1
|
Zhu L, Diao S, Li T, Guo J. Deciphering the multi- partite mitochondrial genome of Crataegus pinnatifida: insights into the evolution and genetics of cultivated Hawthorn. BMC PLANT BIOLOGY 2024; 24:929. [PMID: 39370506 PMCID: PMC11457364 DOI: 10.1186/s12870-024-05645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is celebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mitochondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pinnatifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China.
| | - Taishan Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China
| |
Collapse
|
2
|
Fu H, Wu TH, Ma CP, Yen FL. Improving Water Solubility and Skin Penetration of Ursolic Acid through a Nanofiber Process to Achieve Better In Vitro Anti-Breast Cancer Activity. Pharmaceutics 2024; 16:1147. [PMID: 39339184 PMCID: PMC11434903 DOI: 10.3390/pharmaceutics16091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Woman's breast cancer has always been among the top ten causes of cancer death, and nearly 2% to 5% of locally advanced breast cancers develop a fungating breast wound. Fungal breast cancer leads to skin ulcers, wound ruptures, and other bacterial infections in patients. Ursolic acid (UA), a natural pentacyclic triterpene compound, is widely distributed in many fruits. Previous studies demonstrated that UA has anti-breast cancer, antifungal, and improved wound-healing effects. UA, however, had poor water solubility and low bioavailability, restricting its clinical application. Nanofibers have the advantages of rapid dissolution, improved stability, and bioavailability of active ingredients. We had successfully prepared ursolic acid nanofibers (UANFs) and effectively improved their water solubility and skin penetration. UANFs can increase water solubility by improving the physicochemical properties, including increased surface area, intermolecular bonding with excipients, and amorphous transformation. Furthermore, UANFs had better anti-breast cancer activity than raw UA. UANFs inhibited the expression of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-extracellular regulated protein kinases (ERK)1/2, and induced cleaved caspase-3 protein expression, but had no effect on the raw UA treatment. In summary, UANFs enhanced the skin absorption of UA and improved its anti-breast cancer efficacy. We expect that UANFs can be used as an anti-breast cancer treatment and reduce the discomfort of breast cancer patients during dressing changes, but more detailed efficacy and safety trials still need to be conducted in further studies.
Collapse
Affiliation(s)
- Hsuan Fu
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Hui Wu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| | - Chih-Peng Ma
- Department of Radiology, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Feng-Lin Yen
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
3
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
5
|
Lyu Q, Zheng W, Shan Q, Huang L, Wang Y, Wang L, Kuang H, Azam M, Cao G. Expanding annotation of chemical compounds in hawthorn fruits and their variations in thermal processing using integrated mass spectral similarity networking. Food Res Int 2023; 172:113114. [PMID: 37689886 DOI: 10.1016/j.foodres.2023.113114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Chemical structural characterization of chemical compounds from hawthorn fruits and its thermal processed products was carried out in present study. By linking Global Natural Products Social (GNPS) Molecular Networking and MolNetEnhancer workflow, seventy-four chemical compounds in hawthorn fruits and its thermal processed products were tentatively identified. Three quercetagetin derivatives (quercetagetin-3-O-glucoside, quercetagetin-di-glucoside and its isomer), five quercetin or kaempferol derivatives (quercetin-acetylapiosyl-hexoside, quercetin-3-O-(6″-malonyl-hexoside), quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-hexoside, quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-deoxyhexoside, kaempferol-3-O-(6″-malonyl-hexoside)), six procyanidins including four (E)C-ethyl-procyanidins and two A-type procyanidins digallate, as well as 13 triterpenoids including ursolic aldehyde, triterpenoid glycosides, and triterpene acids were reported for the first time in hawthorn fruits. In addition, triterpenoids exhibited considerable thermal stability, while all of flavonoid glycosides, proanthocyanidins and 10 in 13 organic acids showed dramatic decrease after thermal processing.
Collapse
Affiliation(s)
- Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Yiwen Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
6
|
Yang J, Gu J, Shen Y, Cao L, Zhou H, Zhu W. Effect of Shan Zha (Hawthorn or Crataegus) on gastrointestinal cancer: A network pharmacology and molecular docking study. CANCER PATHOGENESIS AND THERAPY 2023; 1:229-237. [PMID: 38327605 PMCID: PMC10846330 DOI: 10.1016/j.cpt.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2024]
Abstract
Background Shan Zha (Hawthorn or Crataegus) is a traditional Chinese medicine (TCM) most commonly used for the treatment of hyperlipidemia. Gastrointestinal cancer is closely correlated with blood lipid levels. This study illustrates the potential anticancer effects of Shan Zha on gastrointestinal tumors based on network pharmacology and molecular docking. Methods Hawthorn's bioactive ingredients and drug targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine version 2.0 (TCMIP v2.0), and Herbal Ingredients' Targets Platform (HIT 2.0) databases. Validated disease targets of gastrointestinal cancer were obtained from the Therapeutic Targets Database (TTD) and HIT 2.0 databases. Protein-protein interaction analysis of intersecting genes was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. The functions of these genes were further analyzed by performing gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking verification was performed using Molecular Operating Environment (MOE) software. Results Four main bioactive components were identified in Shan Zha. A total of 271 potential drug targets were identified, and 393 gastrointestinal-tumor targets were obtained. Through protein interaction analysis of intersecting targets, the main components of Shan Zha were found to interact more closely with proteins such as tumor protein p53 (TP53), AKT serine/threonine kinase 1 (AKT1), JUN proto-oncogene (JUN), interleukin 6 (IL6), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA). KEGG pathway enrichment analysis showed a total of 127 pathways, mainly involving pathways in multiple types of cancer, the Phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling pathway, and EGFR tyrosine kinase inhibitor resistance. Combined with The Cancer Genome Atlas (TCGA) differential analysis, key targets, including TP53, cyclin D1 (CCND1), EGFR, and VEGFA, were screened. Molecular docking results showed that quercetin and kaempferol had the good binding potential for TP53, CCND1, EGFR, and VEGFA. Conclusion These findings suggest that Shan Zha exerts its effects on gastrointestinal cancers through a multitarget, multi-component, and a multi-pathway mechanism.
