1
|
Pei J, Zhang Y, Zhang R, Liu N, Yu W, Wei P, Wang Y, Yu K. Dynamic impact of different human activities on the distribution of organic ultraviolet absorbers in coastal aquatic environments: A case study in Beibu Gulf, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177309. [PMID: 39481554 DOI: 10.1016/j.scitotenv.2024.177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The increasing environmental concern surrounding organic ultraviolet absorbers (OUVAs) has prompted heightened attention, particularly their presence in personal care products (organic ultraviolet filters, OUVFs) and industrial products (organic ultraviolet stabilizers, OUVSs). This study investigates the impact of human activities and environmental factors on the occurrence, spatiotemporal distribution, and ecological risk of eight commonly utilized OUVFs and OUVSs in the coastal region of Beibu Gulf, South China Sea. The study area is characterized by multiple functional zones with distinct human activities. Results reveal elevated concentrations of OUVAs during summer compared to winter, attributed to increased residential usage, tourist activities, industrial releases, and intensified ultraviolet (UV) radiation. Interestingly, the proportion of OUVFs increases during summer, while OUVSs decrease. Correlation analysis between OUVAs and sampling sites reveals that tourism and domestic wastewater are the main contributors to OUVF contamination in summer, whereas mariculture and port trade significantly impact OUVS contamination in winter. The ecological risk assessment indicates predominantly low or medium risk levels for most OUVAs in both local seawater and freshwater ecosystems. Nevertheless, OUVFs, with a particular focus on 4-methylbenzylidene camphor (4-MBC), and OUVSs, specifically 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P), exhibit a heightened risk compared to alternative substances. These findings provide crucial insights into the development of targeted mitigation strategies for OUVAs, taking into account the varying contamination levels of OUVFs and OUVSs resulting from diverse human activities, aiming to protect the health of aquatic ecosystems in diverse functional zones.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yingyuan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pan Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Hou S, Chen Z, Luo X, Zhang M, Yang P. Hydrogel immobilized bacteria@MOFs composite towards Bisphenol A degradation and the interconnection mechanism elucidation. ENVIRONMENTAL RESEARCH 2024; 251:118718. [PMID: 38490623 DOI: 10.1016/j.envres.2024.118718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Bisphenol A (BPA) degradation efficiency by bacteria or by metal-organic-frameworks (MOFs) catalyzed persulfate (PMS) oxidation have been studied intensively. However, their synergistic effect on BPA degradation was less reported. In this study, we combined previously synthesized CNT-hemin/Mn-MOF with an BPA degrading bacteria SQ-2 to form a composite (SQ-2@MOFs). CNT-hemin/Mn-MOF in the composite catalyzed little PMS to promote the degradation efficiency of SQ-2 on BPA. Results indicated SQ-2@MOFs significantly accelerated BPA degradation rate than SQ-2 alone. Furthermore, SQ-2@MOFs composite was successfully immobilized in hydrogel to achieve better degradation performance. Immobilized SQ-2@MOFs could almost completely degrade 1-20 mg/L BPA within 24 h and completely degrade 5 mg/L BPA at pH 4-8. Besides, degradation byproducts also reduced by immobilized SQ-2@MOFs, which promoted the cleaner biodegradation of BPA. Metabolomics and multiple chemical characterization results revealed the interconnection mechanism between CNT-hemin/Mn-MOFs, SQ-2 and hydrogel. CNT-hemin/Mn-MOF helped SQ-2 degrade BPA into more biodegradable products, promoted electron transfer, and augmented BPA degradation ability of SQ-2 itself. SQ-2 enabled the surface electronegativity of SQ-2@MOFs more suitable for BPA contact. Meanwhile, SQ-2 avoided the loss of Fe and Mn of CNT-hemin/Mn-MOF. Hydrogel augmented the above synergistic effect. This study provided new perspective for the development of biodegradation materials through interdisciplinary integration.
Collapse
Affiliation(s)
- Siyu Hou
- Chengdu Medical College, Chengdu, 610500, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | | | | | - Ming Zhang
- China Railway Water Group CO. LTD, Xi'an, 710000, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Matos DM, Ramos JA, Brandão ALC, Baeta A, Rodrigues I, Dos Santos I, Coentro J, Fernandes JO, Batista de Carvalho LAE, Marques MPM, Cunha SC, Santos SH, Antunes S, Silva V, Paiva VH. Microplastics ingestion and endocrine disrupting chemicals (EDCs) by breeding seabirds in the east tropical Atlantic: Associations with trophic and foraging proxies (δ 15N and δ 13C). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168664. [PMID: 37996016 DOI: 10.1016/j.scitotenv.2023.168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
In this study we found that endocrine disrupting chemicals (EDCs) were omnipresent in a tropical seabird community comprising diverse ecological guilds and distinct foraging and trophic preferences. Because EDCs tend to bioaccumulate within the food web and microplastics can absorb and release harmful chemical compounds, our findings draw attention to the potential threats to wildlife. Thus, the goal of this study was to investigate the role of plastic ingestion, trophic and foraging patterns (δ15N and δ13C) of five tropical seabird species breeding in sympatry, on the exposure to EDCs, namely Polybrominated diphenyl ethers (PBDEs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and personal care products (PCPs, e.g., musk fragrances and UV-filters). Results indicated that microplastics occurrence and EDCs detection frequency varied among species. Microplastics occurrence was higher in species with dual and coastal foraging strategies. Preen oil had higher levels of MeO-PBDEs and PCPs, while serum had higher levels of PBDEs. In brown boobies, the correlation between microplastics and ∑PBDEs levels was significant, suggesting that microplastics ingestion is a key PBDEs route. Trophic position (δ15N) plays a key role in PBDEs accumulation, particularly in Bulwer's petrel, which occupies a high trophic position and had more specialized feeding ecology than the other species. MeO-PBDEs were linked to foraging habitat (δ13C), although the link to foraging locations deserves further investigation. Overall, our findings not only fill key gaps in our understanding of seabirds' exposure to microplastics and EDCs, but also provide an essential baseline for future research and monitoring efforts. These findings have broader implications for the marine wildlife conservation and pollution management in sensitive environments, such as the tropical regions off West Africa.
