction and monoamine oxidase-B (MAO-B) that catalyzes the oxidative deamination and causes oxidative stress, are emerging trends. In addition, the study of various pesticides and the assessment method of pesticide exposure will step forward as well. To the best of our knowledge, this study is the first to specifically visualize the relationship between AD and pesticide exposure and to predict potential future research directions.
Collapse
Affiliation(s)
- Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ruying Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Luping Jiang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430073, China.
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Key Laboratory of Virtual Geographic Environment (Ministry of Education), Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang MG, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44659-44672. [PMID: 32201908 DOI: 10.1007/s11356-020-08243-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders are typically sporadic in nature in addition to usually influenced through an extensive range of environmental factors, lifestyle, and genetic elements. Latest observations have hypothesized that exposure of environmental factors may increase the prospective risk of Alzheimer's diseases (AD). However, the role of environmental factors as a possible dangerous issue has extended importance concerned in AD pathology, although actual etiology of the disorder is still not yet clear. Thus, the aim of this review is to highlight the possible correlation between environmental factors and AD, based on the present literature view. Environmental risk factors might play an important role in decelerating or accelerating AD progression. Among well-known environmental risk factors, prolonged exposure to several heavy metals, for example, aluminum, arsenic, cadmium, lead, and mercury; particulate air, and some pesticides as well as metal-containing nanoparticles have been participated to cause AD. These heavy metals have the capacity to enhance amyloid β (Aβ) peptide along with tau phosphorylation, initiating amyloid/senile plaques, as well as neurofibrillary tangle formation; therefore, neuronal cell death has been observed. Furthermore, particulate air, pesticides, and heavy metal exposure have been recommended to lead AD susceptibility and phenotypic diversity though epigenetic mechanisms. Therefore, this review deliberates recent findings detailing the mechanisms for a better understanding the relationship between AD and environmental risk factors along with their mechanisms of action on the brain functions.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - A N M Mamum-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
7
|
Pesticides, cognitive functions and dementia: A review. Toxicol Lett 2020; 326:31-51. [PMID: 32145396 DOI: 10.1016/j.toxlet.2020.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Pesticides are widely-used chemicals commonly applied in agriculture for the protection of crops from pests. Depending on the class of pesticides, the specific substances may have a specific set of adverse effects on humans, especially in cases of acute poisoning. In past years, evidence regarding sequelae of chronic, low-level exposure has been accumulating. Cognitive impairment and dementia heavily affect a person's quality of life and scientific data has been hinting towards an association between them and antecedent chronic pesticide exposure. Here, we reviewed animal and human studies exploring the association between pesticide exposure, cognition and dementia. Additionally, we present potential mechanisms through which pesticides may act neurotoxically and lead to neurodegeneration. Study designs rarely presented homogeneity and the estimation of the exposure to pesticides has been most frequently performed without measuring the synergic effects and the possible interactions between the toxicants within mixtures, and also overlooking low exposures to environmental toxicants. It is possible that a Real-Life Risk Simulation approach would represent a robust alternative for future studies, so that the safe exposure limits and the net risk that pesticides confer to impaired cognitive function can be examined. Previous studies that evaluated the effect of low dose chronic exposure to mixtures of pesticides and other chemicals intending to simulate real life exposure scenarios showed that hormetic neurobehavioral effects can appear after mixture exposure at doses considered safe for individual compounds and these effects can be exacerbated by a coexistence with specific conditions such as vitamin deficiency. However, there is an overall indication, derived from both epidemiologic and laboratory evidence, supporting an association between exposure to neurotoxic pesticides and cognitive dysfunction, dementia and Alzheimer's disease.