Collapse
Affiliation(s)
- Jing Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Ying Shen
- Department of Endocrinology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Ling Cao
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Hong Zhou
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
7
|
Zhang DD, Zhao P, Huang SW, Song SJ, Huang XX. Four pair of enantiomeric benzofuran lignans from the fruits of Crataegus pinnatifida bunge. Nat Prod Res 2023; 37:1349-1355. [PMID: 34822252 DOI: 10.1080/14786419.2021.2007094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytochemical investigation of the fruits of Crataegus pinnatifida Bunge led to the isolation of four pairs enantiomeric benzofuran lignans (1a/1b-4a/4b) including four undescribed compounds (1a, 2b, 3b and 4b). Their structures were determined by extensive spectroscopic methods and the absolute configurations were further determined by the comparison of experimental and calculated ECD spectra. All the enantiomeric lignans were evaluated for their inhibitory activities to tyrosinase. Among them, compound 4a showed moderate inhibition activity (IC50 = 0.54 mM).
Collapse
Affiliation(s)
- Ding-Ding Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shun-Wang Huang
- Hefei Innovative Pharmaceutical Technology Co., Ltd, Hefei, Anhui, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
8
|
Shi WB, Wang ZX, Liu HB, Jia YJ, Wang YP, Xu X, Zhang Y, Qi XD, Hu FD. Study on the mechanism of Fufang E'jiao Jiang on precancerous lesions of gastric cancer based on network pharmacology and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116030. [PMID: 36563889 DOI: 10.1016/j.jep.2022.116030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang E'jiao Jiang (FEJ) is a prominent traditional Chinese medicine prescription, which consists of Asini Corii Colla (Donkey-hide gelatin prepared by stewing and concentrating from the hide of Equus asinus Linnaeus., ACC), Codonopsis Radix (the dried roots of Codonopsis pilosula (Franch.) Nannf., CR), Ginseng Radix et Rhizoma Rubra (the steamed and dried root of Panax ginseng C.A. Mey., GRR), Crataegi Fructus (the mature fruits of Crataegus pinnatifida Bunge., CF), and Rehmanniae Radix Praeparata (the steamed and sun dried tuber of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey., RRP). It is a popularly used prescription for "nourishing Qi and nourishing blood". AIM OF THE STUDY To explore the potential mechanism of FEJ on precancerous lesion of gastric cancer in rats by combining network pharmacology and metabolomics. METHODS Traditional Chinese Medicine Systems Pharmacology and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine were used to identify the ingredients and potential targets of FEJ. GeneCards database was used to define PLGC-associated targets. We built a herb-component-disease-target network and analyzed the protein-protein interaction network. Underlying mechanisms were identified using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. In addition, 40% ethanol, N-methyl-N'-nitro-N-nitroguanidine and irregular eating were used to establish PLGC rats model. We also evaluated the efficacy of FEJ on MNNG-induced PLGC rats by body weight, histopathology, blood routine and cytokine levels, while the predicted pathway was determined by the Western blot. Ultra-performance liquid chromatography-tandem mass spectrometry-based serum non-targeted metabolomics was used to select potential biomarkers and relevant pathways for FEJ in the treatment of PLGC. RESULTS Network pharmacology showed that FEJ exhibited anti-PLGC effects through regulating ALB, TNF, VEGFA, TP53, AKT1 and other targets, and the potential pathways mainly involved cancer-related, TNF, PI3K-AKT, HIF-1, and other signaling pathways. Animal experiments illustrated that FEJ could suppress inflammation, regulate gastrointestinal hormones, and inhibit the expression of PI3K/AKT/HIF-1α pathway-related proteins. Based on serum non-targeted metabolomics analysis, 12 differential metabolites responding to FEJ treatment were identified, and metabolic pathway analysis showed that the role of FEJ was concentrated in 6 metabolic pathways. CONCLUSION Based on network pharmacology, animal experiments and metabolomics, we found that FEJ might ameliorate gastric mucosal injury in PLGC rats by regulating gastrointestinal hormones and inhibiting inflammation, and its mechanism of action is related to the inhibition of excessive activation of PI3K/AKT/HIF-1α signaling pathway and regulation of disorders of body energy metabolism. This comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Wen-Bo Shi
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Zi-Xia Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Hai-Bin Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, 252052, China
| | - Yan-Jun Jia
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Yan-Ping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Xu Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Yan Zhang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, 252052, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China.