Collapse
Affiliation(s)
- Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alexandra Baeta
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Coentro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S H Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - Vítor Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
6
|
Weiss V, Gobec M, Jakopin Ž. In vitro investigation of immunomodulatory activities of selected UV-filters. Food Chem Toxicol 2023; 174:113684. [PMID: 36813152 DOI: 10.1016/j.fct.2023.113684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Organic UV filters are ubiquitous as they are used in numerous personal care products. Consequently, people constantly come into direct or indirect contact with these chemicals. Albeit studies of the effects of UV filters on human health have been undertaken, their toxicological profiles are not complete. In this work, we investigated the immunomodulatory properties of eight UV filters representing different chemotypes, including benzophenone-1, benzophenone-3, ethylhexyl methoxycinnamate, octyldimethyl-para-aminobenzoic acid, octyl salate, butylmethoxydibenzoylmethane, 3-benzylidenecamphor, and 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol. We demonstrated that none of these UV filters were cytotoxic to THP-1 cells at concentrations up to 50 μM. Importantly, our study highlighted the capacity of nontoxic concentrations of avobenzone and 3-benzylidene camphor to increase the secretion of interleukin 8 (IL-8) from both THP-1 cells and THP-1 derived macrophages. Further, they also exhibited a pronounced decrease of IL-6 and IL-10 release from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The observed immune cell alterations suggest that exposure to 3-BC and BMDM could be involved in immune deregulation. Our research thus provided additional insight into UV filter safety profile.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Varrella S, Danovaro R, Corinaldesi C. Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120212. [PMID: 36152716 DOI: 10.1016/j.envpol.2022.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the "new generation" organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the "old generation" organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on "new generation" UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
8
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Benedetti B, Baglietto M, MacKeown H, Scapuzzi C, Di Carro M, Magi E. An optimized processing method for polar organic chemical integrative samplers deployed in seawater: Toward a maximization of the analysis accuracy for trace emerging contaminants. J Chromatogr A 2022; 1677:463309. [PMID: 35853423 DOI: 10.1016/j.chroma.2022.463309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Passive sampling of emerging contaminants (ECs) in seawater represents a challenge in environmental monitoring. A specific protocol for Polar Organic Chemical Integrative Sampler (POCIS) processing may be necessary when dealing with marine applications, due to the peculiarity of the considered matrix. Herein, both the instrumental LC-MS/MS analysis and the sampler processing for the determination of 22 ECs in seawater were carefully optimized. The study entailed a test simulating POCIS sorbent exposure to seawater as well as the processing of replicated field POCIS with different elution solvents. The final method involved washing the sorbent with water, to eliminate most salts, and a two-step elution, by using methanol and a small volume of a dichloromethane-isopropanol mixture. With this protocol, recoveries between 58 and 137% (average 106%) were obtained for most analytes, including non-steroidal anti-inflammatory drugs, UV-filters, perfluorinated substances and caffeine. Still, the protocol was not suitable for very hydrophilic compounds (recovery under 20% for artificial sweeteners and the pharmaceutical salbutamol), which also showed remarkable ion suppression (matrix effects in the range 4-46%). For all other chemicals, the matrix effects were in the range 67-103% (average 86%), indicating satisfactory accuracy. Also, the overall method showed high sensitivity (detection limits in the range 0.04-9 ng g-1 of POCIS sorbent) and excellent specificity, thanks to the monitoring of two "precursor ion-product ion" MS transitions for identity confirmation. The method was applied to samplers deployed in the Ligurian coast (Italy), detecting caffeine, bisphenol A, ketoprofen and two UV-filters as the most concentrated in the POCIS sorbent.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy.
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| |
Collapse
|
10
|
Wang W, Lee IS, Oh JE. Specific-accumulation and trophic transfer of UV filters and stabilizers in marine food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154079. [PMID: 35202695 DOI: 10.1016/j.scitotenv.2022.154079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The occurrence and distribution of benzotriazole UV stabilizers (BUVs) and UV filters in marine environments (sediment and seawater) and 20 biota species in the South Korea were investigated to assess their transfer through the marine food web. The total concentrations in the seawater samples were 4.73-8.60 ng/L for BUVs and 1.20-4.88 ng/L for UV filters; while, the total concentrations in the sediment samples were 0.581-6.62 ng/g dw for BUVs and 1.05-6.79 ng/g dw for UV filters, respectively. The total concentrations of BUVs and UV filters were a little higher in benthic invertebrates (BUVs: 131 ng/g lipid weight [lw], UV filters: 41.7 ng/g lw) than fish (BUVs: 99.2 ng/g lw, UV filters: 28.0 ng/g lw) but there were no statistical differences (Mann-Whitney U test, p > 0.05). UV-326 was dominant (fish: 37.9%, benthic invertebrate: 48.7%) of the total BUVs. While, benzophenone-3 (fish: 34.1%, benthic invertebrate: 40.8%) and ethylhexyl methoxy cinnamate (fish: 41.0%, benthic invertebrate: 37.8%) were the dominant UV filters. The bioaccumulation factor and trophic magnification factor indicated that UV-326 can both bioaccumulate and biomagnify (bioaccumulation factor >5000 and biota-sediment accumulation and trophic magnification factors >1). Several other BUVs were found to be able to either bioaccumulate (UV-320, UV-P, UV-329, and UV-234) or biomagnify (UV-327 and UV-928). Most of the analyzed UV filters were found not to be likely to bioaccumulate.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - In-Seok Lee
- Marine Environment Research Division, National Institute of Fisheries Science, 216, GijangHaean-ro, Gijang-Eup, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
11
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
12
|
Mokh S, Nassar R, Berry A, Khatib ME, Doumiati S, Taha M, Ezzeddine R, Al Iskandarani M. Chromatographic methods for the determination of a broad spectrum of UV filters in swimming pool water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18605-18616. [PMID: 34697706 DOI: 10.1007/s11356-021-16970-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This paper describes an analytical approach based on solid-phase extraction (SPE) followed by analysis using liquid and gas chromatography coupled to mass spectrometry detectors for a determination of 18 organic UV filters from water samples. Extraction method parameters were optimized: 250 ml of water sample loaded on Chromabond C18 cartridges after adjustment to pH 4 and then eluted with acetonitrile. The mobile phase and the parameters of the mass spectrometer, as well as those of the ionization source, were tested to enhance detection sensitivity. During method validation, the extracted target compounds showed good recoveries (> 68%) with acceptable values in terms of repeatability (RSDr) and reproducibility (RSDR), where relative standard deviations values were lower than 20%. The validated method was applied to 10 water samples collected from different swimming pools located in Lebanon from which eight UV filters among the eighteen targets compounds were detected at concentrations ranged between 1 and 2526 µg L-1. The most detected compounds were padimate-O (OD-PABA) and octocrylene (OCR). This study represents the first available data on the occurrence of UV filter residues in Lebanese swimming pool opening hence future perspectives and insights to evaluate their degradation by-products and their toxicity on human health and marine ecosystem.
