1
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
2
|
Chang CH, Lu CT, Chen TL, Chen HC, Pan WC, Chang CW, Chen YC, Yu YL. Relationships between bisphenol A and paraben exposure, oxidative stress, and the activity of outer hair cells in the cochlea in children with hearing loss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117310. [PMID: 39536565 DOI: 10.1016/j.ecoenv.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to determine the associations of childhood exposure to bisphenol A (BPA) and parabens (PBs) with oxidative stress and the activity of outer hair cells (OHCs) in the cochlea of children with hearing loss (HL). A total of 641 children were enrolled in this cross-sectional study. Urinary concentrations of BPA and four PBs including methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), and butyl paraben (BP) were quantified by using liquid chromatography-tandem mass spectrometry (LC/MSMS). Four urinary biomarkers of oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 4-hydroxynonenal mercapturic acid (HNE-MA), and 8-isoprostaglandin F2α (8-iso-PGF2α), were measured using high-performance liquid chromatography-electrospray ionization mass spectrometry. Hearing tests were conducted by an audiologist in the audiometric test room, and the results were confirmed by an otolaryngologist. The activity of OHCs in the cochlea was measured by distortion product otoacoustic emissions (DPOAEs). The associations of BPA/PB exposure and oxidative stress with the activity of OHCs at different frequencies were evaluated in the multivariable linear regression models. There were 91 children with HL, for an incidence of approximately 14.2 %. There was a significant negative association between the presence of EP (1.5 K Hz, 3 K Hz) or PP (2 K Hz) or 8-OHdG (1 K Hz, 1.5 K Hz, 2 K Hz) and the activity of OHCs in the left ear. Significant results were also observed for BPA (2 K Hz), MP (1 K Hz, 1.5 K Hz, 2 K Hz), EP (3 K Hz), and 8-OHdG (2 K Hz) in the right ear. This study revealed that exposure to BPA/PBs reduces the activity of OHCs, especially at middle frequencies, in children.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Chun-Ting Lu
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Tai-Ling Chen
- Department of Otorhinolaryngology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Wei Chang
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chun Chen
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Yu-Lin Yu
- Department of Otorhinolaryngology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Kirindage KGIS, Jayasinghe AMK, Ko CI, Ahn YS, Heo SJ, Kim EA, Cho NK, Ahn G. Photoprotective Effect of Ultrasonic-Assisted Ethanol Extract from Sargassum horneri on UVB-Exposed HaCaT Keratinocytes. Antioxidants (Basel) 2024; 13:1342. [PMID: 39594484 PMCID: PMC11591288 DOI: 10.3390/antiox13111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The present study investigated the photoprotective effect of the ultrasonic-assisted ethanol extract (USHE) from Sargassum horneri, a brown seaweed containing fucosterol (6.22 ± 0.06 mg/g), sulfoquinovosyl glycerolipids (C23H43O11S, C25H45O11S, C25H47O11S, C27H49O11S), and polyphenols, against oxidative damage in ultraviolet B (UVB)-exposed HaCaT keratinocytes. USHE indicated antioxidant activity in ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. After screening experiments, 15.6, 31.3, and 62.5 µg/mL concentrations of USHE and ascorbic acid as positive control were selected to be used throughout the investigation. USHE increased cell viability by markedly reducing the production of intracellular reactive oxygen species (ROS) in UVB-exposed HaCaT keratinocytes. Additionally, USHE reduced the apoptosis and sub-G1 cell population and increased the mitochondrial membrane potential. Moreover, USHE modulated the protein expression levels of anti-apoptotic molecules (Bcl-xL, Bcl-2, and PARP) and pro-apoptotic molecules (Bax, cleaved caspase-3, p53, cleaved PARP, and cytochrome C). This modulation accorded with the upregulation of cytosolic heme oxygenase (HO)-1, NAD(P)H quinone oxidoreductase 1 (NQO 1), and nuclear factor erythroid-2-related factor 2 (Nrf2), collectively known as components of the antioxidant system. These findings suggest that USHE has a photoprotective effect on UVB-exposed HaCaT keratinocytes and can be utilized to develop cosmeceuticals for UVB protection.
Collapse
Affiliation(s)
| | | | - Chang-Ik Ko
- Choung Ryong Fisheries Co., Ltd., Jeju-si 63612, Republic of Korea; (C.-I.K.); (Y.-S.A.)
| | - Yong-Seok Ahn
- Choung Ryong Fisheries Co., Ltd., Jeju-si 63612, Republic of Korea; (C.-I.K.); (Y.-S.A.)
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (S.-J.H.); (E.-A.K.)
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (S.-J.H.); (E.-A.K.)
| | - Nam-Ki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
4
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Lin RR, Lin DA, Maderal AD. Toxic Ingredients in Personal Care Products: A Dermatological Perspective. Dermatitis 2024; 35:121-131. [PMID: 38109205 DOI: 10.1089/derm.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.
Collapse
Affiliation(s)
- Rachel R Lin
- From the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Deborah A Lin
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Sang SH, Akowuah GA, Liew KB, Lee SK, Keng JW, Lee SK, Yon JAL, Tan CS, Chew YL. Natural alternatives from your garden for hair care: Revisiting the benefits of tropical herbs. Heliyon 2023; 9:e21876. [PMID: 38034771 PMCID: PMC10685248 DOI: 10.1016/j.heliyon.2023.e21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Hair shampoos containing botanical ingredients without synthetic additives, such as parabens, petrochemicals, sulfates and silicones are more skin- and environmentally friendly. In recent years, there is a growing demand for shampoo products with botanical extracts. Shampoos with botanical extracts are well-known for their perceived health benefits. They are also generally milder, non-toxic, natural, and less likely to disrupt the hair and scalp's natural pH and oil balance. Many also believe that shampoos with botanical origins have higher standards of quality. Numerous botanical extracts had been used as natural active ingredients in cosmetic formulations to meet consumer demands. In this review, we have revisited six tropical plants commonly added as natural active ingredients in shampoo formulations: Acacia concinna, Camellia oleifera, Azadirachta indica, Emblica officinalis, Sapindus mukorossi, and Garcinia mangostana. These plants have been traditionally used for hair care, and scientific research has shown that they exhibit relevant physicochemical properties and biological activities that are beneficial for hair care and scalp maintenance.