| | - Xiao-Dan Qi
- Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China
| | - Fang-Di Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Li R, Luan F, Zhao Y, Wu M, Lu Y, Tao C, Zhu L, Zhang C, Wan L. Crataegus pinnatifida: A botanical, ethnopharmacological, phytochemical, and pharmacological overview. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115819. [PMID: 36228891 DOI: 10.1016/j.jep.2022.115819] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus pinnatifida belongs to the Rosaceae family and extensively distribute in North China, Europe, and North America. Its usage was first described in "Xinxiu Ben Cao." The dried fruits of Crataegus pinnatifida Bunge or Crataegus pinnatifida var. major N. E. Br., also known as "Shanzha," is a famous medicine and food homology herb with a long history of medicinal usage in China. C. pinnatifida has the functions for digestive promotion, cardiovascular protection, and lipid reduction. It was traditionally used to treat indigestion, cardiodynia, thoracalgia, hernia, postpartum blood stagnation, and hemafecia. In recent years, C. pinnatifida has attracted worldwide attention as an important medicinal and economical crop due to its multiple and excellent health-promoting effects on cardiovascular, nervous, digestive, endocrine systems, and morbigenous microorganisms of the human body due to its medicinal and nutritional values. AIM OF THE REVIEW The current review aims to provide a comprehensive analysis of the geographical distribution, traditional usage, phytochemical components, pharmacological actions, clinical settings, and toxicities of C. pinnatifida. Moreover, the connection between the claimed biological activities and the traditional usage, along with the future perspectives for ongoing research on this plant, were also critically summarized. MATERIALS AND METHODS We collected the published literature on C. pinnatifida using a variety of scientific databases, including Web of Science, ScienceDirect, PubMed, Wiley, Springer, Taylor & Francis, ACS Publications, Google Scholar, Baidu Scholar, CNKI, The Plant List Database, and other literature sources (Ph.D. and MSc dissertations) from 2012 to 2022. RESULTS In the last decade, over 250 phytochemical compounds containing lignans, phenylpropanoids, flavonoids, triterpenoids, and their glycosides, as well as other compounds, have been isolated and characterized from different parts, including the fruit, leaves, and seeds of C. pinnatifida. Among these compounds, flavonoids and triterpenoids were major bioactive components of C. pinnatifida. They exhibited a broad spectrum of pharmacological actions with low toxicity in vitro and in vivo, such as cardiovascular protection, neuroprotection, anti-inflammatory, antioxidant, antibacterial, antiviral, anti-diabetes, anti-cancer, anti-mutagenic, anti-osteoporosis, anti-aging, anti-obesity, and hepatoprotection and other actions. CONCLUSION A long history of traditional uses and abundant pharmacochemical and pharmacological investigations have demonstrated that C. pinnatifida is an important medicine and food homology herb, which displays outstanding therapeutic potential, especially in the digestive system and cardiovascular disease. Nevertheless, the current studies on the active ingredients or crude extracts of C. pinnatifida and the possible mechanism of action are unclear. More evidence-based scientific studies are required to verify the traditional uses of C. pinnatifida. Furthermore, more efforts must be paid to selecting index components for quality control research and toxicity and safety studies of C. pinnatifida.
Collapse
Affiliation(s)
- Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chengtian Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chi Zhang
- Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
10
|
Zhang SY, Sun XL, Yang XL, Shi PL, Xu LC, Guo QM. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 2022; 74:1507-1545. [PMID: 36179124 DOI: 10.1093/jpp/rgac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crataegus pinnatifida (C. pinnatifida), including C. pinnatifida Bge. and its variant C. pinnatifida Bge. var. major N, E. Br., has traditionally been used as a homologous plant for traditional medicine and food in ethnic medical systems in China. Crataegus pinnatifida, especially its fruit, has been used for more than 2000 years to treat indigestion, stagnation of meat, hyperlipidemia, blood stasis, heart tingling, sores, etc. This review aimed to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology and clinical applications of C. pinnatifida. KEY FINDINGS This plant contains flavonoids, phenylpropanoids, terpenoids, organic acids, saccharides and essential oils. Experimental studies showed that it has hypolipidemic, antimyocardial, anti-ischemia, antithrombotic, anti-atherosclerotic, anti-inflammatory, antineoplastic neuroprotective activity, etc. Importantly, it has good effects in treating diseases of the digestive system and cardiovascular and cerebrovascular systems. SUMMARY There is convincing evidence from both in vitro and in vivo studies supporting the traditional uses of C. pinnatifida. However, multitarget network pharmacology and molecular docking technology should be used to study the interaction between the active ingredients and targets of C. pinnatifida. Furthermore, exploring the synergy of C. pinnatifida with other Chinese medicines to provide new understanding of complex diseases may be a promising strategy.
Collapse
Affiliation(s)
- Shi-Yao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing-Liang Yang
- School of Classics, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Liang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Mei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022; 11:foods11182861. [PMID: 36140986 PMCID: PMC9498108 DOI: 10.3390/foods11182861] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the “nutritious fruit” due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (X.C.); (Q.M.)
| | - Fenglan Zhao
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingguo Meng
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence: (X.C.); (Q.M.)
| |
Collapse
|
12
|
Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Potential Roles and Key Mechanisms of Hawthorn Extract against Various Liver Diseases. Nutrients 2022; 14:nu14040867. [PMID: 35215517 PMCID: PMC8879000 DOI: 10.3390/nu14040867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Crataegus (hawthorn), a flowering shrub or tree, is a member of the Rosaceae family and consists of approximately 280 species that have been primarily cultivated in East Asia, North America, and Europe. Consumption of hawthorn preparations has been chiefly associated with pharmacological benefits for cardiovascular diseases, including congestive heart failure and angina pectoris. Treatment with hawthorn extracts can be related to improvements in the complex pathogenesis of various hepatic and cardiovascular disorders. In this regard, the present review described that the presence of hawthorn extracts ameliorated hepatic injury, lipid accumulation, inflammation, fibrosis, and cancer in an abundance of experimental models. Hawthorn extracts might have these promising activities, largely by enhancing the hepatic antioxidant system. In addition, several mechanisms, including AMP-activated protein kinase (AMPK) signaling and apoptosis, are responsible for the role of hawthorn extracts in repairing the dysfunction of injured hepatocytes. Specifically, hawthorn possesses a wide range of biological actions relevant to the treatment of toxic hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Accordingly, hawthorn extracts can be developed as a major source of therapeutic agents for liver diseases.