Collapse
Affiliation(s)
- Samia Mokh
- National Council for Scientific Research (CNRS) - Lebanese Atomic Energy Commission (LAEC) - Laboratory for Analysis of Organic Compound (LACO) Airport Road, P.O. Box 11-8281, Beirut, Lebanon.
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon.
| | - Rania Nassar
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | | | - Mohammad El Khatib
- Faculty of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Samah Doumiati
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Mariam Taha
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Raed Ezzeddine
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Mohamad Al Iskandarani
- National Council for Scientific Research (CNRS) - Lebanese Atomic Energy Commission (LAEC) - Laboratory for Analysis of Organic Compound (LACO) Airport Road, P.O. Box 11-8281, Beirut, Lebanon.
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
13
|
Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. NANOMATERIALS 2022; 12:nano12040699. [PMID: 35215026 PMCID: PMC8876643 DOI: 10.3390/nano12040699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/09/2023]
Abstract
An increasing number of inorganic ultraviolet filters (UVFs), such as nanosized zinc oxide (nZnO) and titanium dioxide (nTiO2), are formulated in sunscreens because of their broad UV spectrum sunlight protection and because they limit skin damage. However, sunscreen-derived inorganic UVFs are considered to be emerging contaminants; in particular, nZnO and nTiO2 UVFs have been shown to undergo absorption and bioaccumulation, release metal ions, and generate reactive oxygen species, which cause negative effects on aquatic organisms. We comprehensively reviewed the current study status of the environmental sources, occurrences, behaviors, and impacts of sunscreen-derived inorganic UVFs in aquatic environments. We find that the associated primary nanoparticle characteristics and coating materials significantly affect the environmental behavior and fate of inorganic UVFs. The consequential ecotoxicological risks and underlying mechanisms are discussed at the individual and trophic transfer levels. Due to their persistence and bioaccumulation, more attention and efforts should be redirected to investigating the sources, fate, and trophic transfer of inorganic UVFs in ecosystems.
Collapse
|
14
|
Wheate NJ. A review of environmental contamination and potential health impacts on aquatic life from the active chemicals in sunscreen formulations. Aust J Chem 2022. [DOI: 10.1071/ch21236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Effects of the Fragrance Galaxolide on the Biomarker Responses of the Clam Ruditapes philippinarum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9050509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The musk fragrance Galaxolide® (HHCB) is widely used in personal care and household products. Its large use leads to a continuous release of the compound into aquatic environments. Although some studies on the presence of HHCB in ecosystems and biota have been conducted, limited data about its effects on organism biomarkers are available. This study aimed at investigating both cellular and biochemical effects of HHCB in the clam Ruditapes philippinarum. Mussels were exposed for 7, 14 and 21 days to 100 ng/L and 500 ng/L of HHCB in seawater, and the effects on haemocyte parameters and antioxidant enzyme activities in the gills and digestive gland were evaluated. In addition, the neurotoxic potential of HHCB and its capacity to cause oxidative damage to proteins were assessed. Overall, our results demonstrated that exposure to HHCB was able to induce changes in biomarker responses of mussels, mainly at the cellular level.
Collapse
|
16
|
Grau J, Benedé JL, Chisvert A. Polydopamine-coated magnetic nanoparticles for the determination of nitro musks in environmental water samples by stir bar sorptive-dispersive microextraction. Talanta 2021; 231:122375. [PMID: 33965039 DOI: 10.1016/j.talanta.2021.122375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Magnetic-based microextraction approaches have gained popularity in recent years due to the magnetic properties of the extraction phases allowing to handle them easier and more efficiently. This work describes a magnetic-based analytical method for the determination of the family of nitro musks in environmental water samples. These compounds have been of great concern due to their environmental impacts and potential health effects. The method is based on stir bar sorptive-dispersive microextraction (SBSDME) as extraction approach, prior to thermal desorption coupled to gas chromatography-mass spectrometry analysis (TD-GC-MS). For this purpose, polydopamine-coated cobalt ferrite magnetic nanoparticles (CoFe2O4@PDA) were used as extraction material. The main parameters involved in the extraction procedure (i.e., sorbent amount, extraction time and ionic strength) as well as in the thermal desorption step (i.e., temperature and desorption time) were evaluated in order to obtain the highest sensitivity. Under the selected conditions, the method showed good linearity, limits of detection and quantification in the low ng L-1 range, intra- and inter-day repeatability with RSD <15%, and high enrichment factors (178-640). Finally, the method was applied to four environmental water samples of different origin. Relative recovery values ranging from 91 to 120% highlighted that the matrices under consideration do not affect the extraction process. This work constitutes the first time in which nitro musks compounds were selectively extracted by taking advantage the high potential that magnetic-based microextraction techniques offer, specially SBSDME.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
17
|
Azaroff A, Monperrus M, Miossec C, Gassie C, Guyoneaud R. Microbial degradation of hydrophobic emerging contaminants from marine sediment slurries (Capbreton Canyon) to pure bacterial strain. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123477. [PMID: 32736176 DOI: 10.1016/j.jhazmat.2020.123477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Despite emerging contaminants (ECs) are more and more monitored in environmental matrices, there is still a lack of data in marine ecosystems, especially on their fate and degradation potentials. In this work, for the first time, the degradation potential of synthetic musks (galaxolide and tonalide), UV filters (padimate O and octocrylene) and a pharmaceutical compound (carbamazepine) was studied in marine sediment samples, under laboratory conditions using sediment slurry incubations under biotic and abiotic conditions. Minimum half life times under biotic conditions were found at 21 days, 129 days and 199 days for padimate O, galaxolide and carbamazepine, respectively. Enrichments conducted under anoxic and oxic conditions demonstrated that degradations after one month of incubation either under both biotic and abiotic conditions were limited under anoxic conditions compared to oxic conditions for all the contaminants. Novel aerobic bacteria, able to degrade synthetic musks and UV filters have been isolated. These novel strains were mainly related to the Genus Bacillus. Based on these results, the isolated strains able to degrade such ECs, can have a strong implication in the natural resilience in marine environment, and could be used in remediation processes.
