1
|
Moreno-Chamba B, Salazar-Bermeo J, Narváez-Asensio M, Navarro-Simarro P, Saura D, Neacsu M, Martí N, Valero M, Martínez-Madrid MC. Polyphenolic extracts from Diospyros kaki and Vitis vinifera by-products stimulate cytoprotective effects in bacteria-cell host interactions by mediation of transcription factor Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156020. [PMID: 39243749 DOI: 10.1016/j.phymed.2024.156020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.
Collapse
Affiliation(s)
- Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Marta Narváez-Asensio
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Pablo Navarro-Simarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Madalina Neacsu
- Rowett Institute, University of Aberdeen, Forestherhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain.
| | - María Concepción Martínez-Madrid
- Departamento de Agroquímica y Medio Ambiente, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain
| |
Collapse
|
2
|
Martínez-Ferri E, Forbes-Hernandez TY, Cervantes L, Soria C, Battino M, Ariza MT. Relation between Strawberry Fruit Redness and Bioactivity: Deciphering the Role of Anthocyanins as Health Promoting Compounds. Foods 2023; 13:110. [PMID: 38201141 PMCID: PMC10778386 DOI: 10.3390/foods13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The red colour of most berries is often associated to fruit healthiness, since it has been linked to enrichment in anthocyanins (polyphenol with antioxidative properties). However, recent studies suggest that anthocyanins could not be the major contributors to bioactivity leading to uncertainty about their role as important molecules in the generation of health-promoting properties. To shed light on this issue, spectrophotometric and HPLC techniques were used for characterizing the content of phenolic compounds, including anthocyanins, in fruits of red (Fragaria x ananassa, cv. Fortuna) and white strawberry (Fragaria vesca spp. XXVIII) species (distinguishing receptacle from achene). In addition, the effect of these extracts on the reduction of intracellular ROS was tested, as well as on the activity of antioxidant enzymes and the quantification of cell oxidation markers. The results showed that white receptacle extracts (deprived of anthocyanins) were able to protect cells from oxidative damage to a greater extent than red fruits. This could be due per se to their high antioxidant capacity, greater than that shown in red fruits, or to the ability of antioxidants to modulate the activity of antioxidant enzymes, thus questioning the positive effect of anthocyanins on the wholesomeness of strawberry fruits. The results shed light on the relevance of anthocyanins in the prevention of health-associated oxidative damage.
Collapse
Affiliation(s)
- Elsa Martínez-Ferri
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29140 Málaga, Spain
| | - Tamara Yuliet Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology José Mataix Verdú, Biomedical Research Center, University of Granada, Avda. Del Conocimiento s.n. Armilla, 18100 Granada, Spain
| | - Lucía Cervantes
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
| | - Carmen Soria
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29140 Málaga, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - María Teresa Ariza
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
| |
Collapse
|
3
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
4
|
Lin Y, Hou G, Jiang Y, Liu X, Yang M, Wang L, Long Y, Li M, Zhang Y, Wang Y, Chen Q, Zhang Y, Wang X, Tang H, Luo Y. Joint Transcriptomic and Metabolomic Analysis Reveals Differential Flavonoid Biosynthesis in a High-Flavonoid Strawberry Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:919619. [PMID: 35837466 PMCID: PMC9274175 DOI: 10.3389/fpls.2022.919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The enriched phenolic content attributes to the promising health benefit of strawberry fruits. On behalf of screening and seeking the breeding material with high phytochemical composition, a mutant (MT) of strawberry 'Benihoppe' (WT) with high total flavonoid content (TFC), especially anthocyanins and proanthocyanidins (PAs), was identified in this study. To investigate the possible reason for these disparities during strawberry fruit development, an integrated transcriptomic and metabolomic analysis was conducted using these two specific materials. As a result, a total of 113 flavonoid compounds were detected, a specific anthocyanin, namely, petunidin 3-O-rutinoside was detected for the first time in strawberry. By comparing with the WT fruits, a significant reduction of petunidin 3-O-rutinoside while around 24 times higher of cyanidin 3-O-rutinoside in MT fruits were observed. However, the cyanidin 3-glucoside content did not show obvious changes between MT and WT fruits, the pelargonidin and its derivatives were up-regulated only in partial red (PR) stage, but not in large green (LG) and fully red (FR) stages. Notably, the PAs such as procyanidin B2, procyanidin A1, catechin, gallocatechin gallate, epigallacatechin, and theaflavin were