Collapse
|
8
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem Toxicol 2020; 135:110865. [DOI: 10.1016/j.fct.2019.110865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
|
9
|
Agnihotri A, Aruoma OI. Alzheimer’s Disease and Parkinson’s Disease: A Nutritional Toxicology Perspective of the Impact of Oxidative Stress, Mitochondrial Dysfunction, Nutrigenomics and Environmental Chemicals. J Am Coll Nutr 2019; 39:16-27. [DOI: 10.1080/07315724.2019.1683379] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Okezie I. Aruoma
- Department of Chemistry and Biochemistry, College of Natural and Social Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer's disease. NPJ Aging Mech Dis 2019; 5:3. [PMID: 30701080 PMCID: PMC6342990 DOI: 10.1038/s41514-018-0033-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to organophosphate pesticides, such as chlorpyrifos (CPF), increases the risk of Alzheimer's disease (AD), though the mechanism is unclear. To investigate this, we subjected 4-month-old male and female wild-type (WT) and TgF344-AD rats, a transgenic AD model, to an occupational CPF exposure paradigm that recapitulates biomarkers and behavioral impairments experienced by agricultural workers. Subsequent cognition and neuropathology were analyzed over the next 20 months. CPF exposure caused chronic microglial dysregulation and accelerated neurodegeneration in both males and females. The effect on neurodegeneration was more severe in males, and was also associated with accelerated cognitive impairment. Females did not exhibit accelerated cognitive impairment after CPF exposure, and amyloid deposition and tauopathy were unchanged in both males and females. Microglial dysregulation may mediate the increased risk of AD associated with occupational organophosphate exposure, and future therapies to preserve or restore normal microglia might help prevent AD in genetically vulnerable individuals exposed to CPF or other disease-accelerating environmental agents.
Collapse
|
11
|
Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93:693-707. [DOI: 10.1007/s00204-019-02387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
12
|
Guardia-Escote L, Basaure P, Blanco J, Cabré M, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Postnatal exposure to chlorpyrifos produces long-term effects on spatial memory and the cholinergic system in mice in a sex- and APOE genotype-dependent manner. Food Chem Toxicol 2018; 122:1-10. [DOI: 10.1016/j.fct.2018.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/22/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
|
13
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
14
|
Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice. Food Chem Toxicol 2018; 118:42-52. [DOI: 10.1016/j.fct.2018.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
|
15
|
Fang B, Li JW, Zhang M, Ren FZ, Pang GF. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem Toxicol 2018; 111:144-152. [DOI: 10.1016/j.fct.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/07/2023]
|
16
|
Centner TJ. Cancelling pesticide registrations and revoking tolerances: The case of chlorpyrifos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:53-61. [PMID: 29197707 DOI: 10.1016/j.etap.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Petitions submitted to the United States Environmental Protection Agency (EPA) have sought to cancel registrations of chlorpyrifos and to revoke chlorpyrifos tolerances in or on food due to adverse health effects on people. Under federal law, tolerances for pesticide chemical residues in or on food must provide with reasonable certainty that no harm will result from a person's aggregate exposure. Petitioners' claims are analyzed under the legal requirements to discern whether the EPA had a rational basis for issuing its 2017 Chlorpyrifos Order denying the requests for cancellation of registrations and revocation of tolerances. The scientific evidence considered by the EPA indicated that existing tolerances do not protect people from unsafe levels of chlorpyrifos. Under the Federal Food, Drug, and Cosmetic Act, tolerances need to be revoked if they do not protect human health. In refusing to recognize that chlorpyrifos tolerances do not comply with federal law, the EPA's 2017 Chlorpyrifos Order appears to be arbitrary and capricious.