Collapse
|
14
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
15
|
Wen L, Zhou T, Jiang Y, Gong L, Yang B. Identification of prenylated phenolics in mulberry leaf and their neuroprotective activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153641. [PMID: 34281775 DOI: 10.1016/j.phymed.2021.153641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neurodegenerative diseases are becoming increasingly prevalent over the world. Therefore, drug development in this field is urgently required. Neuron impairment leads to the pathogenesis of neurodegenerative diseases, while amelioration of oxidative stress can inhibit the impairment. As a traditional Chinese medicine, mulberry leaf exhibits various pharmacological properties, including neuroprotective activity. But the major components responsible for the neuroprotective activity of mulberry leaf remained unknown. Phytochemicals were potent candidates of neuroprotective drug. Prenylated phenolics are the leading phytochemicals present in mulberry leaf. PURPOSE The aim of this study was to investigate the neuroprotective activities and mechanisms of prenylated phenolics. METHODS The chemical structure of isolated compounds were elucidated by MS and NMR. UPLC-MS/MS was used to determine the contents of prenylated phenolics in fresh mulberry leaf. Neurotoxicity was induced by erastin in HT22 cells. CCK-8 assay was performed to assess cell viability. ROS production, GSH level and iron release were monitored by using DCFH-DA, monobromobimane, and FeRhoNox™-1, respectively. qRT-PCR and Western blotting assays were performed to assess gene and protein expression, respectively. RESULTS Four prenylated phenolics, including isobavachalcone, morachalcone B, moracin N and morachalcone A were isolated and identified from mulberry leaf. Their levels in fresh mulberry leaf were in a decreasing order, moracin N > morachalcone A > morachalcone B > isobavachalcone. Moreover, moracin N showed a good neuroprotective activity with an EC50 < 0.50 µM. The neuroprotective mechanisms of moracin N included inhibition of glutathione depletion, glutathione peroxidase 4 (GPx4) inactivation, reactive oxygen species (ROS) overproduction and iron accumulation, as well as improvement of intracellular antioxidant enzyme activities. Moracin N augmented the transcriptional levels of genes involved in antioxidant defense and glutathione biosynthesis in the early state of ferroptosis induction, and downregulated expression of genes related to iron accumulation and lipid peroxidation. CONCLUSION The results confirmed that moracin N was a good ferroptosis inhibitor, which exerted neuroprotective activity through preventing from oxidative stress.
Collapse
Affiliation(s)
- Lingrong Wen
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ting Zhou
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gong
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Shi R, Liu Z, Liu T. The antagonistic effect of bisphenol A and nonylphenol on liver and kidney injury in rats. Immunopharmacol Immunotoxicol 2021; 43:527-535. [PMID: 34282716 DOI: 10.1080/08923973.2021.1950179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bisphenol A (BPA) and nonylphenol (NP) are widely distributed endocrine-disrupting compounds. We aimed to estimate the combined toxicity of BPA and NP at a clinically safe dose (100 μg/kg) in rats. MATERIALS AND METHODS Liver and kidney functions were evaluated by detecting the relevant indicators. Hematoxylin and Eosin (HE) staining was performed to examine the injury in the tissue. TUNEL assay and Western blot were used to detect cell apoptosis and expressions of target factors, respectively. RESULTS The body weight of rats in the BPA + NP group was lighter than that in the BPA or NP group. BPA or NP weakened liver function through increasing levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), cholesterol (CHOL), triglyceride TG, globulin (GLOB), treponemiapallidum (TP), and total bilirubin (TBIL). BPA and NP could induce kidney damage by elevating the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Moreover, the malondialdehyde (MDA) content was increased, whereas the activities of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX), glutathione sulfotransferase (GSH-ST), catalase (CAT), and peroxidase (POD) were reduced in those groups exposed to BPA or NP. HE staining exhibited injuries of the liver and kidney. Furthermore, the apoptosis of liver and kidney cells was enhanced by exposure to BPA or NP. Additionally, the expressions of CYP2D6, CYP1A1, and CYP2E1 were triggered by the treatment of BPA or NP. The combined effect of BPA and NP seemed to be antagonistic at a low dose. CONCLUSION BPA and NP may have potential interactions.
Collapse
Affiliation(s)
- Rui Shi
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Tong Liu
- Department of General surgery, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front Pharmacol 2021; 12:706121. [PMID: 34295253 PMCID: PMC8289884 DOI: 10.3389/fphar.2021.706121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ursolic acid (UA) is a natural pentacyclic triterpene derived from fruit, herb, and other plants. UA can act on molecular targets of various signaling pathways, inhibit the growth of cancer cells, promote cycle stagnation, and induce apoptosis, thereby exerting anticancer activity. However, its poor water-solubility, low intestinal mucosal absorption, and low bioavailability restrict its clinical application. In order to overcome these deficiencies, nanotechnology, has been applied to the pharmacological study of UA. Objective: In this review, we focused on the absorption, distribution, and elimination pharmacokinetics of UA in vivo, as well as on the research progress in various UA nanoformulations, in the hope of providing reference information for the research on the anticancer activity of UA. Methods: Relevant research articles on Pubmed and Web of Science in recent years were searched selectively by using the keywords and subheadings, and were summarized systematically. Key finding: The improvement of the antitumor ability of the UA nanoformulations is mainly due to the improvement of the bioavailability and the enhancement of the targeting ability of the UA molecules. UA nanoformulations can even be combined with computational imaging technology for monitoring or diagnosis. Conclusion: Currently, a variety of UA nanoformulations, such as micelles, liposomes, and nanoparticles, which can increase the solubility and bioactivity of UA, while promoting the accumulation of UA in tumor tissues, have been prepared. Although the research of UA in the nanofield has made great progress, there is still a long way to go before the clinical application of UA nanoformulations.