Collapse
Affiliation(s)
- Alyssa Azaroff
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France
| | - Carole Miossec
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, Environmental Microbiology, UMR 5254, 64000, Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, Environmental Microbiology, UMR 5254, 64000, Pau, France.
| |
Collapse
|
18
|
Katuri GP, Fan X, Siddique S, Kubwabo C, Kosarac I, Harris SA, Foster WG. A Selective and Sensitive Gas Chromatography-Tandem Mass Spectrometry Method for Quantitation of Synthetic Musks in Human Serum. J AOAC Int 2020; 103:1461-1468. [PMID: 33247738 DOI: 10.1093/jaoacint/qsaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Synthetic musk compounds are widely used as fragrances in many consumer products; however, information on human exposure and health effects is limited. Also, analytical methods for their quantification in biological matrices are limited. OBJECTIVE In this study, an integrated method was developed and validated for the analysis of selected synthetic musk compounds in human serum. METHOD The method is based on liquid-liquid extraction (LLE), sample clean-up by solid-phase extraction (SPE), and separation and detection by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). RESULTS The method demonstrated good recoveries (86-105%) and high sensitivity, with low method detection limits (MDLs) ranging from 0.04 to 0.17 µg/L. The method was applied to the analysis of 10 synthetic musk compounds in 40 serum samples collected from Canadian women aged 20-44 years (20 individual samples collected in 2014 and 20 pooled samples collected in 2006). The most commonly detected compound was Galaxolide (HHCB), with median concentrations of 0.59 µg/L in samples collected in 2006, and 0.34 µg/L for samples collected in 2014. Musk ketone (MK) was not detected in any of the samples collected in 2006, but was detected in 60% of the samples collected in 2014 with a median concentration of 0.29 µg/L. Tonalide (AHTN) was detected in only one sample above its MDL (0.12 µg/L). CONCLUSIONS This is the first study in Canada to report levels of synthetic musks in human. The data generated from this study has been used in risk screening assessment by Environment and Climate Change Canada and Health Canada.
Collapse
Affiliation(s)
- Guru Prasad Katuri
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Shabana Siddique
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ivana Kosarac
- Office of Research and Surveillance, Tobacco Control Directorate, Health Canada, Ottawa, Canada
| | - Shelley A Harris
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Warren G Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Araújo CVM, Rodríguez-Romero A, Fernández M, Sparaventi E, Medina MM, Tovar-Sánchez A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. CHEMOSPHERE 2020; 257:127190. [PMID: 32480091 DOI: 10.1016/j.chemosphere.2020.127190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 05/20/2023]
Abstract
Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain; Faculty of Marine and Environmental Sciences, University of Cádiz, Av. República Saharaui, Puerto Real, 11510 Cádiz, Spain
| | - Marco Fernández
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Marina Márquez Medina
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
20
|
Munschy C, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Tissue-specific bioaccumulation of a wide range of legacy and emerging persistent organic contaminants in swordfish (Xiphias gladius) from Seychelles, Western Indian Ocean. MARINE POLLUTION BULLETIN 2020; 158:111436. [PMID: 32753219 DOI: 10.1016/j.marpolbul.2020.111436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Swordfish (Xiphias gladius) is a major marine resource of high economic value to industrial and artisanal fisheries. As a top predator with a long lifespan, it is prone to accumulate high levels of contaminants. The bioaccumulation of a wide range of both legacy and emerging persistent organic contaminants was investigated in the muscle, liver and gonads of swordfish collected from the Seychelles, western Indian Ocean. The detection of all target contaminants, some at frequencies above 80%, highlights their widespread occurrence, albeit at low levels. Mean concentrations in muscle were 5637, 491 and 331 pg g-1 ww for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), respectively. ∑BFR mean concentrations were far below, i.e. 47 pg g-1 ww. The data are among the first obtained for such a high diversity of contaminants in an oceanic top predator worldwide and constitute a benchmark of the contamination of Indian Ocean ecosystems.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; IRD (French Research Institute for Sustainable Development), Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
21
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
22
|
Lozano C, Matallana-Surget S, Givens J, Nouet S, Arbuckle L, Lambert Z, Lebaron P. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137803. [PMID: 32197158 DOI: 10.1016/j.scitotenv.2020.137803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 05/20/2023]
Abstract
Organic UV filters are of emerging concern due to their occurrence and persistence in coastal ecosystems. Because marine bacteria are crucial in the major biogeochemical cycles, there is an urgent need to understand to what extent these microorganisms are affected by those chemicals. This study deciphers the impact of five common sunscreen UV filters on twenty-seven marine bacteria, combining both photobiology and toxicity analysis on environmentally relevant species. Seven bacteria were sensitive to different organic UV filters at 1000 μg L-1, including octinoxate and oxybenzone. This is the first report demonstrating inhibition of bacterial growth from 100 μg L-1. None of the UV filters showed any toxicity at 1000 μg L-1 on stationary phase cells, demonstrating that physiological state was found to be a key parameter in the bacterial response to UV-filters. Indeed, non-growing bacteria were resistant to UV filters whereas growing cells exhibited UV filter dependent sensitivity. Octinoxate was the most toxic chemical at 1000 μg L-1 on growing cells. Interestingly, photobiology experiments revealed that the toxicity of octinoxate and homosalate decreased after light exposure while the other compounds were not affected. In terms of environmental risk characterization, our results revealed that the increasing use of sun blockers could have detrimental impacts on bacterioplanktonic communities in coastal areas. Our findings contribute to a better understanding of the impact of the most common UV filters on bacterial species and corroborate the importance to consider environmental parameters such as solar radiation in ecotoxicology studies.