Collapse
|
17
|
Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol 2017; 329:26-39. [DOI: 10.1016/j.taap.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
18
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|
19
|
Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: a model for neurodegeneration in Alzheimer's disease. Cell Death Discov 2017; 3:17007. [PMID: 28487766 PMCID: PMC5402539 DOI: 10.1038/cddiscovery.2017.7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Malathion is an organophosphate with severe neurotoxic effects. Upon acute exposure, malathion initially enhances cholinergic activity by inhibition of acetylcholinesterase, which is its major pathological mechanism. Malathion also induces non-cholinergic neuronal cell death in neurodegenerative conditions; the associated molecular mechanism is not well-characterized. To investigate the molecular mechanism of malathion-induced cell death, N2a mouse neuroblastoma cells were exposed to malathion and cell death-related parameters were examined. Malathion reduced cell viability mainly by apoptosis through mitochondrial dysfunction in N2a cells, as judged by an increase in the level of the pro-apoptotic protein Bax and decrease in the levels of the anti-apoptotic proteins p-Akt and Bcl2, resulting in cytochrome c release and caspase-dependent DNA fragmentation and condensation. Malathion treatment also induced autophagy and lysosomal membrane permeabilization (LMP) in N2a cells. LMP caused a lessening of autophagic flux via inhibition of lysosomal fusion with the autophagosome. LMP-induced cathepsin B release and its proteolytic effect may intensify apoptotic insults. Moreover, malathion-exposed N2a cells showed a marked reduction in the levels of the neuronal marker proteins vascular endothelial growth factor and heart fatty acid binding protein 3, along with diminished neuritogenesis in N2a cells and nerve growth factor secretion in C6 glioma cells. Our data suggest that the non-cholinergic effect of malathion may be mediated by apoptotic cell death via LMP induction in N2a cells. Malathion-treated N2a cells can be utilized as an in vitro model system to screen natural and new chemical drug candidates for neurodegenerative diseases such as Alzheimer’s disease.
Collapse
|
20
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|
21
|
Adedara IA, Rosemberg DB, de Souza D, Farombi EO, Aschner M, Souza DO, Rocha JBT. Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:22-30. [PMID: 27155480 DOI: 10.1016/j.pestbp.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
The present study aimed to increase our understanding about the mode of toxic action of organophosphate pesticides in insects by evaluating the biochemical and neurobehavioral characteristics in Nauphoeta cinerea exposed to chlorpyrifos (CPF)-contaminated diet. The insects were exposed for 35 consecutive days to CPF at 0.078, 0.15625, 0.3125 and 0.625μg/g feed. Locomotor behavior was assessed for a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. In comparison to control, CPF-exposed cockroaches showed significant decreases in the total distance traveled, body rotation, turn angle and meandering, along with significant increase in the number of falls, time and episodes of immobility. The marked decrease in the exploratory profiles of CPF-exposed cockroaches was confirmed by track plots, whereas occupancy plot analyses showed a progressive dispersion at 0.15625μg/g feed group. Moreover, the heads of CPF-exposed cockroaches showed marked decrease in acetylcholinesterase activity and antioxidant status with concomitant significant elevation in dichlorofluorescein oxidation and lipid peroxidation levels in CPF-treated cockroaches. Gas Chromatography-Mass Spectrometry analyses revealed bioaccumulation of CPF in cockroaches exposed to concentrations above 0.078μg/g feed. The findings from this investigation showed N. cinerea as a value model organism for the risk assessment of environmental organophosphate contamination in insects.