Collapse
Affiliation(s)
- Longyun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Tang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
18
|
Sun X, Li H, Yi Y, Hua H, Guan Y, Chen C. Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119346. [PMID: 33387806 DOI: 10.1016/j.saa.2020.119346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study is to explore the feasibility of detection and quantification of two cheap adulterants (maltodextrin and starch) in Chinese functional food, hawthorn fruits powder (HFP), by using near infrared (NIR) spectroscopy coupled with chemometrics methods. The partial least squares discriminant analysis (PLS-DA) models were developed to discriminate the adulterated HFP from the authentic HFP, while the partial least squares regression (PLSR) models were employed to determine the contents of adulterants. In order to yield the best results, various spectra pretreatment methods and wavelength selection methods were carefully investigated. The models' qualities were assessed by the self-consistency test, the independent test and the rigorous leave-one-out cross-validation test. The metrics for the PLS-DA discriminative model included error rate, true positive rate, true negative rate and F1 score, while the metrics for the PLSR quantitative model were determination coefficient, root mean square error and residual prediction deviation. Finally, very satisfying results were obtained, which indicate that our method is quite robust and applicable, and thus has great potential for rapid detection of adulteration in powder of many other herbal plants or functional foods.
Collapse
Affiliation(s)
- Xuefen Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiling Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimin Hua
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ying Guan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chao Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of Digitalization Quality Evaluation of Chinese Materia Medica of SATCM, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica in Guangdong Universities, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica of Guangdong Province, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Shang XY, Guo R, Yu XQ, Lin B, Huang XX, Yao GD, Song SJ. Enantiomeric 8-O-4'-type neolignans from Crataegus pinnatifida exhibit cytotoxic effect via apoptosis and autophagy in Hep3B cells. Bioorg Chem 2020; 104:104267. [PMID: 32920350 DOI: 10.1016/j.bioorg.2020.104267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Crataegus pinnatifida has been famous for its nutritional purpose. However, systematic investigation on the bioactive constituents is still lacking, although this fruit has been reported for its cytotoxic effect before. In this study, two pairs of new lignan enantiomers (1a/1b, 2a/2b), which isolated using chiral chromatographic column from the fruits of C. pinnatifida were studied. The absolute configurations of enantiomers were determined by comparison between the experimental electronic circular dichroism (ECD) and calculated ECD spectra. Among them, 1a/1b exhibited a better cytotoxic effect in hepatocellular carcinoma Hep3B cells with an IC50 value of 34.97 ± 2.74 and 17.42 ± 0.71 μM, respectively. In addition, 1b induced much more apoptotic, autophagic cells than 1a in Hep3B cells. Furthermore, the underlying mechanism was demonstrated that p38 activation could promote 1b-induced apoptosis and autophagy. Moreover, 1b-induced apoptosis was significantly decreased in the presence of autophagic inhibitor Bafilomycin A1 (Baf A1), suggesting that the induction of autophagy enhanced apoptotic cell death in 1b-treated cells. In general, these findings provide a valuable basis for further understanding the effect of 8-O-4' lignans in C. pinnatifida on cytotoxic effect.
Collapse
Affiliation(s)
- Xin-Yue Shang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
21
|
Guerra ÂR, Paulino AF, Castro MM, Oliveira H, Duarte MF, Duarte IF. Triple Negative Breast Cancer and Breast Epithelial Cells Differentially Reprogram Glucose and Lipid Metabolism upon Treatment with Triterpenic Acids. Biomolecules 2020; 10:E1163. [PMID: 32784479 PMCID: PMC7464159 DOI: 10.3390/biom10081163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Plant-derived pentacyclic triterpenic acids (TAs) have gained increasing attention due to their multiple biological activities. Betulinic acid (BA) and ursolic acid (UA) modulate diverse pathways in carcinogenesis, offering increased changes of success in refractory cancers, such as triple negative breast cancer (TNBC). The present work aimed to assess the metabolic effects of BA and UA in MDA-MB-231 breast cancer cells (TNBC model), as well as in MCF-10A non-cancer breast epithelial cells, with a view to unveiling the involvement of metabolic reprogramming in cellular responses to these TAs. Cell viability and cell cycle analyses were followed by assessment of changes in the cells exo- and endometabolome through 1H NMR analysis of cell culture medium supernatants, aqueous and organic cell extracts. In MDA-MB-231 cells, BA was suggested to induce a transient upregulation of glucose consumption and glycolytic conversion, tricarboxylic acid (TCA) cycle intensification, and hydrolysis of neutral lipids, while UA effects were much less pronounced. In MCF-10A cells, boosting of glucose metabolism by the two TAs was accompanied by diversion of glycolytic intermediates to the hexosamine biosynthetic pathway (HBP) and the synthesis of neutral lipids, possibly stored in detoxifying lipid droplets. Additionally, breast epithelial cells intensified pyruvate consumption and TCA cycle activity, possibly to compensate for oxidative impairment of pyruvate glycolytic production. This study provided novel insights into the metabolic effects of BA and UA in cancer and non-cancer breast cells, thus improving current understanding of the action of these compounds at the molecular level.
