1
|
de Deus IJ, Martins-Silva AF, Fagundes MMDA, Paula-Gomes S, Silva FGDE, da Cruz LL, de Abreu ARR, de Queiroz KB. Role of NLRP3 inflammasome and oxidative stress in hepatic insulin resistance and the ameliorative effect of phytochemical intervention. Front Pharmacol 2023; 14:1188829. [PMID: 37456758 PMCID: PMC10347376 DOI: 10.3389/fphar.2023.1188829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
NLRP3 inflammasome has a key role in chronic low-grade metabolic inflammation, and its excessive activation may contribute to the beginning and progression of several diseases, including hepatic insulin resistance (hIR). Thus, this review aims to highlight the role of NLRP3 inflammasome and oxidative stress in the development of hIR and evidence related to phytochemical intervention in this context. In this review, we will address the hIR pathogenesis related to reactive oxygen species (ROS) production mechanisms, involving oxidized mitochondrial DNA (ox-mtDNA) and thioredoxin interacting protein (TXNIP) induction in the NLRP3 inflammasome activation. Moreover, we discuss the inhibitory effect of bioactive compounds on the insulin signaling pathway, and the role of microRNAs (miRNAs) in the phytochemical target mechanism in ameliorating hIR. Although most of the research in the field has been focused on evaluating the inhibitory effect of phytochemicals on the NLRP3 inflammasome pathway, further investigation and clinical studies are required to provide insights into the mechanisms of action, and, thus, encourage the use of these bioactive compounds as an additional therapeutic strategy to improve hIR and correlated conditions.
Collapse
Affiliation(s)
- Isabela Jesus de Deus
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Flávia Martins-Silva
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Miliane Martins de Andrade Fagundes
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Sílvia Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Guimarães Drummond e Silva
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Aline Rezende Ribeiro de Abreu
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
2
|
Qiu T, Shi JX, Cheng C, Jiang H, Ruan HN, Li J, Liu CM. Hepatoprotective effect of avicularin on lead-induced steatosis, oxidative stress, and inflammation in mice associated with the MAPK/HSP60/NLRP3 and SREBP1c pathway. Toxicol Res (Camb) 2023; 12:417-424. [PMID: 37397929 PMCID: PMC10311149 DOI: 10.1093/toxres/tfad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 07/04/2023] Open
Abstract
Lead (Pb), an environmental hazard, causes severe diseases in the liver, kidney, cardiovascular system, hematopoietic system, reproductive system, and nervous system. Avicularin (AVI), the main dietary flavonoid found in many citrus fruits, exhibited potential protective properties on organs. However, the molecular mechanisms of these protective actions are currently not clear. In our study, the effects of AVI on Pb-induced hepatotoxicity were evaluated using ICR mice. Changes in oxidative stress, inflammation, lipid metabolism, and related signaling were evaluated. We found for the first time that treatment with AVI significantly reduced hepatic steatosis, inflammation, and oxidative stress induced by Pb. AVI attenuated Pb-induced liver dysfunction and lipid metabolism disorder in mice. AVI decreased the serum biochemical indicators of lipid metabolism. AVI decreased the expression levels of lipid metabolism-related protein SREBP-1c, acetyl-CoA carboxylase (ACC), and FAS. AVI suppressed Pb-induced inflammation in livers, as indicated by decreasing the TNF-α and IL-1β levels. AVI suppressed oxidative stress by increasing the activation of SOD, CAT, and GPx. Furthermore, AVI inhibited the activities of JNK, ERK, p38, and NF-κB. AVI further decreased the levels of HSP60, NLRP3, p-IκBα, and p-p65 in the livers of mice. Collectively, this study indicated that AVI mitigated Pb-induced hepatic steatosis, oxidative stress, and inflammation by regulating the SREBP-1c and MAPK/HSP60/NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Ting Qiu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Hong Jiang
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, Xuzhou City, Jiangsu Province 21-1116, PR China
| |
Collapse
|
3
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
4
|
Avicularin Attenuates Lead-Induced Impairment of Hepatic Glucose Metabolism by Inhibiting the ER Stress-Mediated Inflammatory Pathway. Nutrients 2022; 14:nu14224806. [PMID: 36432494 PMCID: PMC9697143 DOI: 10.3390/nu14224806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb), an environmental hazard, causes several human diseases. Avicularin (Avi), a main dietary flavonoid found in several plants and fruits, exhibits potential protective properties on organs. However, the molecular mechanisms of Avi's protective effects against Pb-induced damage are not clear. In our study, the effects of Avi on Pb-induced hepatotoxicity were evaluated using ICR mice. We have revealed for the first time that treatment with Avi significantly reduced hepatic inflammation, endoplasmic reticulum stress (ERS) and glucose metabolism disorder induced by Pb. Avi decreased the serum biochemical indicators of glucose metabolism. Avi increased the activities of glycogenolysis rate-limiting enzyme hexokinase (HK), pyruvate kinase (PK), glucokinase (GK) and glycogen phosphorylase (PYG) and inhibited the activities of gluconeogenesis rate-limiting enzyme phosphoenolpyruvate carboxy kinase (PEPCK) and glucose-6-phosphate dehydrogenase (G6PD). Avi decreased the protein expression levels of glucose-regulated protein 78 (GRP78), phosphorylated inositol requiring enzyme 1 (p-IRE1), phosphorylated RNA-dependent protein kinase-like ER kinase (p-PERK) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were decreased in the liver as a result of Avi suppression Pb-induced inflammation. These results indicated that Avi attenuated Pb-induced impairment of hepatic glucose metabolism by the ERS and inflammation pathway.