Collapse
Affiliation(s)
- Isaac A Adedara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Peris-Sampedro F, Reverte I, Basaure P, Cabré M, Domingo JL, Colomina MT. Apolipoprotein E (APOE) genotype and the pesticide chlorpyrifos modulate attention, motivation and impulsivity in female mice in the 5-choice serial reaction time task. Food Chem Toxicol 2016; 92:224-35. [PMID: 27106138 DOI: 10.1016/j.fct.2016.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 02/08/2023]
Abstract
Organophosphate pesticides - and chlorpyrifos (CPF) in particular - contribute to a wide range of neurobehavioural disorders. Most experimental research focuses on learning and memory processes, while other behaviours remain understudied. The isoforms of the human apolipoprotein E (apoE) confer different cognitive skills on their carriers, but data on this topic are still limited. The current study was performed to assess whether the APOE genotypic variability differently modulates the effects of CPF on attentional performance, inhibitory control and motivation. Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to daily dietary CPF (3.75 mg/kg body weight) for 4 weeks. After CPF exposure, we established a 4-week CPF-free period to assess recovery. All individuals acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased premature and perseverative responding. This genotype-dependent lack of inhibitory control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed attentional disruptions throughout the wash-out period. Taken together, these findings provide notable evidence on the emergence of CPF-related attentional and motivational deficits.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
23
|
Jeon HJ, Lee YH, Mo HH, Kim MJ, Al-Wabel MI, Kim Y, Cho K, Kim TW, Ok YS, Lee SE. Chlorpyrifos-induced biomarkers in Japanese medaka (Oryzias latipes). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1071-1080. [PMID: 25966881 DOI: 10.1007/s11356-015-4598-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos (CHL) is an organophosphate compound that is widely used as an insecticide. Due to its repeated use and high environmental residual property, CHL is frequently passed into aquatic environments by runoff. Consequently, there may be an adverse effect on aquatic vertebrate animals, including fish. Therefore, in this study, we assessed how CHL affected Japanese medaka (Oryzias latipes). The acute toxicity of CHL in adult fish after 96 h of exposure was determined to be 212.50, 266.79, and 412.28 μg L(-1) (LC25, LC50, and LC95, respectively). Acetylcholinesterase (AChE), glutathione S-transferase (GST), and carboxylesterase (CE) activities were obtained from the livers of dead or surviving fish, and the results showed 4.8-fold lower, 4.5-fold higher, and 18.6-fold lower activities for the AChE, GST, and CE, respectively, for 64-h exposure at a concentration of 400 μg L(-1) of CHL. In the embryo toxicity test, curved spines were observed in embryos that were exposed to CHL for 48 h in a concentration-dependent manner. With identification of biomarkers for CHL in the fish, two protein peaks, 5550.86 and 5639.79 m/z, were found to be upregulated. These two proteins can be used as protein biomarkers for CHL contamination in aquatic systems. A phosphatidyl choline with an m/z ratio of 556.32 dramatically decreased after CHL exposure in the fish; thus, it may be considered as a lipid biomarker for CHL. It is assumed as the first report to identify a phospholipid biomarker using a lipidomics approach in fish toxicology. Taken together, these results demonstrated the adverse effects of CHL on Japanese medaka and reveal several candidate biomarkers that can be used as diagnostic tools for determining CHL.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Yong-Ho Lee
- Institute of Ecological Phytochemistry, Department of Plant Life and Environmental Science, Hankyong National University, Anseong, 456-749, Korea
| | - Hyoung-ho Mo
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Mohammad I Al-Wabel
- Saudi Biochar Research Group (SBRG), Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, PO Box 89770, Riyadh, 11692, Saudi Arabia
| | - Yongeun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Tae-Wan Kim
- Institute of Ecological Phytochemistry, Department of Plant Life and Environmental Science, Hankyong National University, Anseong, 456-749, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea.
| |
Collapse
|
24
|
Sánchez-Santed F, Colomina MT, Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016; 74:417-26. [DOI: 10.1016/j.cortex.2015.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
|
25
|
Standardized Herbal Formula PM012 Decreases Cognitive Impairment and Promotes Neurogenesis in the 3xTg AD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2015; 53:5401-12. [PMID: 26446019 DOI: 10.1007/s12035-015-9458-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. This study investigated whether treatment with the herbal formula PM012 would improve the cognitive function and the pathological features of AD in 3xTg-AD mice. The cognitive function of 3xTg-AD mice was assessed using the Morris water maze test and positron-emission tomography (PET) with 18 F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) neuroimaging. The levels of the amyloid beta (Aβ) deposits in the hippocampus were evaluated by immunohistochemistry. Neurogenesis was assessed by quantitative labeling with the DNA marker bromodeoxyuridine (BrdU) and the newborn neuron marker doublecortin (DCX). PM012 treatment significantly ameliorated memory deficit in AD mice, as shown by shortened escape latencies and increased time spent in the target zone during probe tests. In addition, PM012 significantly decreased Aβ deposits, up-regulated the expression of brain-derived neurotrophic factor (BDNF), increased neurogenesis, and improved brain glucose metabolism in the 3xTg-AD mice. These results suggest that PM012 could be a promising treatment for AD.