Collapse
Affiliation(s)
- Ângela R. Guerra
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Ana F. Paulino
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Maria M. Castro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, CEBAL, 7801-908 Beja, Portugal
| | - Iola F. Duarte
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
22
|
Xu Q, Wang H, Li T, Chen L, Zheng B, Liu RH. Comparison of phenolics, antioxidant, and antiproliferative activities of two Hypsizygus marmoreus varieties. J Food Sci 2020; 85:2227-2235. [PMID: 32485027 DOI: 10.1111/1750-3841.15173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
Phenolics, antioxidant activities, and antiproliferative properties of brown Hypsizygus marmoreus (brown HM) and white Hypsizygus marmoreus (white HM) were compared. The results showed that the contents of (+)-catechin, gallic acid, and protocatechuic acid of brown HM were higher than those of white HM. Moreover, brown HM had greater cellular antioxidant activity (CAA), peroxyl radical scavenging capacity (PSC), and oxygen radical absorbance capacity (ORAC) values than white HM, which demonstrated that brown HM presented a stronger antioxidant capacity. Both of brown HM and white HM showed remarkable antiproliferative activities against HepG2 cells and brown HM was proven to be the more effective. The flow cytometry results revealed that both of brown HM and white HM could induce G1 arrest and cell apoptotics in a dose-dependent manner. In addition, CyclinD1, CDK4, and Bcl-2 mRNA expression levels were downregulated with the treatment of brown HM or white HM. Taken together, our study revealed that brown HM afforded better antioxidant and antiproliferative activities than white HM and laid the foundation for potential application of Hypsizygus marmoreus as source of nutraceuticals and functional food products. PRACTICAL APPLICATION: A systematic assessment of the potential differences of phenolics, antioxidant, and antiproliferative activities between different Hypsizygus marmoreus varieties was carried out in the present study. Furthermore, our findings would present possible antiproliferative mechanism of extracts of different Hypsizygus marmoreus varieties, which may provide theoretical basis for further development and utilization of Hypsizygus marmoreus.
Collapse
Affiliation(s)
- Qiuxiong Xu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center); and School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hong Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center); and School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.,Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510641, China
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Ling Chen
- Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510641, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center); and School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.,Guangdong ERA Food & Life Health Research Institute, Guangzhou, 510670, China
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Zhao P, Qiu S, Hou ZL, Xue XB, Yao GD, Huang XX, Song SJ. Sesquineolignans derivatives with neuroprotective activity from the fruits of Crataegus pinnatifida. Fitoterapia 2020; 143:104591. [DOI: 10.1016/j.fitote.2020.104591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
|
24
|
Shi D, Yang J, Jiang Y, Wen L, Wang Z, Yang B. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 2020; 152:207-215. [PMID: 32220625 DOI: 10.1016/j.freeradbiomed.2020.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Glycyrrhizae radix has been widely accepted as a functional food in Asia. Isoliquiritigenin is a characteristic bioactive chemical in this medicinal plant. In this work, the neuroprotective effect of isoliquiritigenin and the possible mechanisms were investigated. The results revealed that isoliquiritigenin exhibited better neuroprotective and antioxidant activities than quercetin, a commercial natural antioxidant. Isoliquiritigenin significantly inhibited the release of lactate dehydrogenase, and the generation of reactive oxygen species in H2O2-treated cells. The activities of superoxide dismutase, glutathione peroxidase and catalase were improved. The mRNA expression levels related to oxidative defense and cell apoptosis were reversed by isoliquiritigenin. Moreover, isoliquiritigenin might inhibit the cell apoptosis via ameliorating the loss of mitochondrial membrane potential and the change of nucleus morphology.
Collapse
Affiliation(s)
- Dingding Shi
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhubin Wang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou, 510900, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Manual annotation combined with untargeted metabolomics for chemical characterization and discrimination of two major crataegus species based on liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2020; 1612:460628. [DOI: 10.1016/j.chroma.2019.460628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
|
26
|
Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y, Zhu X. STAT3 signaling in ovarian cancer: a potential therapeutic target. J Cancer 2020; 11:837-848. [PMID: 31949487 PMCID: PMC6959025 DOI: 10.7150/jca.35011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has shown that Signal Transducer and Activator of Transcription 3 (STAT3) is thought to be a promising target for cancer therapy as STAT3 is frequently overexpressed in a wide range of cancer cells as well as clinical specimens, promoting tumor progression. It is widely accepted that STAT3 regulates a variety of cellular processes, such as tumor cell growth, survival, invasion, cancer stem cell-like characteristic, angiogenesis and drug-resistance. In this review, we focus on the role of STAT3 in tumorigenesis in ovarian cancer and discuss the existing inhibitors of STAT3 signaling that can be promisingly developed as the strategies for ovarian cancer therapy.
Collapse
Affiliation(s)
- Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xishan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| |
Collapse
|
27
|
Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations. Molecules 2019; 24:molecules24234420. [PMID: 31816956 PMCID: PMC6930565 DOI: 10.3390/molecules24234420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.
Collapse
|
28
|
Soares SS, Bekbolatova E, Cotrim MD, Sakipova Z, Ibragimova L, Kukula-Koch W, Giorno TBS, Fernandes PD, Fonseca DA, Boylan F. Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: An Asian Herbal Medicine. Antioxidants (Basel) 2019; 8:antiox8080300. [PMID: 31405193 PMCID: PMC6720545 DOI: 10.3390/antiox8080300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Crataegus almaatensis, an endemic ornamental plant in Kazakhstan is used in popular medicine due to its cardiotonic properties. The most studied species of the same genus are commonly found in Europe, which shows the importance of having the Kazakh species validated via its chemical and pharmacological studies. High-speed countercurrent chromatography (HSCCC) operated under optimized conditions enabled an isolation of the three main compounds from the aqueous phase of the leaves ethanol extract, further identified by nuclear magnetic resonance (NMR), as quercetin 3-O-rhamnoside (quercitrin) (4.02% of the crude extract-CECa); quercetin 3-O-β-galactoside (hyperoside) (1.82% of CECa); kaempferol 3-O-α-L-rhamnoside (afzelin) (0.94% of CECa). The CECa, the aqueous phase of the crude extract (APCa) together with the isolates were evaluated for their vascular (vascular reactivity in human internal mammary artery-HIMA), anti-nociceptive (formalin-induced liking response and hot plate) and anti-inflammatory (subcutaneous air-pouch model-SAP) activities. CECa at the concentrations of 0.014 and 0.14 mg/mL significantly increased the maximum contractility response of HIMA to noradrenaline. The APCa CR curve (0.007–0.7 mg/mL) showed an intrinsic relaxation effect of the HIMA. APCa at the dose of 100 mg/kg i.p. significantly decreased the total leukocyte count and the IL-1β release in the SAP wash.