Collapse
Affiliation(s)
- Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | | | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jessica-Ai-Lyn Yon
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai, 71800, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Kumar S, Bhogal S, Malik AK, Aulakh JS. Magnetic graphene oxide carbon dot nanocomposites as an efficient quantification tool against parabens in water and cosmetic samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104319-104335. [PMID: 37704806 DOI: 10.1007/s11356-023-29613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
A new method is developed for the simultaneous detection and extraction of parabens, including methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), and butyl paraben (BP), based on magnetic graphene oxide carbon dot nanocomposites (Fe3O4@GO@CD). Fe3O4@GO@CD has been synthesized using one pot hydrothermal method by intercalating iron oxide and carbon dots between the layers of graphene oxide. Fe3O4@GO@CD was applied as the magnetic solid phase sorbent for the simultaneous extraction and detection of parabens from water (tap and river water) and cosmetic samples (hair serum and sunscreen cream). MP was measured at concentration of 0.25-0.26 ng/mL in hair serum, while PP at 0.32-0.33 ng/mL in sunscreen cream. Notably, good recoveries (88.74-98.03%; RSD = 2.31-6.88%) for river and tap water with detection limit of 0.039-0.046 ng/mL were attained. The method has good cyclability up to 16 cycles and was highly repeatable. All these findings suggest that the Fe3O4@GO@CD would be potential sorbent for the analysis of parabens.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | | |
Collapse
|
8
|
Chang CH, Lu CT, Chen TL, Huang WT, Torng PC, Chang CW, Chen YC, Yu YL, Chuang YN. The association of bisphenol A and paraben exposure with sensorineural hearing loss in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100552-100561. [PMID: 37635162 DOI: 10.1007/s11356-023-29426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bisphenol A (BPA) and parabens (PBs) are chemicals that are extensively used in personal care products (PCPs). In early childhood development, hearing is critical to speech and language development, communication, and learning. In vitro and in vivo, BPA/PBs exhibited neurotoxicity through elevated levels of oxidative stress. BPA also has the potential to be an ototoxicant. Therefore, this study aimed to determine the association of exposure to BPA/PBs with sensorineural hearing loss in children. A cross-sectional study based on hearing tests was conducted. This study enrolled 320 children aged 6-12 years from elementary school. Urinary BPA and PB concentrations were analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Logistic regression models were employed to determine the association of BPA/PB exposure with sensorineural hearing loss. Children with sensorineural hearing loss had higher BPA concentrations than normal-hearing children (0.22 ng/ml vs. 0.10 ng/ml, p = 0.05). After adjustment for covariates, the risk of hearing loss at middle frequencies reached 1.83-fold (95% CI: 1.12-2.99) when BPA concentrations increased by 1 log10. The risk of slight hearing loss reached 2.24-fold (95% CI: 1.05-4.78) when children had a tenfold increase in ethyl paraben (EP) concentration. This study clarifies the role of exposure to BPA/PBs in hearing loss in children. Future research needs to be expanded to include cohort designs and nationwide studies to identify causality.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Chun-Ting Lu
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Tai-Ling Chen
- Department of Otorhinolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Wen-Tzu Huang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Pao-Chuan Torng
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chen-Wei Chang
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chun Chen
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Yu-Lin Yu
- Department of Otorhinolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Yung-Ning Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Głaz P, Rosińska A, Woźniak S, Boguszewska-Czubara A, Biernasiuk A, Matosiuk D. Effect of Commonly Used Cosmetic Preservatives on Healthy Human Skin Cells. Cells 2023; 12:cells12071076. [PMID: 37048149 PMCID: PMC10093056 DOI: 10.3390/cells12071076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Cosmetic products contain preservatives to prevent microbial growth. The various types of preservatives present in skincare products applied on the skin induce many side effects. We tested several types of preservatives such as phenoxyethanol, methyl paraben, propyl paraben, imidazolidinyl urea (IU), the composition of gluconolactone and sodium benzoate (GSB), diazolidinyl urea (DU), and two grapefruit essential oils, one of which was industrially produced and a second which was freshly distilled from fresh grapefruit peels. This study aimed to find the relationship between preservative concentration, cell growth, collagen secretion, and cell viability. We hypothesized that these products induced a decrease in collagen secretion from human dermal fibroblasts. Our research, for the first time, addressed the overall effect of other preservatives on skin extracellular matrix (ECM) by studying their effect on metalloproteinase-2 (MMP-2) activity. Except for cytotoxicity and contact sensitivity tests, there are no studies of their effect on skin ECM in the available literature. These studies show potential antimicrobial activity, especially from the compounds IU and DU towards reference bacteria and the compounds methyl paraben and propyl paraben against reference fungi. The MTS test showed that fibroblasts are more sensitive to the tested group of preservatives than keratinocytes, which could be caused by the differences between the cells' structures. The grapefruit oils exhibited the most cytotoxicity to both tested cell lines compared to all considered preservatives. The most destructive influence of preservatives on collagen synthesis was observed in the case of IU and DU. In this case, the homemade grapefruit oil turned out to be the mildest one. The results from a diverse group of preservatives show that whether they are natural or synthesized compounds, they require controlled use. Appropriate dosages and evaluation of preservative efficacy should not be the only aspects considered. The complex effect of preservatives on skin processes and cytotoxicity is an important topic for modern people.