Collapse
|
5
|
2-Amino-3-Methylimidazo[4,5-f]quinoline Triggering Liver Damage by Inhibiting Autophagy and Inducing Endoplasmic Reticulum Stress in Zebrafish ( Danio rerio). Toxins (Basel) 2021; 13:toxins13110826. [PMID: 34822609 PMCID: PMC8620671 DOI: 10.3390/toxins13110826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to note that 2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is one of the most common heterocyclic amines (HCAs), which is a class of mutagenic/carcinogenic harmful compounds mainly found in high-protein thermal processed foods and contaminated environments. However, the pre-carcinogenic toxicity of IQ to the liver and its mechanism are poorly understood, further research is needed. In light of this, we exposed zebrafish to IQ (0, 8, 80, and 800 ng/mL) for 35 days, followed by comprehensive experimental studies. Histopathological and ultrastructural analysis showed that hepatocytes were damaged. TUNEL results showed that IQ induced apoptosis of liver cells, the expression of apoptosis factor gene was significantly increased, and the expression of Bcl-2 protein was significantly decreased. In addition, upregulated expression of the 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) and endoplasmic reticulum stress (ERS)-related factors transcription levels were elevated obviously, suggesting that IQ induced ERS. Decreased protein expression of autophagy-related 5 (Atg5)-Atg12, Beclin1, and LC3-II, increased protein expression of p62, and autophagy-related factors transcription levels were significantly decreased, suggesting that IQ inhibited autophagy. Overall, our research showed that the potential harm of IQ to the liver before the occurrence of liver cancer was related to ERS and its mediated autophagy and apoptosis pathways.
Collapse
|
6
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
7
|
Zhang S, Cao M, Fang F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseases. Med Sci Monit 2020; 26:e924558. [PMID: 32952149 PMCID: PMC7504867 DOI: 10.12659/msm.924558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tea containing abundant catechins is a popular non-alcoholic beverage worldwide. Epigallocatechin-3-gallate (EGCG) is the predominately active substance in catechins, exhibiting a wide range of functional properties including cancer suppression, neuroprotective, metabolic regulation, cardiovascular protection, stress adjustment, and antioxidant in various diseases. Autophagy, a basic cell function, participates in various physiological processes which include clearing away abnormally folded proteins and damaged organelles, and regulating growth. EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation, but also causing LC3 transition and decreasing p62 expression. EGCG-induced autophagy is involved in the occurrence and development of many human diseases, including cancer, neurological diseases, diabetes, cardiovascular diseases, and injury. Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS) as a cellular stress response which is caused by various internal and external factors. ERS-induced apoptosis of EGCG influences cell survival and death in various diseases via regulating IRE1, ATF6, and PERK signaling pathways, and activating GRP78 and caspase proteins. The present manuscript reviews that the effect of EGCG in autophagy and ERS-induced apoptosis of human diseases.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Dermatology, Shanghai Xuhui District Central Hospital, Shanghai, China (mainland)
| | - Mengke Cao
- Department of Dermatology, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Fang Fang
- Department of Dermatology, Shanghai Eighth People's Hospital, Shanghai, China (mainland)
| |
Collapse
|
8
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion. Food Chem Toxicol 2020; 143:111533. [PMID: 32645464 DOI: 10.1016/j.fct.2020.111533] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metals and is harmful to human health. The liver is considered as a major target organ for Pb poisoning. Although probiotics have been shown to alleviate liver injury, the protective effect of Lactobacillus plantarum LP33 (LP33) against Pb-induced hepatotoxicity remains unclear. In order to explore the hepatoprotective effect of LP33, LP33 was administered to Pb-intoxicated Sprague-Dawley rats once daily by oral gavage for 8 weeks. The present results showed that LP33 supplementation alleviated liver injury, and inhibited oxidative stress and inflammation in Pb-exposed rats. Treatment with LP33 also promoted the phosphorylation of adenosine monophosphate-activated protein kinase and protein kinase B, activated nuclear factor erythroid 2-related factor 2 signaling and inhibited the activation of nuclear factor-κB signaling in liver tissues of rats exposed to Pb. Additionally, LP33 exhibited adequate Pb-binding capacity and satisfactory survival under simulated gastrointestinal conditions in vitro, and promoted Pb excretion via enterohepatic circulation of bile acids. This study demonstrated that LP33 reduced Pb-induced oxidative stress and inflammation and promoted Pb excretion, thereby attenuating the Pb-induced hepatic injury. Our findings suggest that LP33 supplementation may be a potential strategy for the treatment of Pb-induced hepatic toxicity.