Collapse
Affiliation(s)
- Sabrina S Soares
- Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Elmira Bekbolatova
- School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan
| | - Maria Dulce Cotrim
- Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Zuriyadda Sakipova
- School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan
| | - Liliya Ibragimova
- School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland.
| | - Thais B Sardella Giorno
- Laboratório da Dor e Inflamação, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Patrícia D Fernandes
- Laboratório da Dor e Inflamação, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Diogo André Fonseca
- Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland.
| |
Collapse
|
29
|
Licochalcone A Inhibits Cellular Motility by Suppressing E-cadherin and MAPK Signaling in Breast Cancer. Cells 2019; 8:cells8030218. [PMID: 30841634 PMCID: PMC6468539 DOI: 10.3390/cells8030218] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/16/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
A compound isolated from Glycyrrhiza uralensis, licochalcone A (LA) exhibits anti-inflammatory and anti-tumor properties in various cell lines. LA has been found to promote autophagy and suppress specificity protein 1, inducing apoptosis in breast cancer cells. However, the regulation of breast cancer cell invasion and migration by LA is elusive. Thus, the present study investigated whether LA induces apoptosis and cellular motility in MDA-MB-231 breast cells, and investigated the underlying molecular mechanisms. MDA-MB-231 cells treated with LA and cell viability measured by cell counting kit-8 assay. Apoptotic signal proteins checked by flow cytometry, fluorescent staining, and Western blot. LA effectively suppressed cell migration, and modulated E-cadherin and vimentin expression by blocking MAPK and AKT signaling. LA inhibited cell proliferation and cell cycle, modulated mitochondrial membrane potential and DNA damage, and reduced oxidative stress in MDA-MB-231 cells. LA also activated cleaved-caspase 3 and 9, significantly decreased Bcl-2 expression, ultimately causing the release of cytochrome c from the mitochondria into the cytoplasm. Overall, our findings suggest that LA decreases cell proliferation and increases reactive oxygen species production for induced apoptosis, and regulates E-cadherin and vimentin by reducing MAPK and AKT signaling, resulting in suppressed MDA-MB-231 cell migration and invasion.
Collapse
|
30
|
Cheng ZY, Lou LL, Yang PY, Song XY, Wang XB, Huang XX, Song SJ. Seven new neuroprotective sesquineolignans isolated from the seeds of Crataegus pinnatifida. Fitoterapia 2019; 133:225-230. [DOI: 10.1016/j.fitote.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 11/30/2022]
|
31
|
Gawel AM, Godlewska M, Grech-Baran M, Stachurska A, Gawel D. MIX2: A Novel Natural Multi-Component Modulator of Multidrug-Resistance and Hallmarks of Cancer Cells. Nutr Cancer 2019; 71:334-347. [PMID: 30676767 DOI: 10.1080/01635581.2018.1560480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidrug resistance is one of the key barriers suppressing the effectiveness of drug therapies of malignant tumors. Here, we report a study on the effect of a mix of natural extracts (MIX2) prepared from fresh fruits of Prunus spinosa, Crataegus monogyna, Sorbus aucuparia, and Euonymus europaeus on the classic hallmarks of cancer cells and the expression of multidrug resistance proteins. In the studies, HeLa and T98G cell lines, and classic methods of molecular biology, including RT-qPCR, Western blot, flow cytometry, and confocal imaging, were used. Additionally, migration, adhesion, and proliferation assays were performed. The obtained results indicate that the MIX2 cocktail presents strong anti-cancer properties. MIX2 is not toxic, but at the same time significantly alters the migration, proliferation, and adhesion of tumor cells. Furthermore, it was found that cells exposed to the mixture presented a significantly reduced expression level of genes associated with MDR, including ABCB1, which encodes for glycoprotein P. In vitro data showed that MIX2 effectively sensitizes tumor cells to doxorubicin. We postulate that modulation of the multidrug resistance phenotype of tumors with the use of MIX2 may be considered as a safe and applicable tool in sustaining drug delivery therapies of malignancies.
Collapse
Affiliation(s)
- Agata M Gawel
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Marlena Godlewska
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Marta Grech-Baran
- b Laboratory of Plant Pathogenesis , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Stachurska
- c Department of Immunohematology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Damian Gawel
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| |
Collapse
|
32
|
Shan CH, Guo J, Sun X, Li N, Yang X, Gao Y, Qiu D, Li X, Wang Y, Feng M, Wang C, Zhao JJ. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J Anim Sci 2019; 96:4444-4457. [PMID: 30032262 DOI: 10.1093/jas/sky270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Heat stress (HS) causes significant economic losses and has become a continual challenge in the dairy industry worldwide. The objective of this study was to evaluate the effects of a dietary supplement on milk performance and immune function in late-lactation cows under HS conditions. The supplement was a fermented Chinese herbal medicines (CHMs) mixture consisting of 18 herbs. Forty lactating Holstein cows (560 ± 51.0 kg of initial BW, 230 ± 10.0 DIM, 16 ± 3.0 kg of milk per day) were randomly assigned into 4 treatment groups (10 cows per group). Each group was fed a dietary supplemented with 0, 25, 50, or 100 g CHMs per cow per day. Cows were housed at high ambient temperature-humidity index (average 74.5) for an experimental period of 42 d during the summer months. Milk yield, composition, immune responses involving blood lymphocyte apoptosis rate, serum biochemical parameters, and genes expression in lymphocytes were evaluated on days 14, 28, and 42, respectively. Results showed that milk yield, milk fat, and protein content were greater (all P < 0.05) for 50 or 100 g/d CHMs compared with the group without CHMs supplements throughout the experimental period. On the other hand, increasing CHMs dose demonstrated a greater lymphocyte or leukocyte count (P < 0.01). By flow cytometry analysis, early or late apoptosis rate of the lymphocytes was decreased (P < 0.05) by CHMs supplements. The immunity-related biochemistry and genes transcript responses involving cytokines (IL-1, IL-2, IL-6, and IL-12), apoptosis (Bak, Mcl-1, Bax, Bcl-2, Bcl-xl, and P53), and immunoglobulins (IgA, IgG, and IgM) were investigated. Compared with the unsupplemented group, the serum IL-2 and IL-6 levels, as well as IL-2 mRNA expression, increased (P < 0.05) for 100 g/d. However, the serum IL-1 level tended to decrease (P = 0.08) with increasing CHMs dose, and IL-1 mRNA expression was down-regulated (P = 0.02) by up to 24% for 100 g/d. Additionally, the serum Bax level decreased (P < 0.01) and Bcl-2 level increased (P = 0.01) for 100 g/d. Bax and Bak mRNA expressions were down-regulated (P < 0.05), and Bcl-2 and Bcl-xl expression were up-regulated (P < 0.05) for 50 or 100 g/d. The mRNA expressions of P53 and Mcl-1 were not affected by CHMs (P > 0.10). Besides, serum IgG levels were greater (P < 0.01) for 50 or 100 g/d, compared with unsupplemented group. In conclusion, CHMs supplements may improve milk performance and immune function in dairy cows under HS conditions.