Collapse
Affiliation(s)
- Patrycja Głaz
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agata Rosińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Negi S, Chopra D, Shukla S, Vikram A, Patel SK, Bala L, Dwivedi A, Ray RS. Involvement of type-1 pathway in phototoxicity of benzo[ghi]perylenean ingredient of tattoo ink at ambient exposure of UVR and sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112700. [PMID: 37229973 DOI: 10.1016/j.jphotobiol.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/27/2023]
Abstract
Tattooing on different parts of the body is a very common fashion trend in all sections of society globally. Skin allergies and other related skin diseases are very common among tattoo users. Benzo[ghi]perylene (BP) is a PAH and an important component of tattoo ink that showed prominent absorption under ultraviolet radiation (UVR) region. Therefore, to provide safety to the skin, a thorough safety study of BP exposed under UVR and Sunlight is very essential to understand their hazardous impact on the skin. BP showed a strong absorption of UVA and UVB radiation of sunlight. It is photolabile and degraded under UVA, UVB, and Sunlight in progressing order of time (1-4 h) without generating any novel photoproducts. Further, BP showed a specific generation of O2.- and OH radicals via activation of type I photodynamic reaction under exposure to UVA, UVB and Sunlight. Photocytotoxicity results illustrated concentration-dependent cell viability reduction in all exposure conditions of UVA, UVB, and Sunlight, respectively. Fluorescent probes (2',7'-dichlorofluorescein diacetate and dihydroethidium) for intracellular reactive oxygen species (ROS) generation supported the involvement of ROS in the phototoxicity of BP in the HaCaT cell line. Hoechst staining showed significant genomic insult induced by BP under UVA and UVB. Photoexcited BP promoted cell cycle arrest in the G1 phase and induced apoptosis confirmed via acridine orange/ethidium bromide staining. The findings of gene expression also supported apoptotic cell death in photoexcited BP via an increase in the level of pro-apoptotic gene (Bax) and a decrease in the level of anti-apoptotic gene (Bcl-2). The aforementioned finding indicates that tattoo users should avoid using BP since it can cause skin damage/diseases if they are exposed to UVR or Sunlight while tattooing on the body.
Collapse
Affiliation(s)
- Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Martins RM, de Siqueira Martins S, Barbosa GLF, Fonseca MJV, Rochette PJ, Moulin VJ, de Freitas LAP, de Freitas LAP. Photoprotective effect of solid lipid nanoparticles of rutin against UVB radiation damage on skin biopsies and tissue-engineered skin. J Microencapsul 2022; 39:668-679. [PMID: 36476253 DOI: 10.1080/02652048.2022.2156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid lipid nanoparticles (SLNs) containing rutin were prepared to enhance their photochemopreventive effect on the skin. SLNs were produced by the hot melt microemulsion technique. Two 3D skin models: ex vivo skin explants and 3D tissue engineering skin were used to evaluate the photochemopreventive effect of topical formulations containing rutin SLNs, against ultraviolet B (UVB) radiation, inducing sunburn cells, caspase-3, cyclobutane pyrimidine dimers, lipid peroxidation, and metalloproteinase formation. The rutin SLNs presented average size of 74.22 ± 2.77 nm, polydispersion index of 0.16 ± 0.04, encapsulation efficiency of 98.90 ± 0.25%, and zeta potential of -53.0 ± 1.61 mV. The rutin SLNs were able to efficiently protect against UVB induced in the analysed parameters in both skin models. Furthermore, the rutin SLNs inhibited lipid peroxidation and metalloproteinase formation. These results support the use of rutin SLNs as skin photochemopreventive agents for topical application to the skin.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Paraíba, Brazil.,Center of Higher Education and Development (CESED)-UNIFACISA, Campina Grande, Paraíba, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Shukla S, Chopra D, Patel SK, Negi S, Srivastav AK, Ch R, Bala L, Dwivedi A, Ray RS. Superoxide anion radical induced phototoxicity of 2,4,5,6-Tetraminopyrimidine sulfate via mitochondrial-mediated apoptosis in human skin keratinocytes at ambient UVR exposure. Food Chem Toxicol 2022; 164:112990. [PMID: 35398180 DOI: 10.1016/j.fct.2022.112990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
2,4,5,6-Tetraaminopyrimidine sulfate (TAPS) is worldwide the most commonly used developer in hair dyes. As skin is the major organ, which is directly exposed to these permanent hair dyes, a comprehensive dermal safety assessment is needed. Hereto, we studied the photosensitization potential and mechanism involved in dermal phototoxicity of TAPS exposed to the dark and UVA/UVB/Sunlight by using different in-chemico and mammalian (HaCaT) cells, as test systems. Our experimental outcomes illustrate that TAPS get photodegraded (LC-MS/MS) and specifically generated superoxide anion radical (O2•-) under UVA and UVB via type-I photodynamic reaction. The phototoxic potential of TAPS is measured through MTT, NRU, and LDH assays that depicted a significant reduction in cell viability at the concentration of 25 μg/ml and higher. Different cellular stainings (PI uptake, AO/EB, JC-1, NR uptake) suggested the role of mitochondrial-mediated apoptosis. Further, the transcriptomics study revealed upregulation of Apaf-1, Bax, Caspase 3, Caspase 9, Cytochrome c and downregulation of Bcl-2 and Catalase by TAPS treated cells that strengthen our findings. Thus, the above findings suggest that chronic application of TAPS may be hazardous for human skin and promote various skin diseases.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ratnasekhar Ch
- CSIR-Central Institute of Medicinal and Aromatic Plants, Kukrail, Picnic Spot Road, Lucknow, 226015, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Comparative study of the photo‑protective and anti‑melanogenic properties of gomisin D, J and O. Mol Med Rep 2021; 25:8. [PMID: 34751410 PMCID: PMC8600414 DOI: 10.3892/mmr.2021.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Skin cancer is the most common human malignancy worldwide and solar ultraviolet (UV) radiation is known to serve an important role in its pathogenesis. Natural candidate compounds with antioxidant, photoprotective and anti-melanogenic effects were investigated against the background of skin photoprotective and anti-melanogenic properties. Gomisin D, J and O are dibenzocyclooctadiene lignans present in Kadsura medicinal plants and possess several pharmacological activities. In this study, the functions and mechanisms underlying the effects of gomisin D, J and O in UVA-and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes were explored. Following UVA and UVB irradiation, keratinocytes were treated with gomisin D, J and O, and keratinocyte viability, lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) production and apoptosis were examined. The results demonstrated that gomisin D and J improved keratinocyte viability and reduced LDH release under UVA and UVB irradiation. Intracellular ROS production induced by UVA and UVB irradiation was suppressed by gomisin D and J. In addition, Annexin V and TUNEL staining analysis indicated that gomisin D and J have significant anti-apoptotic effects on UVA-and UVB-irradiated keratinocytes. After α-MSH stimulation, melanocytes were treated with gomisin D, J and O, and the changes in melanocyte viability, intracellular melanin content, intracellular tyrosinase activity, and mechanisms underlying these changes were examined. Gomisin D markedly inhibited the α-MSH-induced increase in intracellular melanin content and tyrosinase activity. Mechanistically, gomisin D reduced the protein and mRNA expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 in α-MSH-stimulated melanocytes. In addition, gomisin D markedly downregulated α-MSH-induced phosphorylation of protein kinase A and cAMP response element binding protein, which are known to be present upstream of the MITF, tyrosinase, TRP-1 and TRP-2 genes. Overall, gomisin D has photoprotective and anti-melanogenic effects; these findings provide a basis for the production of potential brightening and photoprotective agents using natural compounds such as gomisin D.