Collapse
|
10
|
Mirkov I, Stojković D, Aleksandrov AP, Ivanov M, Kostić M, Glamočlija J, Soković M. Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies. Curr Pharm Des 2020; 26:1799-1815. [PMID: 32264808 DOI: 10.2174/1381612826666200407163408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heavy metals are elements that are naturally found in the earth. They are used in many modern-day applications in agriculture, medicine, and industry. Heavy metal poisoning occurs when the body's soft tissues absorb too much of a particular metal. The heavy metals of interest for this review paper were cadmium, arsenic, mercury, and lead since these are the most common metals that the human body can absorb in toxic amounts. Different plant species were investigated in recent years for their effect on oxidative stress parameters after intoxication with heavy metals. OBJECTIVES This review paper is focused on the current update to research on heavy metals induced oxidative stress in animal models and improvement of the oxidative stress parameters upon/co-/after treatment with different plant extracts and isolated compounds. METHODS The available literature was screened for the novel data regarding the influence of plant extracts and compounds on heavy metals induced oxidative stress. For that purposes Scopus database was used, looking for the publications in the last 5-10 years with the key terms: plant extracts, oxidative stress, in vivo, cadmium, lead, mercury and arcenic. RESULTS Various parameters of oxidative stress were investigated, and their improvement with plant extracts/ compounds was observed in the brain, lungs, kidneys, liver, uterus, testis, thymus, spleen, heart, skin and blood of experimental animals. Common parameters used to determine oxidative stress in animals were: superoxide dismutase; catalase; reduced glutathione; glutathione reductase; glutathione-S-transferase; glutathione peroxidase; lipid peroxidation; oxidized glutathione; malondialdehyde; xanthine oxidase; nonprotein-soluble thiol; thioredoxin reductase; total sulphydryl group; nitric oxide; γ-glutamyl cysteine synthetase. CONCLUSION The most investigated species for antioxidant effects upon intoxication with heavy metals seem to be Allium sp., Bacopa monniera, Camellia sinensis, Moringa oleifera, Vitis vinifera and Zingiber officinale. According to literature data, the most promising effect to alleviate symptoms of intoxication was achieved with proanthocyanidins obtained from Vitis vinifera.
Collapse
Affiliation(s)
- Ivana Mirkov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandra P Aleksandrov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Glucosamine induces increased musclin gene expression through endoplasmic reticulum stress-induced unfolding protein response signaling pathways in mouse skeletal muscle cells. Food Chem Toxicol 2018; 125:95-105. [PMID: 30602124 DOI: 10.1016/j.fct.2018.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
Abstract
Glucosamine (GlcN) is a dietary supplement that is widely used to promote joint health. Reports have demonstrated that oral GlcN adversely affects glucose metabolism. Here, we found that oral administration of GlcN induced insulin resistance (IR) and increased plasma glucose levels in mice. Musclin is a muscle-secreted cytokine that participates in the development and aggravation of diabetes. In this study, we found that increased expression of the musclin plays a pathogenic role in GlcN-induced IR in mice. Additional in vivo and in vitro studies showed that 4-PBA inhibited GlcN-induced endoplasmic reticulum (ER) stress and reduced musclin expression, indicating that ER stress might be closely linked to musclin expression. Moreover, the inhibition of musclin gene expression was also observed when sh-RNAs and small molecular compound inhibitors inhibited ER stress-induced PERK and IRE1-associated unfolding protein response (UPR) signaling pathways, and the CRISPR/Cas9 genome editing technology knockout the ATF6-associated UPR pathway in C2C12 myotubes cells. Silencing of the expression of musclin effectively relieved GlcN-affected phosphorylation of Akt, glucose intake and glycogen synthesis. These results suggest that GlcN increased musclin gene expression though UPR, and musclin represents an important mechanism underlying GlcN-induced IR in mice.