Collapse
Affiliation(s)
- Clément Lozano
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom.
| | - Justina Givens
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Salomé Nouet
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Louise Arbuckle
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Zacharie Lambert
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.
| |
Collapse
|
23
|
O'Malley E, O'Brien JW, Verhagen R, Mueller JF. Annual release of selected UV filters via effluent from wastewater treatment plants in Australia. CHEMOSPHERE 2020; 247:125887. [PMID: 31978656 DOI: 10.1016/j.chemosphere.2020.125887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Studies conducted globally have identified wastewater effluent as a key source of UV filters released into the aquatic environment. We assessed the annual release of UV filters from wastewater treatment plant effluent in Australia and evaluated the removal of these chemicals during wastewater treatment. Effluent samples were collected from 33 sites alongside matching influent samples. Sample collection predominately occurred during the Australian Census in August 2016, which allowed for accurate per capita normalisation of the results. A subset of sites was also sampled over the Southern Hemisphere summer (December-February) period. Five UV filters were detected with at least one detected in 95% of effluent samples. The summed concentration of UV filters ranged from 130 ng L-1 to 8400 ng L-1 and averaged 2800 (±1900) ng L-1. Of the target UV filters, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and benzophenone 4 (BP4) showed the lowest removal efficiencies (11 ± 36% and 51 ± 43%, respectively) across all sites and were the most abundant in effluent. Average estimated removal efficiencies of the other compounds were between 59 (±24) % (4-methylbenzylidene camphor (4-MBC)) and 74 (±22) % (benzophenone 1 (BP1)). We did not find a trend in seasonal differences in the per capita release of UV filters in effluent samples. We estimate that approximately 40% of UV filter loads measured in influent are breaking through to the effluent resulting in the release of approximately 20 kg day-1 of the selected UV filters into the aquatic environment from treated wastewater effluent in Australia.
Collapse
Affiliation(s)
- Elissa O'Malley
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia.
| | - Jake W O'Brien
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Rory Verhagen
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Xu Q, Chen Z, Min H, Song F, Wang YX, Shi W, Cheng P. Water Stable Heterometallic Zn–Tb Coordination Polymer for Rapid Detection of the Ultraviolet Filter Benzophenone. Inorg Chem 2020; 59:6729-6735. [DOI: 10.1021/acs.inorgchem.9b03669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiutong Xu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhonghang Chen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Min
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fen Song
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xia Wang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Khalilzadeh MA, Tajik S, Beitollahi H, Venditti RA. Green Synthesis of Magnetic Nanocomposite with Iron Oxide Deposited on Cellulose Nanocrystals with Copper (Fe3O4@CNC/Cu): Investigation of Catalytic Activity for the Development of a Venlafaxine Electrochemical Sensor. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06214] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohammad A. Khalilzadeh
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh 27695, United States
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Richard A. Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh 27695, United States
| |
Collapse
|
26
|
Bioaccumulation and Toxicological Effects of UV-Filters on Marine Species. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Wang J, Chen J, Qiao X, Zhang YN, Uddin M, Guo Z. Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2,4-Dihydroxybenzophenone. WATER RESEARCH 2019; 151:280-287. [PMID: 30616040 DOI: 10.1016/j.watres.2018.12.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in degradation of organic pollutants by photochemically-produced reactive intermediates (RIs), such as excited triplet-states of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radical (·OH). However, it is not clear whether DOM extracted from coastal seawaters (CS-DOM) and DOM derived from freshwaters (FW-DOM) exhibit similar effects on photodegradation of organic micropollutants. Herein, 2,4-dihydroxybenzophenone (BP-1) was adopted as a model compound to probe the effects of different DOM on photodegradation kinetics of organic micropollutants. Results show that the CS-DOM promotes the photodegradation of BP-1 mainly via the pathway involving 3DOM*; while 3DOM*, 1O2 and ·OH are responsible for BP-1 photodegradation in the presence of the FW-DOM. Compared with the FW-DOM, the CS-DOM undergoes more photobleaching, and contains less aromatic C=C and C=O functional groups. Although 3DOM* formation quantum yields for the CS-DOM are relatively higher than those for the FW-DOM, the CS-DOM has lower rates of light absorption, leading to lower steady-state RI concentrations for the CS-DOM. BP-1 photodegradation in the presence of the CS-DOM is faster than in the presence of the FW-DOM, due to higher second-order reaction rate constants between BP-1 and CS-3DOM* and fewer antioxidants contained in the CS-DOM.