Collapse
|
14
|
Jeon JS, Kang HM, Park JH, Kang JS, Lee YJ, Park YH, Je BI, Park SY, Choi YW. A Comparative Study on Photo-Protective and Anti-Melanogenic Properties of Different Kadsura coccinea Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1633. [PMID: 34451678 PMCID: PMC8401305 DOI: 10.3390/plants10081633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Kadsura coccinea (KC), a beneficial plant for human health, has been used for centuries in China, Thailand, and Korea in folk medicine and food. There is evidence supporting the biological effects of highly bioactive ingredients in KC such as lignans, triterpenoids, flavonoids, phenolic acids, steroids, and amino acids. In this study, we aimed to explore the effects, functions, and mechanisms of the extracts from KC root (KCR), stem (KCS), leaf (KCL), and fruit (KCF) in UVA and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes. First, the total polyphenol and flavonoid contents of KCR, KCS, KCL, and KCF and their radical scavenging activities were investigated. These parameters were found to be in the following order: KCL > KCR > KCS > KCF. UVA and UVB-irradiated keratinocytes were treated with KCR, KCS, KCL, and KCF, and keratinocyte viability, LDH release, intracellular ROS production, and apoptosis were examined. Our results demonstrated that KC extracts improved keratinocyte viability and reduced LDH release, intracellular ROS production, and apoptosis in the presence UVA and UVB irradiation. The overall photoprotective activity of the KC extracts was confirmed in the following order: KCL > KCR > KCS > KCF. Moreover, KC extracts significantly decreased the intracellular melanin content and tyrosinase activity in α-MSH-stimulated melanocytes. Mechanistically, KC extracts reduced the protein and mRNA expression levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated melanocytes. In addition, these extracts markedly downregulated myophthalmosis-related transcription factor expression and cAMP-related binding protein phosphorylation, which is upstream of the regulation of Tyrosinase, TRP-1, and TRP-2. The overall anti-melanogenic activity of the KC extracts was established in the following order. KCL > KCR > KCS > KCF. Overall, the KC extracts exert photoprotective and anti-melanogenic effects, providing a basis for developing potential skin-whitening and photoprotective agents.
Collapse
Affiliation(s)
- Joong Suk Jeon
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Ju Ha Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Jum Soon Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Yong Jae Lee
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Young Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| |
Collapse
|
15
|
Matwiejczuk N, Galicka A, Brzóska MM. Review of the safety of application of cosmetic products containing parabens. J Appl Toxicol 2021; 40:176-210. [PMID: 31903662 DOI: 10.1002/jat.3917] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Cosmetics are a source of lifetime exposure to various substances including parabens, being the most popular synthetic preservatives. Because the use of cosmetics shows an increasing trend and some adverse health outcomes of parabens present in these products have been reported, the present review focused on the safety of dermal application of these compounds. Special attention has been paid to the absorption of parabens and their retention in the human body in the intact form, as well as to their toxicological characteristics. Particular emphasis has been placed on the estrogenic potential of parabens. Based on the available published data of the concentrations of parabens in various kinds of cosmetics, the average ranges of systemic exposure dose (SED) for methylparaben, ethylparaben, propylparaben, and butylparaben have been calculated. Safety evaluations [margin of safety (MoS)] for these compounds, based on their aggregate exposure, have also been performed. Moreover, evidence for the negative impact of methylparaben on skin cells has been provided, and the main factors that may intensify dermal absorption of parabens and their impact on the skin have been described. Summarizing, the use of single cosmetics containing parabens should not pose a hazard for human health; however, using excessive quantities of cosmetic preparations containing these compounds may lead to the development of unfavorable health outcomes. Due to the real risk of estrogenic effects, as a result of exposure to parabens in cosmetics, simultaneous use of many cosmetic products containing these preservatives should be avoided.
Collapse
Affiliation(s)
- Natalia Matwiejczuk
- Department of Medical Chemistry, Medical University of Białystok, Bialystok, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, Bialystok, Poland
| | | |
Collapse
|
16
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Kukkar D, Kim KH. Chitosan-Ni/Fe layered double hydroxide composites as an efficient solid phase extraction sorbent for HPLC-PDA monitoring of parabens in personal care products. CHEMOSPHERE 2021; 264:128429. [PMID: 33011479 DOI: 10.1016/j.chemosphere.2020.128429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
There is a dire need for development of efficient and sensitive methods to efficiently screen parabens. In this research, we focused on quantification of four parabens (i.e., methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butyl paraben (BP)) using chitosan intercalated nickel/iron layered double hydroxide (CS-Ni/Fe-LDH) composites as solid phase extraction sorbent prior to HPLC-PDA analysis. CS-Ni/Fe LDH composites with a heterogeneous, porous texture, and coral reef-like structure exhibit appealing extraction efficiency for the target parabens due to the enhanced possibility for the formation of hydrogen bonding and hydrophobic interactions. The performance of the composites was assessed and optimized for solid phase extraction of parabens from standard samples and real samples (rose water, cream, toothpaste, hair serum, and sunscreen). The LDH-SPE-HPLC method exhibited a wide linear range (e.g., 100-50,000 ng L-1), good linearity (R2 ≥ 0.999), and good precision (relative standard deviation (RSD) < 3%). This method successfully enriched selected parabens with remarkable recovery above 85.95% and a good RSD (0.01-2.90%). The quantitation of MP, EP, PP, and BP was made at detection range (and limits of detection (LOD)) of 5-15 (9.8), 11-21 (16.2), 6-18 (12.4), and 10-20 (15.6) ng L-1, respectively. The prepared composites also displayed excellent performance with enhanced reusability/durability (n = 30 cycles) and reproducibility (n = 5).