Collapse
Affiliation(s)
- Chun-Hua Shan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Jianjun Guo
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Xinsheng Sun
- College of Information Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Nan Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Yuhong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Dianrui Qiu
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Xuemei Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Yanan Wang
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Man Feng
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Chao Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Juan Juan Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| |
Collapse
|
33
|
Wen L, Shi D, Zhou T, Liu H, Jiang Y, Yang B. Immunomodulatory mechanism of α-d-(1→6)-glucan isolated from banana. RSC Adv 2019; 9:6995-7003. [PMID: 35518514 PMCID: PMC9061079 DOI: 10.1039/c9ra00113a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022] Open
Abstract
Banana is a delicious fruit with potent immunomodulatory function. In this study, α-d-(1→6)-glucan was purified from banana pulp. It could significantly promote pinocytic activity and production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA expression of nitric oxide synthase (iNOS), IL-6 and TNF-α was increased in RAW264.7 macrophages. α-d-(1→6)-glucan could not only increase the expression levels of p-p65 and p-IκBα, but also induce the translocation of nuclear factor-kappa B (NF-κB) p65 into the nucleus. Moreover, mitogen-activated protein kinases (MAPKs), including p-ERK, p-JNK and p-p38, were upregulated. These results suggested that NF-κB and MAPK signaling pathways were involved in the immunomodulatory mechanisms of α-d-(1→6)-glucan. The results revealed that α-d-(1→6)-glucan might be the critical component responsible for the health benefits of banana. Banana is a delicious fruit with potent immunomodulatory function.![]()
Collapse
Affiliation(s)
- Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Dingding Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Ting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Huiling Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
34
|
Bekbolatova E, Kukula-Koch W, Baj T, Stasiak N, Ibadullayeva G, Koch W, Głowniak K, Tulemissov S, Sakipova Z, Boylan F. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe aim of this study was to investigate polyphenolic composition of different parts (leaves, flowers and fruits) of Crataegus almaatensis Pojark, an endemic plant of Kazakhstan, and compare it to a well known European Crataegus oxyacantha L. flowers. A Qual-Quant analysis was performed based on HR-MS measurements on 22 secondary metabolites: flavonoids and phenolic acids. Another goal was to evaluate the antioxidant potency of hawthorn extracts which was expressed in the total phenolic content and DPPH scavenging potency tests. Leaf extracts from C. almaatensis were found to be the most rich in metabolites and the most active in antiradical tests (IC50 value of 48 μg/ml and TPC of 218 mg/g). The weakest potential was determined for the fruit extract of this species. According to the performed principal component analysis (PCA), the fruit extracts were not correlated with other organs of the plant, and the metabolites responsible for the extracts’ differentiation were cyanidin 3-glucoside and quetcetin 3-galactoside. Based on a high correlation factor, the flowers of the Kazakh species was found to be as rich in polyphenols as the European hawthorn. The results of this study indicate that C. almaatensis is a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Elmira Bekbolatova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tolebi street, 050000, Almaty, Kazakhstan
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki Str., 20-093, Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki Str., 20-093, Lublin, Poland
| | - Natalia Stasiak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki Str., 20-093, Lublin, Poland
| | - Galiya Ibadullayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tolebi street, 050000, Almaty, Kazakhstan
| | - Wojciech Koch
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki Str., 20-093, Lublin, Poland
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093, Lublin, Poland
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information, Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Rzeszow, Poland
| | - Saken Tulemissov
- Department of Chemistry and Biology, Kazakhstan Engineering and Pedagogical University of Friendship of Peoples, 32 Tole bi street, Shymkent, Kazakhstan
| | - Zuriyadda Sakipova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tolebi street, 050000, Almaty, Kazakhstan
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, Dublin, 2, Ireland
| |
Collapse
|
35
|
Li Y, Li C, Yu J, Gao Y, Zhao Y, Xue D, Zhang G, Chai Y, Ke Y, Zhang H. Rapid separation and characterization of comprehensive ingredients in Yangxinshi tablet and rat plasma by ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1335213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yang Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Chengjian Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Jing Yu
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yue Gao
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Yahong Zhao
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Dan Xue
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Ying Ke
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int J Mol Sci 2017; 18:ijms18030643. [PMID: 28300756 PMCID: PMC5372655 DOI: 10.3390/ijms18030643] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.
Collapse
|