Collapse
Affiliation(s)
- Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Misbah Uddin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
28
|
Tumová J, Šauer P, Golovko O, Koba Ucun O, Grabic R, Máchová J, Kocour Kroupová H. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2235-2246. [PMID: 30326456 DOI: 10.1016/j.scitotenv.2018.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Synthetic musk compounds are extensively used in personal care and cosmetic products around the world. Because they are not completely removed in sewage treatment plants, they eventually end up in aquatic environments. The aim of this review was to summarize published information on effects of polycyclic musks on aquatic organisms and to discuss whether the experimental design of toxicological studies involving these substances could influence the results obtained. With the exception of one study run in a flow-through system, all published toxicological studies on synthetic polycyclic musks have been conducted in semi-static or even static systems. Based upon data in the literature and our own results, we conclude that in toxicological tests with semi-static set-ups, concentrations of polycyclic musks decrease with time between bath exchanges, and, as a result, tested organisms are not being exposed to stable concentrations but rather to concentration pulses. The duration and character of these pulses are influenced mainly by aeration of experimental baths, as polycyclic musks have a tendency to volatilize from water baths. Under semi-static conditions, tested organisms may be subjected to lower concentration of the tested substance for relatively long periods. Those levels may even fall below the limits of quantification. During these periods, some level of detoxification and/or elimination (depuration) of the toxicant may reduce toxic effect of the previous exposures. Consequently, toxicity of polycyclic musk substances for aquatic organisms obtained under these conditions may be underestimated. Based upon existing data in the literature, therefore, it is very difficult to correctly estimate risk of polycyclic musks to aquatic organisms.
Collapse
Affiliation(s)
- Jitka Tumová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Olga Koba Ucun
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jana Máchová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| |
Collapse
|
29
|
Lindo-Atichati D, Montero P, Rodil R, Quintana JB, Miró M. Modeling Dispersal of UV Filters in Estuaries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1353-1363. [PMID: 30632364 DOI: 10.1021/acs.est.8b03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lagrangian ocean analysis, where virtual parcels of water are tracked through hydrodynamic fields, provides an increasingly popular framework to predict the dispersal of water parcels carrying particles and chemicals. We conduct the first direct test of Lagrangian predictions for emerging contaminants using (1) the latitude, longitude, depth, sampling date, and concentrations of UV filters in raft cultured mussel ( Mytilus galloprovincialis) of the estuary Ria de Arousa, Spain (42.5°N, 8.9°W); (2) a hydrodynamic numerical model at 300 m spatial resolution; and (3) a Lagrangian dispersion scheme to trace polluted water parcels back to pollution sources. The expected dispersal distances (mean ± SD) are 2 ± 1 km and the expected dispersal times (mean ± SD) are 6 ± 2 h. Remarkably, the probability of dispersal of UV filters from potential sources to rafts decreases 5-fold over 5 km. In addition to predicting dispersal pathways and times, this study also provides a framework for quantitative investigations of concentrations of emerging contaminants and source apportionment using turbulent diffusion. In the coastline, the ranges of predicted concentrations of the UV-filters 4-methylbenzylidene-camphor, octocrylene, and benzophenone-4 are 3.2 × 10-4 to 0.023 ng/mL, 2.3 × 10-5 to 0.009 ng/mL, and 5.6 × 10-4 to 0.013 ng/mL, respectively. At the outfalls of urban wastewater treatment plants these respective ranges increase to 8.9 × 10-4 to 0.07 ng/mL, 6.2 × 10-5 to 0.027 ng/mL, and 1.6 × 10-3 to 0.040 ng/mL.
Collapse
Affiliation(s)
- David Lindo-Atichati
- Department of Engineering and Environmental Science , The City University of New York , Staten Island , New York 10314 , United States
- Department of Earth and Planetary Sciences , American Museum of Natural History , New York , New York 10024 , United States
- Department of Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Pedro Montero
- INTECMAR , Xunta de Galicia , Vilagarcía de Arousa s/n, 36611 , Spain
| | - Rosario Rodil
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - José Benito Quintana
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry , University of the Balearic Islands , Carretera de Valldemossa km 7.5 , E-07122 Palma de Mallorca , Spain
| |
Collapse
|
30
|
Osawa RA, Carvalho AP, Monteiro OC, Oliveira MC, Florêncio MH. Transformation products of citalopram: Identification, wastewater analysis and in silico toxicological assessment. CHEMOSPHERE 2019; 217:858-868. [PMID: 30458421 DOI: 10.1016/j.chemosphere.2018.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The objective of this study was to identify transformation products (TPs) of citalopram (CIT), an antidepressant drug, in laboratory experiments. Moreover, toxicity predictions and analyzes in wastewater samples were performed. For the formation of TPs, raw water was used for the processes of hydrolysis; photodegradation under ultraviolet (UV) irradiation and chlorination. The toxicities were predicted by computational toxicity assessment. The TPs were identified by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in broadband collision induced dissociation (bbCID) acquisition mode and product ion scan mode (MS/MS). The probable structures of the TPs under study were established based on accurate mass, fragmentations observed in the MS spectra and prediction tools software. The experiments resulted in seventeen possible identified TPs and their stability and formation was monitored over time in the experiments. Two of these TPs were identified in wastewater samples It was also observed that most of TPs formed were either less toxic then CIT or had a similar toxicity.
Collapse
Affiliation(s)
- Rodrigo A Osawa
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasília-DF, Brazil.