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India; Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Seino H, Kawaguchi N, Arai Y, Ozawa N, Hamada K, Nagao N. Investigation of partially myristoylated carboxymethyl chitosan, an amphoteric-amphiphilic chitosan derivative, as a new material for cosmetic and dermal application. J Cosmet Dermatol 2020; 20:2332-2340. [PMID: 33174289 PMCID: PMC8359406 DOI: 10.1111/jocd.13833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023]
Abstract
Background Cationic amphiphilic chitosan derivatives can form polymeric micelles, which are useful cosmetic materials, but they form polyion complexes with anionic polymers, which can cause formulation difficulties. Aims This study aimed to evaluate the usefulness of partially myristoylated carboxymethyl chitosan, an amphoteric‐amphiphilic chitosan derivative, as a new material for cosmetics in the absence of a surfactant comprising an anionic polymer. Methods An anionic polymer and 1,2‐decanediol (an antimicrobial agent)‐containing partially myristoylated carboxymethyl chitosan nanoemulsified lotion and glabridin (an antimelanogenic agent)‐containing partially myristoylated carboxymethyl chitosan polymeric micelle were prepared using a pressure homogenization method. The release of interleukin‐1α, cell viability, and melanogenesis inhibition was evaluated on a human skin model. Antimicrobial activity was evaluated using agar dilution method. Results A mixture of partially myristoylated carboxymethyl chitosan and carboxyvinyl polymer did not form a polyion complex, but it formed a hydrophilic gel. The anionic polymer‐containing partially myristoylated carboxymethyl chitosan nanoemulsified formulation was stable, with no decrease in cell viability and horny layer exfoliation, which are typically observed with Tween 60. Compared with the formulation with methyl paraben (0.2%), the formulation to which 1,2‐decanediol (0.05%) was added improved the antibacterial activity against methicillin‐resistant Staphylococcus aureus and Propionibacterium acnes; however, no interleukin‐1α upregulation was observed. The glabridin‐containing partially myristoylated carboxymethyl chitosan polymeric micelles enhanced melanogenesis inhibition and percutaneous glabridin delivery to the epidermis compared with conventional emulsified micelles. Conclusions These results suggest that partially myristoylated carboxymethyl chitosan‐forming polymeric micelles, in combination with 1,2‐decanediol and glabridin, may be useful for surfactant‐free cosmetic emulsions.
Collapse
Affiliation(s)
| | | | - Yukari Arai
- Central R & D Laboratory, Pias Corporation, Kobe, Japan
| | | | | | - Norio Nagao
- Faculty of Life and Environmental Science, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
18
|
DNA interaction analysis with automated biosensor of paraben derivative s-triazines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Miranowicz-Dzierżawska K, Zapór L, Skowroń J. Differences in apoptosis levels in the different skin origin cells: Fibroblasts and keratinocytes after in vitro exposure to preservatives used in cosmetic products and present in the working environment. Toxicol In Vitro 2020; 69:105008. [PMID: 32987124 DOI: 10.1016/j.tiv.2020.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Lidia Zapór
- Central Institute for Labour Protection - National Research Institute, Warsaw, Poland.
| | - Jolanta Skowroń
- Central Institute for Labour Protection - National Research Institute, Warsaw, Poland.
| |
Collapse
|
20
|
Methylparaben induces cell-cycle arrest and caspase-3-mediated apoptosis in human placental BeWo cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00097-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Martins RM, Alves GDAD, Martins SDS, de Freitas LAP, Rochette PJ, Moulin VJ, Fonseca MJV. Apple Extract ( Malus sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Res 2020; 23:465-475. [PMID: 32242497 DOI: 10.1089/rej.2019.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin is exposed to the solar ultraviolet B (UVB) radiation, which leads to the formation of several types of skin damage responsible for cancer initiation and aging. Malus sp. is a genus of apples, which are a good source of polyphenolic compounds. Malus sp. and more precisely one of its components, rutin, have preventive effects on many diseases caused by reactive oxygen species. In addition, previous studies have suggested the topical usage of the extract as a cosmetic product to prevent skin damage caused by oxidative stress. In this study, we evaluated the efficacy of two topical formulations containing 1.25% of Malus sp. extract and the equivalent amount of rutin (0.75%). The photochemopreventive effect was assessed on two three-dimensional (3D) skin models, that is, ex vivo skin explants and 3D tissue-engineered skin to compare the models. Both formulations protected against the UVB-induced increase in sunburn cell formation, as well as caspase-3 activation and cyclobutane pyrimidine dimer formation in both skin models. Furthermore, the formulations inhibited the lipid peroxidation and the metalloproteinase formation induced by UVB radiation. The tissue-engineered skins and the skin explants provided effective tools to assess the UVB-induced damages. These results support use of the Malus sp. extract and rutin as skin photochemopreventive agents for topical application.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Georgia de Assis Dias Alves
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Matwiejczuk N, Galicka A, Zaręba I, Brzóska MM. The Protective Effect of Rosmarinic Acid Against Unfavorable Influence of Methylparaben and Propylparaben on Collagen in Human Skin Fibroblasts. Nutrients 2020; 12:E1282. [PMID: 32369933 PMCID: PMC7281983 DOI: 10.3390/nu12051282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Parabens, which are widely used in food, medicines and cosmetics, have a harmful effect on human health. People are most exposed to parabens transdermally by using cosmetic products containing these preservatives. The purpose of this study was to estimate the influence of parabens (methylparaben-MP and propylparaben-PP) on the metabolism of collagen in the human skin fibroblasts and above all, to assess whether rosmarinic acid (RA-50, 100, or 150 M) can protect these cells from the adverse effects of parabens (0.001% MP and 0.0003% PP, 0.003% MP and 0.001% PP, and 0.01% MP and 0.003% PP). The possible mechanisms of RA action were estimated as well. Parabens decreased the expression of collagen type I and III at mRNA and protein levels, while RA (depending on the concentration) provided partial or total protection against these changes. The effective protection against the adverse effects of parabens on cell viability and proliferation was also provided by RA. The beneficial impact of RA on collagen and the fibroblasts resulted from an independent action of this compound and its interaction with parabens. This study allows us to conclude that this polyphenolic compound may protect from unfavorable health outcomes caused by lifetime human exposure to parabens contained in cosmetic products.