Collapse
|
26
|
Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Teresa Colomina M. Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. ENVIRONMENTAL RESEARCH 2015; 142:169-76. [PMID: 26162960 DOI: 10.1016/j.envres.2015.06.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/19/2023]
Abstract
Increasing evidence links the widespread exposure to organophosphate (OP) pesticides to the global epidemics of type 2 diabetes and obesity. Our recent data highlighted gene×environment interactions: mice expressing the human apolipoprotein E3 (apoE3) isoform were more prone to develop obesity than those expressing apoE2 or apoE4 upon dietary challenge with chlorpyrifos (CPF), the most used OP worldwide. Thus, we aimed to further explore the contribution of the APOE3 genotype on the emergence of obesity and related metabolic dysfunctions upon subchronic exposure to CPF. Seven-month-old targeted replacement apoE3 and C57BL/6N male mice were orally exposed to CPF at 0 or 2mg/kg body weight/day for 8 consecutive weeks. We examined body weight status, food and water intake, lipid and glucose homeostasis, metabolic biomarkers concentrations, insulin levels and insulin resistance, and leptin and ghrelin profiles. CPF exposure generally increased food ingestion, glucose and total cholesterol concentrations, and tended to elevate acyl ghrelin levels. Nonetheless, excess weight gain and increased leptin levels were inherent to apoE3 mice. Moreover, the propensity towards a diabetic profile was markedly higher in these animals than in C57BL/6N, as they showed a higher homeostatic model assessment for insulin resistance index and higher insulin levels. Although both genotypes were metabolically affected by CPF, the results of the present investigation revealed that apoE3 mice were the most vulnerable to developing obesity and related disturbances following CPF administration through the diet. Since the APOE3 genotype is the most prevalent worldwide, current findings have particular implications for human health.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
27
|
Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model. Physiol Behav 2015; 144:37-45. [DOI: 10.1016/j.physbeh.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
|
28
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
29
|
Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases-an Overview of Experimental Studies. Curr Top Behav Neurosci 2015; 29:231-264. [PMID: 26695168 DOI: 10.1007/7854_2015_416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origin of health and disease hypothesis states that adverse fetal and early childhood exposures can predispose to obesity, cardiovascular, and neurodegenerative diseases (NDDs) in adult life. Early exposure to environmental chemicals interferes with developmental programming and induces subclinical alterations that may hesitate in pathophysiology and behavioral deficits at a later life stage. The mechanisms by which perinatal insults lead to altered programming and to disease later in life are still undefined. The long latency between exposure and onset of disease, the difficulty of reconstructing early exposures, and the wealth of factors which the individual is exposed to during the life course make extremely difficult to prove the developmental origin of NDDs in clinical and epidemiological studies. An overview of animal studies assessing the long-term effects of perinatal exposure to different chemicals (heavy metals and pesticides) supports the link between exposure and hallmarks of neurodegeneration at the adult stage. Furthermore, models of maternal immune activation show that brain inflammation in early life may enhance adult vulnerability to environmental toxins, thus supporting the multiple hit hypothesis for NDDs' etiology. The study of prospective animal cohorts may help to unraveling the complex pathophysiology of sporadic NDDs. In vivo models could be a powerful tool to clarify the mechanisms through which different kinds of insults predispose to cell loss in the adult age, to establish a cause-effect relationship between "omic" signatures and disease/dysfunction later in life, and to identify peripheral biomarkers of exposure, effects, and susceptibility, for translation to prospective epidemiological studies.
Collapse
|