| | - Ana P Carvalho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Olinda C Monteiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - M Helena Florêncio
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
31
|
Future challenges in seafood chemical hazards: Research and infrastructure needs. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Li H, Yi X, Cheng F, Tong Y, Mehler WT, You J. Identifying Organic Toxicants in Sediment Using Effect-Directed Analysis: A Combination of Bioaccessibility-Based Extraction and High-Throughput Midge Toxicity Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:996-1003. [PMID: 30585062 DOI: 10.1021/acs.est.8b05633] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toxicity identification evaluation (TIE) and effect-directed analysis (EDA) were integrated to diagnose toxicity drivers in a complex system, such as sediment. In TIE manipulation, XAD resin was utilized as an amending agent for characterizing organic toxicants, which also facilitate a large-volume bioaccessibility-based extraction for EDA purposes. Both raw sediments in TIE and extract fractions in EDA were tested with Chironomus dilutus for toxicity using whole-sediment testing and a high-throughput microplate assay. This allowed for a direct link between whole-sediment TIE and EDA, which strongly strengthened the characterization and identification of toxicants. Sediments amended with XAD resin, as part of the TIE, significantly reduced midge mortality compared with unamended sediments, suggesting that organics were one class of main toxicants. On the basis of bioaccessible concentrations in sediment measured by XAD extraction, a group of previously unidentified contaminants, synthetic polycyclic musks (versalide, tonalide, and galaxolide), were found to explain 32-73% of the observed toxicity in test sediments. Meanwhile, three pyrethroids contributed to an additional 17-35% of toxicity. Surprisingly, the toxicity contribution of musks and pyrethroids reached 58-442 and 56-1625%, respectively, based on total sediment concentrations measured by exhaustive extraction. This suggested that total sediment concentrations significantly overestimated toxicity and that bioavailability should be considered in toxicity identification. Identifying nontarget toxicants sheds a light on application of the integrated TIE and EDA method in defining causality in a complex environment.
Collapse
Affiliation(s)
- Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Xiaoyi Yi
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fei Cheng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yujun Tong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - W Tyler Mehler
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T5G 2L6 , Canada
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
33
|
Gu J, Yuan T, Ni N, Ma Y, Shen Z, Yu X, Shi R, Tian Y, Zhou W, Zhang J. Urinary concentration of personal care products and polycystic ovary syndrome: A case-control study. ENVIRONMENTAL RESEARCH 2019; 168:48-53. [PMID: 30265948 DOI: 10.1016/j.envres.2018.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorder among females of reproductive age. Many emerging contaminants in personal care products have been confirmed with endocrine disruptive effects. We performed a case-control study to explore the association between the concentrations of certain emerging contaminants (organic UV filters, bisphenol A, and triclosan) and the risk of PCOS. Urine samples were collected from 40 women with PCOS (case group) and 83 healthy women (control group). No significant differences were found in detection rate or total concentrations of analytes in women with PCOS and controls (p > 0.05). In addition, no association was found between certain emerging contaminants and PCOS either in an unadjusted binary logistic regression model or in a model adjusted for potential confounders. However, with stratification according to body mass index, one organic UV filter - octocrylene(OC) was significantly associated with PCOS in women with BMI ≥ 24 (adjusted OR = 1.512, 95% CI: 1.043, 2.191). It's the first time to investigate the association between exposure of organic UV filters and PCOS risk. We conclude that there is positive association between OC and PCOS risk in obese and overweight women.
Collapse
Affiliation(s)
- Jiayuan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ni Ni
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center,Shanghai Jiao Tong University, Shanghai 200127,China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
34
|
Bioaccumulation and Biomagnification of 2-Ethylhexyl-4-dimethylaminobenzoate in Aquatic Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112395. [PMID: 30380631 PMCID: PMC6266656 DOI: 10.3390/ijerph15112395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022]
Abstract
2-Ethylhexyl-4-dimethylaminobenzoate (EHDAB) is a commonly used organic ultraviolet filter. The bioaccumulation and biomagnification of EHDAB were investigated in two aquatic animals, the larvae of midge (Chironomus riparius) and crucian carp (Carassius carassius), and the metabolic enzyme responses in fish liver were determined. EHDAB in the larvae of midge reached a steady state within 10 days of sediment exposure. The biota-sediment accumulation factors ranged from 0.10 to 0.54, and were inversely proportional to the exposure concentrations. The EHDAB-contaminated larvae were used to feed the crucian carp. Within 28 days of feeding exposure, the EHDAB levels in fish tissues gradually increased with the increase of the exposure concentration, exhibiting an apparent concentration-dependence and time-dependence. The liver and kidneys were the main organs of accumulation, and the biomagnification factors of EHDAB ranged from 8.97 to 11.0 and 6.44 to 10.8, respectively. In addition, EHDAB significantly increased the activities of cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase in the fish liver. Our results indicate that EHDAB may pose a risk of biomagnification in an aquatic environment and influence the biological processes of exposed organisms.
Collapse
|
35
|
Montesdeoca-Esponda S, Checchini L, Del Bubba M, Sosa-Ferrera Z, Santana-Rodriguez JJ. Analytical approaches for the determination of personal care products and evaluation of their occurrence in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:405-425. [PMID: 29579652 DOI: 10.1016/j.scitotenv.2018.03.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Contamination of the aquatic environment caused by multiple human activities may exert a negative impact on all living organisms. Several contaminants of emerging concern such as personal care products (PCPs) are continuously released into the aquatic environment where they are biologically active and persistent. This work reviews the current knowledge, provided by papers published after 2010 and indexed by SciFinder, Scopus, and Google search engines, about the determination and occurrence of PCPs in marine biota. Analytical methodologies have been critically reviewed, emphasizing the importance of green and high-throughput approaches and focusing the discussion on the complexity of the solute-matrix interaction in the extraction step, as well as the matrix effect in the instrumental determination. Finally, the worldwide distribution of PCPs is surveyed, taking into account the concentrations found in the same organism in different marine environments. Differences among various world areas have been highlighted, evidencing some critical aspects from an environmental point of view.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Leonardo Checchini
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodriguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
36
|
Ultrasound-assisted emulsification microextraction for rapid determination of unmetabolized synthetic polycyclic and nitro-aromatic musks in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:440-446. [DOI: 10.1016/j.jchromb.2018.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/03/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
|
37
|
Barr L, Alamer M, Darbre PD. Measurement of concentrations of four chemical ultraviolet filters in human breast tissue at serial locations across the breast. J Appl Toxicol 2018; 38:1112-1120. [PMID: 29658634 DOI: 10.1002/jat.3621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 11/11/2022]
Abstract
The human population is widely exposed to benzophenone-3 (BP-3), octylmethoxycinnamate (OMC), 4-methylbenzilidenecamphor (4-MBC) and homosalate from their use in consumer goods to absorb ultraviolet (UV) light. Their oestrogenic activity and presence in human milk suggest a potential to influence breast cancer development. In this study, high-performance liquid chromatography-tandem mass spectrometry was used to measure concentrations of these UV filters in human breast tissue from three serial locations across the breast from 40 women undergoing mastectomy for primary breast cancer. One or more of these UV filters were quantifiable in 101 of 120 (84%) of the tissue samples and at least one breast region for 38 of 40 women. BP-3 was measured in 83 of 120 (69%) tissue samples and at least one breast region for 33 of 40 women (range 0-26.0 ng g-1 tissue). OMC was measured in 89 of 120 (74%) tissue samples and at least one breast region for 33 of 40 women (range 0-58.7 ng g-1 tissue). 4-MBC was measured in 15 of 120 (13%) tissue samples and at least one breast region for seven of 40 women (range 0-25.6 ng g-1 tissue). Homosalate was not detected in any sample. Spearman's analyses showed significant positive correlations between concentrations of BP-3 and OMC in each of the three breast regions. For ethical reasons cancerous tissue was not available, but as the location of the cancer was known, Mann-Whitney U-tests investigated any link between chemical concentration and whether a tumour was present in that region or not. For the lateral region, more BP-3 was measured when a tumour was present (P = .007) and for OMC the P value was .061. For seven (of 40) women with measurable 4-MBC, six of seven had measurable 4-MBC at the site of the tumour.