Collapse
Affiliation(s)
- Natalia Matwiejczuk
- Department of Medical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A street, 15-222 Bialystok, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A street, 15-222 Bialystok, Poland
| | - Ilona Zaręba
- Department of Medicinal Chemistry, Medical University of Bialystok, Adama Mickiewicza 2D street, 15-222 Bialystok, Poland;
| | - Małgorzata M. Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland;
| |
Collapse
|
23
|
Kim MJ, Kim CH, An MJ, Lee JH, Shin GS, Song M, Kim JW. Ethylparaben induces apoptotic cell death in human placenta BeWo cells via the Caspase-3 pathway. Anim Cells Syst (Seoul) 2020; 24:34-43. [PMID: 32158614 PMCID: PMC7048193 DOI: 10.1080/19768354.2020.1711804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022] Open
Abstract
Parabens are generally used as preservatives in foods, pharmaceuticals, and various other commercial products. Among them, ethylparaben has weaker estrogenic characteristics than endogenous estrogen. However, growing evidence indicates that ethylparaben has an adverse effect on various human tissues. Here, we investigated whether ethylparaben induces cell death by affecting cell viability, cell proliferation, cell cycle, and apoptosis using the human placenta cell line BeWo. Ethylparaben significantly decreased cell viability in a dose-dependent manner. It caused cell cycle arrest at sub-G1 by reducing the expression of cyclin D1, whereas it decreased the cell proportion at the G0/G1 and S phases. Furthermore, we verified that ethylparaben induces apoptotic cell death by enhancing the activity of Caspase-3. Taken together, our results suggest that ethylparaben exerts cytotoxic effects in human placental BeWo cells via cell cycle arrest and apoptotic pathways.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Mina Song
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
24
|
Propylparaben induces apoptotic cell death in human placental BeWo cells via cell cycle arrest and enhanced caspase-3 activity. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-00062-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Gao Y, Wang Y, Yan Y, Tang K, Ding CF. Self-assembly of poly(ionic liquid) functionalized mesoporous magnetic microspheres for the solid-phase extraction of preservatives from milk samples. J Sep Sci 2019; 43:766-773. [PMID: 31746547 DOI: 10.1002/jssc.201900851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95-105%, the liner range were within 0.1-600 ng/mL, and the relative standard deviations were even lower than 5%.
Collapse
Affiliation(s)
- Yiqian Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Yucen Wang
- Ningbo Foreign Language School, Ningbo, P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
26
|
Kim MJ, Kim CH, Seo YJ, An MJ, Lee JH, Shin GS, Hwang JY, Park J, Kim JY, Hwang SY, Rhee S, Kim JW. Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol 2019; 94:127-140. [PMID: 31745603 DOI: 10.1007/s00204-019-02629-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Methylparaben is most frequently used as an antimicrobial preservative in pharmaceuticals and foods. Methylparaben has been subjected to toxicological studies owing to the increasing concern regarding its possible impact on the environment and human health. However, the cytotoxicity and underlying mechanisms of methylparaben exposure in human lung cells have not been explored. Here, we investigated the effect of methylparaben on cell cycle, apoptotic pathways, and changes in the transcriptome profiles in human lung cells. Our results demonstrate that treatment with methylparaben causes inhibition of cell growth. In addition, methylparaben induced S- and G2/M-phase arrest as a result of enhanced apoptosis. Transcriptome analysis using RNA-seq revealed that mRNA expression of ER stress- and protein misfolding-related gene sets was upregulated in methylparaben-treated group. RNA splicing- and maturation-related gene sets were significantly down-regulated by methylparaben treatment. Interestingly, RNA-seq analysis at the transcript level revealed that alternative splicing events, especially retained intron, were markedly changed by a low dose of methylparaben treatment. Altogether, these data show that methylparaben induces an early phase of apoptosis through cell cycle arrest and downregulation of mRNA maturation.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ju-Hyun Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Jae Yoon Hwang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Jinhong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Seung Yong Hwang
- Department of Bio-Nanotechnology, Hanyang University, Ansan, 15588, South Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
27
|
Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress–mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem 2019; 121:1273-1282. [DOI: 10.1002/jcb.29360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Ajeet K. Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
- Department of Research and Development Aryan Essentials Private Limited (Brand Name‐Wikka) New Delhi India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Syed Faiz Mujtaba
- Department of Zoology, Faculty of Science Shia P.G. College Lucknow Uttar Pradesh India
| | - Ashish Dwivedi
- Food Drug and Chemical Toxicology Division CSIR‐IITR Lucknow Uttar Pradesh India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| |
Collapse
|
28
|
Chang CH, Wang PW, Liang HW, Huang YF, Huang LW, Chen HC, Pan WC, Lin MH, Yang W, Mao IF, Chen ML. The sex-specific association between maternal paraben exposure and size at birth. Int J Hyg Environ Health 2019; 222:955-964. [PMID: 31248753 DOI: 10.1016/j.ijheh.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Parabens are a group of esters of parahydroxybenzoic acid and are utilized as antimicrobial preservatives in the majority of personal care products (PCPs). Epidemiological studies regarding the adverse effects of parabens on fetuses are still limited. The aim of this study was to determine the association between maternal paraben exposure and birth outcomes. One hundred and ninety-nine pregnant women were enrolled, and maternal urine was collected in the third trimester. The urine concentrations of four parabens (methyl (MP), ethyl (EP), propyl (PP), and butyl (BP)) were determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generalized additive model-penalized regression splines and a multivariable regression model were employed to determine the association between paraben exposure levels and birth outcomes. A causal mediation analysis was conducted to determine the mediation effect of oxidative stress on birth outcomes. The geometric means of urinary MP, EP, PP, and BP were 51.79, 1.26, 4.21, and 1.25 μg/g cre., respectively. In the penalized regression splines, sex-specific associations between maternal MP levels and birth outcomes were observed; a downward curvature was observed between the MP level and birth weight, length, head circumference, and thoracic circumference among female newborns. Pregnant women in the group with MP levels above the third quartile had neonates with significantly lower body weight (β = -215.98 g, p value = 0.02) compared to those in the group with MP levels lower than the third quartile. No significant mediation of oxidative stress was observed between maternal MP exposure and female birth weight. The estimated proportion mediated ranged from -6% to 15%. The negative association between maternal paraben exposure and female birth outcomes in relation to child development should be carefully considered.