Collapse
|
12
|
Liu W, Tan X, Xiong X, Yang J, Xiao X. Effects of hypothermia during propofol anesthesia on learning and memory ability and hippocampal apoptosis in neonatal rats. J Anesth 2018; 33:9-16. [PMID: 30448976 DOI: 10.1007/s00540-018-2576-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/18/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE At present, the harm of hypothermia to the central nervous system has received a great attention from scholars. The present study aimed to investigate the effects of hypothermia on learning and memory abilities and hippocampal apoptosis in neonatal rats and the role of p-ERK and p-CREB in anesthesia. METHODS In this study, 60 Sprague Dawley newborn rats (age 7-day-old) were randomly divided into 3 groups (n = 20), including Control Group (Group C), Anesthesia Group (Group A), and Anesthesia Hypothermia Group (Group AH). Group C was intraperitoneally injected with 0.1 ml saline, and rectal temperature was maintained in the range of 38-39 °C; Group A was intraperitoneally injected with 25 mg/kg of propofol (0.1 ml), the 1/2 initial dose was added per each period of 20 min, anesthesia was maintained for 2 h, and rectal temperature was kept in the range of 38-39 °C. The anesthesia mode and duration of Group AH were as same as Group A, room temperature was set to 23 °C, which caused body's temperature naturally dropped down. After the anesthesia recovered, each group randomly involved five rats for analyzing by Western blot to detect the expression level of p-ERK and p-CREB, and other five rates were also analyzed by flow cytometry assay to detect hippocampal apoptosis rate. The remaining 10 rats in each group were kept up to 30 days for conducting the Morris water maze test, five rats were tested for detecting the expression level of p-ERK and p-CREB, as well as hippocampal apoptosis rate in each group. RESULTS Compared with Group C and Group A, the rectal temperature of Group AH was decreased significantly (P < 0.05); At the age of 7 days, compared with Group C and Group A, apoptosis rate of hippocampal tissue in Group AH was increased (P < 0.05), the expression level of p-ERK and p-CREB proteins in Group AH was significantly reduced (P < 0.05), and there were no significant differences between Group C and Group A. At the age of 36 days, there were no significant differences in the results of behavioral test, apoptotic rates, and expression level of the proteins. CONCLUSION Our findings suggest that hypothermia during anesthesia can increase the apoptosis rate in the hippocampus of neonatal rats, whose mechanism may be related to the downward adjustment of p-ERK and p-CREB. However, it has no obvious influence on the long-term learning and memory abilities.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Anesthesia, East Hospital of Shaoyang Central Hospital Medical Group, Shaoyang, 422000, China
| | - Xiangang Tan
- Department of Anesthesia, The Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Xinglong Xiong
- Department of Anesthesia, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jian Yang
- Department of Anesthesia, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xu Xiao
- Department of Anesthesia, The Central Hospital of Shaoyang, Shaoyang, 422000, China.
| |
Collapse
|
13
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|
14
|
Huang H, An Y, Jiao W, Wang J, Li S, Teng X. CHOP/caspase-3 signal pathway involves in mitigative effect of selenium on lead-induced apoptosis via endoplasmic reticulum pathway in chicken testes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18838-18845. [PMID: 29713980 DOI: 10.1007/s11356-018-1950-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Lead (Pb) is an environmental pollutant. Selenium (Se) has alleviative effect on Pb poisoning. However, mitigative effect of Se on Pb-induced apoptosis has not been unclear via endoplasmic reticulum (ER) pathway in chicken testes. The aim of this study was to investigate mitigative effect of Se on apoptosis induced by Pb poisoning via ER pathway in chicken testes. Sixty male chickens (7-day-old) were randomly divided into the control group offered drinking water (DW) and basic diet (BD) (0.49 mg/kg Se), the Se group offered DW and BD containing Na2SeO3 (SeBD) (1.00 mg/kg Se), the Pb group offered DW containing (CH3OO)2Pb (PbDW) (350.00 mg/L Pb) and BD, and the Pb + Se group offered PbDW and SeBD; and were fed for 90 days. The following contents were performed as follows: histology; antioxidant indexes (reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD)); mRNA expressions of ER-related genes (glucose-related protein 78 (GRP78), protein kinase-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and enhancer-binding protein homologous protein (CHOP)); and apoptosis-related genes (cysteine-aspartic protease (caspase)-3 and caspase-12) in chicken testes. The results indicated that Pb poisoning caused histological changes; increased MDA content; decreased the content of GSH and the activities of GPx, GST, and SOD; and upregulated mRNA expressions of the above five ER-related genes and two apoptosis-related genes in the chicken testes. Se alleviated Pb-induced oxidative stress, ER stress, and apoptosis via CHOP/caspase-3 signal pathway in the chicken testes.
Collapse
Affiliation(s)
- He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang An
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinghan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|