Collapse
Affiliation(s)
- L Barr
- Prevent Breast Cancer Research Unit, Nightingale Centre, Wythenshawe Hospital, Manchester, M23 9LT, UK
| | - M Alamer
- Biomedical Sciences Section, School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - P D Darbre
- Biomedical Sciences Section, School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
38
|
Apel C, Tang J, Ebinghaus R. Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:85-94. [PMID: 29275272 DOI: 10.1016/j.envpol.2017.12.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 05/14/2023]
Abstract
Organic UV stabilizers and UV filters are applied to industrial materials and cosmetics worldwide. In plastics they prevent photo-induced degradation, while in cosmetics they protect human skin against harmful effects of UV radiation. This study reports on the occurrence and distribution of organic UV stabilizers and UV filters in the surface sediment of the Chinese Bohai and Yellow Seas for the first time. In total, 16 out of 21 analyzed substances were positively detected. Concentrations ranged from sub-ng/g dw to low ng/g dw. The highest concentration of 25 ng/g dw was found for octocrylene (OC) in the Laizhou Bay. In the study area, characteristic composition profiles could be identified. In Korea Bay, the dominating substances were OC and ethylhexyl salicylate (EHS). All other analytes were below their method quantification limit (MQL). Around the Shandong Peninsula, highest concentrations of benzotriazole derivatives were observed in this study with octrizole (UV-329) as the predominant compound, reaching concentrations of 6.09 ng/g dw. The distribution pattern of UV-329 and bumetrizole (UV-326) were related (Pearson correlation coefficient r > 0.98, p « 0.01 around the Shandong Peninsula), indicating an identical input pathway and similar environmental behavior.
Collapse
Affiliation(s)
- Christina Apel
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany; University of Hamburg, Institute of Inorganic and Applied Chemistry, 20146 Hamburg, Germany.
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
| |
Collapse
|
39
|
Díaz-Garduño B, Perales JA, Garrido-Pérez C, Martín-Díaz ML. Health status alterations in Ruditapes philippinarum after continuous secondary effluent exposure before and after additional tertiary treatment application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:720-729. [PMID: 29339341 DOI: 10.1016/j.envpol.2018.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
A mobile pilot plant was set up in a wastewater treatment plant (WWTP) in southwest Spain to address potential adverse effects of effluents as a whole contaminant, which are discharging into marine environments. Ruditapes philippinarum specimens were exposed to different effluent concentrations (50%, 25%, 12.5%, 6.25%, and 3.15%) during seven days. After effluent exposure, lysosomal membrane stability alterations (LMS), changes in the energy status storage (total lipids content (TLP) and in the mitochondrial electron transport (MET), inhibition of inflammatory mechanisms (cyclooxygenase activity (COX)), and neurotoxic effects (acetylcholinesterase (AChE) were determined in exposed organisms. Furthermore, potential toxic reduction in the effluent was analysed by the application of an additional microalgae tertiary treatment called photobiotreatment (PhtBio). Results after PhtBio confirmed the toxic effect reduction in exposed organisms. Neuroendocrine effects, alterations in energy budget and in lipid storage revealed alterations in clam's health status causing stress conditions after effluent exposure.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
40
|
Díaz-Garduño B, Perales JA, Biel-Maeso M, Pintado-Herrera MG, Lara-Martin PA, Garrido-Pérez C, Martín-Díaz ML. Biochemical responses of Solea senegalensis after continuous flow exposure to urban effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:486-497. [PMID: 29017122 DOI: 10.1016/j.scitotenv.2017.09.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Urban effluent potential toxicity was assessed by a battery of biomarkers aimed at determining sub-lethal effects after continuous exposure on the marine organism Solea senegalensis. Specimens were exposed to five effluent concentrations (1/2, 1/4, 1/8, 1/16, 1/32) during 7-days, simulating the dispersion plume at the discharge point. Three different groups of biomarkers were selected in the present study: biomarkers of exposure (Phase I: EROD and DBF; Phase II: GST), biomarkers with antioxidant responses (GR and GPX) and biomarkers of effects (DNA damage and LPO). Additionally, a biological depuration treatment (photobiotreatment (PhtBio)) was tested in order to reduce the adverse effects on aquatic organisms. Effluent exposure caused sub-lethal responses in juvenile fish suggesting oxidative stress. After PhtBio application, concentrations of the major part of measured contaminants were reduced, as well as their bioavailability and adverse effects.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M Biel-Maeso
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M G Pintado-Herrera
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - P A Lara-Martin
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|