Collapse
Affiliation(s)
- Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Hai-Wei Liang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Meng-Han Lin
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
29
|
Bereketoglu C, Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:129-139. [PMID: 30928742 DOI: 10.1016/j.scitotenv.2019.03.358] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Parabens are widely used as preservatives in different commercial items including food, cosmetics and pharmaceuticals, and their wide use has resulted in accumulation in the environment. Parabens have been shown to have negative effects on animals as well as human health. In this study, we carried out a comprehensive study to determine the adverse effects associated with propylparaben (PP) and methylparaben (MP) on early developmental stages of zebrafish. Mortality, hatching, developmental abnormalities and gene expression profiles were investigated in embryos exposed to both compounds. The semi-static exposure conditions showed that both MP (≥100 μM) and PP (≥10 μM) are toxic to the embryos in a concentration-dependent manner and lead to developmental abnormality. Malformations such as spinal defects, pericardial edema, and pigmentation defects were observed following both MP and PP treatments. Hatching delay, mortality and developmental abnormality data indicate that PP is more toxic than MP. For gene expression analysis, 1 and 10 μM doses of MP and PP were analyzed. Genes from physiological pathways including stress response, cell cycle and DNA damage, inflammation, fatty acid metabolism and endocrine functions were affected by MP and PP. The gene expression profiles show that parabens cause toxicity by inducing oxidative stress, DNA double-strand breaks, apoptosis as well as by altering fatty acid metabolism. Altered expression of androgen receptor (ar) and estrogen receptor 2 alpha (esr2a) indicates an antiandrogenic and estrogenic activity of parabens in zebrafish. Overall, the present study provides considerable information on the negative effects of MP and PP using physiological endpoints and motivates further studies to explore the molecular mechanism of the toxicity associated with parabens.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
30
|
Dubey D, Srivastav AK, Singh J, Chopra D, Qureshi S, Kushwaha HN, Singh N, Ray RS. Photoexcited triclosan induced DNA damage and oxidative stress via p38 MAP kinase signaling involving type I radicals under sunlight/UVB exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:270-282. [PMID: 30844667 DOI: 10.1016/j.ecoenv.2019.02.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is an antimicrobial preservative used in personal care products. Here, we have studied the phototoxicity, photogenotoxicity of TCS and its molecular mechanism involving p38 mitogen activated protein kinase (MAPK) pathway under UVB/sunlight exposure. We found that TCS showed photodegradation and photoproducts formation under UVB/sunlight. In silico study suggests that photosensitized TCS loses its preservative property due to the formation of its photoproducts. Photosensitized TCS induces significant O2•-, •OH generation and lipid peroxidation via type-I photochemical reaction mechanism under UVB/sunlight exposure. We performed intracellular study of TCS on human skin keratinocytes (HaCaT cell-line) under the ambient intensity of UVB (0.6 mW/cm2) and sunlight exposure. Significant intracellular ROS generation was observed through DCFH2-DA/DHE assays along with a significant reduction in cell viability through MTT and NRU assays in photosensitized TCS. Photosensitized TCS also induces endoplasmic reticulum (ER) stress as shown through ER-tracker/DAPI staining and Ca2+ release. It further induced cell cycle arrest through the sub-G1 phase augmentation and caused lysosomal/mitochondrial destabilization. Photogenotoxicity was shown through significant tail DNA, micronuclei and cyclobutane pyrimidine dimers (CPDs) formations. Cell signaling mechanism implicated upregulated expression of cleaved Caspase-3, Bax, phospho-p38, phospho-JNK and cytochrome C, thereby downregulated Bcl-2 expressions. Results advocate that TCS induces phototoxic effects via type I mediated photodynamic mechanism and activation of MAPK pathway. We conclude that photoexcited TCS may be deleterious to human health at the ambient environmental intensities of sunlight reaching at the earth's surface. Therefore, it may be replaced by alternative safe preservative.
Collapse
Affiliation(s)
- Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Aryan Essentials Private Limited (Brand Name-Wikka), Mahatma Gandhi Road, Ghitorni, New Delhi 110030, India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Saba Qureshi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hari Narayan Kushwaha
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nivedita Singh
- Department of Bioinformatics, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
31
|
Zheng H, Zhang M, Luo H, Li H. Isoorientin alleviates UVB-induced skin injury by regulating mitochondrial ROS and cellular autophagy. Biochem Biophys Res Commun 2019; 514:1133-1139. [PMID: 31101341 DOI: 10.1016/j.bbrc.2019.04.195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet B (UVB) irradiation increases the risk of various skin disorders, resulting in apoptosis, autophagy and oxidative stress and thereby promoting the risk of skin photoaging and carcinogenesis. The use of photochemoprotectors including natural products with antioxidant properties represents an effective strategy for preventing UVB-induced skin injury. Isoorientin (Iso), as a flavonoid compound, could be extracted from several plant species and possesses multiple biological activities. However, its role in regulating UVB-induced skin damage is little to be reported. In the study, we found that Iso treatment could protect human dermal fibroblasts (HDFs) against the effects of UVB irradiation by improving cell viability, suppressing MMP1 and MMP3 expression, inhibiting oxidative stress and inducing autophagy. In addition, Iso reduced UVB-triggered apoptosis, as evidenced by the decreased Caspase-3 activity in vitro. Furthermore, Iso was functioned as reactive oxygen species (ROS) scavenger that markedly hindered c-Jun N-terminal kinases (JNK) signaling activation in UVB-treated HFDs. Importantly, promoting JNK activity restored matrix metalloproteinase (MMP)-1/3 expression in Iso-incubated cells with UVB stimulation. Meanwhile, UVB exposure to the skin of mice and subsequent topical application of Iso delayed the progression of skin damage, resulting in autophagy and blocking the JNK activation and ROS production. In conclusion, these results indicated the photoprotective role of Iso and demonstrated that Iso could also be potentially used as an agent against UVB-stimulated skin damage.
Collapse
Affiliation(s)
- Hongnan Zheng
- Department of Chinese Material Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, PR China; Department of Pharmacy, the First Naval Hospital of Southern Theater Command, Zhanjiang, Guangdong, 524005, PR China.
| | - Mingfeng Zhang
- Department of Dermatology, Huzhou Hospital of Traditional Chinese Medicine, Huzhou, 313000, PR China
| | - Heng Luo
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Hui Li
- Department of Pharmacy, Yanan University Affiliated Hospital, Yanan, 716000, PR China.
| |
Collapse
|
32
|
Prapainop K, Mekseriwattana W, Siangproh W, Chailapakul O, Songsrirote K. Successive detection of benzoic acid and total parabens in foodstuffs using mercaptosuccinic acid capped cadmium telluride quantum dots. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
|
34
|
PLGA nanoformulation of sparfloxacin enhanced antibacterial activity with photoprotective potential under ambient UV-R exposure. Int J Pharm 2018; 541:173-187. [DOI: 10.1016/j.ijpharm.2018.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
35
|
Kim JN, Lee BM. Risk management of free radicals involved in air travel syndromes by antioxidants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:47-60. [PMID: 29341860 DOI: 10.1080/10937404.2018.1427914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Frequent air travelers and airplane pilots may develop various types of illnesses. The environmental risk factors associated with air travel syndromes (ATS) or air travel-related adverse health outcomes raised concerns and need to be assessed in the context of risk management and public health. Accordingly, the aim of the present review was to determine ATS, risk factors, and mechanisms underlying ATS using scientific data and information obtained from Medline, Toxline, and regulatory agencies. Additional information was also extracted from websites of organizations, such as the International Air Transport Association (IATA), International Association for Medical Assistance to Travelers (IAMAT), and International Civil Aviation Organization (ICAO). Air travelers are known to be exposed to environmental risk factors, including circadian rhythm disruption, poor cabin air quality, mental stress, high altitude conditions, hormonal dysregulation, physical inactivity, fatigue, biological infections, and alcoholic beverage consumption. Consequences of ATS attributed to air travel include sleep disturbances (e.g., insomnia), mental/physical stress, gastrointestinal disorders, respiratory diseases, circulatory-related dysfunction, such as cardiac arrest and thrombosis and, at worst, mechanical and terrorism-related airplane crashes. Thus safety measures in the cabin before or after takeoff are undertaken to prevent illnesses or accidents related to flight. In addition, airport quarantine systems are strongly recommended to prepare for any ultimate adverse circumstances. Routine monitoring of environmental risk factors also needs to be considered. Frequently, the mechanisms underlying these adverse manifestations involve free radical generation. Therefore, antioxidant supplementation may help to reduce or prevent adverse outcomes by mitigating health risk factors associated with free radical generation.
Collapse
Affiliation(s)
- Jeum-Nam Kim
- a Department of Airline Service , Howon University , Gunsan-si , South Korea
| | - Byung-Mu Lee
- b Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Seobu-ro 2066, Suwon , South Korea
| |
Collapse
|
36
|
Güzel Bayülken D, Ayaz Tüylü B, Sinan H, Sivas H. Investigation of genotoxic effects of paraben in cultured human lymphocytes. Drug Chem Toxicol 2017; 42:349-356. [DOI: 10.1080/01480545.2017.1414834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Berrin Ayaz Tüylü
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| | - Handan Sinan
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| | - Hülya Sivas
- Department of Biology, Anadolu University, Faculty of Sciences, Eskisehir, Turkey
| |
Collapse
|
37
|
Singh J, Srivastva AK, Mandal P, Chandra S, Dubey D, Dwivedi A, Chopra D, Tripathi A, Ray RS. Under ambient UVA exposure, pefloxacin exhibits both immunomodulatory and genotoxic effects via multiple mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:593-605. [PMID: 29275239 DOI: 10.1016/j.jphotobiol.2017.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
Abstract
Pefloxacin (PFLX) is an antibiotic, which shows broad spectrum antimicrobial activities. It is an important derivative of fluoroquinolones (FLQs) group. Ultraviolet radiation (200-400nm) causes major problem for living being which comes at the earth surface naturally through sunlight and increasing regularly due to ozone depletion. PFLX was photodegraded in 5h and forms photoproduct under UVA exposure. At the non photocytotoxic dose PFLX, shows reduced phagocytosis activity, NO (nitric oxide) production, large vacuole formation and down regulated IL-6, TNF-α and IL-1 in BALB/c macrophages at both genes and proteins levels. At higher doses (photocytotoxic doses), PFLX induced a concentration dependent decrease in cell viability of human keratinocyte cell line (HaCaT) and peritoneal macrophages of BALB/c mice. Our molecular docking suggests that PFLX binds only to the cleaved DNA in the DNA-human TOP2A complex. Topoisomerase assay confirmed that PFLX inhibits human topoisomerase by forming an adduct with DNA. Photosensitized PFLX also caused intracellular ROS mediated DNA damage and formation of micronuclei and cyclobutane pyrimidine dimers (CPDs). Increase intracellular ROS leads to apoptosis which was proved through lysosomal destabilization and reduced mitochondrial membrane potential (MMP). Our present study shows that ambient UVA exposure in the presence of PFLX caused immunomodulatory as well as photogenotoxic effects. Therefore, patients under PFLX drug treatment should avoid sunlight exposure, especially during peak hours for their photosafety.
Collapse
Affiliation(s)
- Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Ajeet K Srivastva
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Payal Mandal
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Sonam Chandra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Ashish Dwivedi
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Anurag Tripathi
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|