markedly up-regulated in MT. These results revealed a differential flavonoid biosynthesis between the two detected strawberry genotypes. A joint analysis with transcriptome data explained the up-regulation of cyanidin-based anthocyanins and PAs were caused by the down-regulation of F3'5'H, and up-regulation of F3'H and LAR expression, which might be regulated by the upregulation of potential TFs such as C3H, MADS, and AP2/ERF TFs. Metabolite correlation analysis suggested that it was PAs but not anthocyanins strongly correlated with the total phenolic content (TPC), indicated that PAs might contribute more to TPC than anthocyanins in our detected strawberry samples. This study not only potentially provided a new mutant for further breeding program to obtain high flavonoid content strawberry but also gave insights into strawberry flavonoid metabolic regulatory network, laid the foundation for identifying new flavonoid regulators in strawberry.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yu Long
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Woo J, Shin S, Ji H, Ryu D, Cho E, Kim Y, Kim J, Park D, Jung E. Isatis tinctoria L. Leaf Extract Inhibits Replicative Senescence in Dermal Fibroblasts by Regulating mTOR-NF-κB-SASP Signaling. Nutrients 2022; 14:nu14091979. [PMID: 35565945 PMCID: PMC9102489 DOI: 10.3390/nu14091979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Hyanggi Ji
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Dehun Ryu
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunae Cho
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Youngseok Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Junoh Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Deokhoon Park
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunsun Jung
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
- Correspondence:
| |
Collapse
|
6
|
Explore the mechanism of pulsed electric field technology on improving the antioxidant activity of Leu-Tyr-Gly-Ala-Leu-Gly-Leu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int J Mol Sci 2021; 22:10133. [PMID: 34576295 PMCID: PMC8466365 DOI: 10.3390/ijms221810133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen-ozone (O2-O3) therapy is increasingly applied as a complementary/adjuvant treatment for several diseases; however, the biological mechanisms accounting for the efficacy of low O3 concentrations need further investigations to understand the possibly multiple effects on the different cell types. In this work, we focused our attention on fibroblasts as ubiquitous connective cells playing roles in the body architecture, in the homeostasis of tissue-resident cells, and in many physiological and pathological processes. Using an established human fibroblast cell line as an in vitro model, we adopted a multimodal approach to explore a panel of cell structural and functional features, combining light and electron microscopy, Western blot analysis, real-time quantitative polymerase chain reaction, and multiplex assays for cytokines. The administration of O2-O3 gas mixtures induced multiple effects on fibroblasts, depending on their activation state: in non-activated fibroblasts, O3 stimulated proliferation, formation of cell surface protrusions, antioxidant response, and IL-6 and TGF-β1 secretion, while in LPS-activated fibroblasts, O3 stimulated only antioxidant response and cytokines secretion. Therefore, the low O3 concentrations used in this study induced activation-like responses in non-activated fibroblasts, whereas in already activated fibroblasts, the cell protective capability was potentiated.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Osvaldo Angelini
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| |
Collapse
|
10
|
Exploring the Protective Effects of Phaeodactylum tricornutum Extract on LPS-Treated Fibroblasts. COSMETICS 2021. [DOI: 10.3390/cosmetics8030076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Microalgal extracts are an important source of bioactive compounds with antioxidant and anti-inflammatory properties that can be used in cosmetics. The microalgae Phaeodactylum tricornutum (PT) is known for its high content of omega-3 fatty acids, which are known to attenuate inflammation. Here, we explore the effects of aqueous microencapsulated extract of PT on lipopolysaccharide (LPS)-stimulated normal human dermal fibroblasts (NHDF) to underline its application as an active ingredient in cosmetics. Methods: We assessed cell viability using MTT assay, so as to target any potential cytotoxicity of the extract. Moreover, with the aid of RT-qPCR, we studied the transcript accumulation of genes involved in cell antioxidant response, cell proliferation, and inflammation. Results: Our results revealed that the hydrolyzed rice flour-encapsulated (HRF) PT extract promotes anti-inflammatory and antioxidant response, increasing cell proliferation in NHDF cells. Conclusions: Our data indicate a promising use of HRF-encapsulated PT extract in cosmetics by reducing skin inflammation.
Collapse
|
11
|
Battino M, Giampieri F, Cianciosi D, Ansary J, Chen X, Zhang D, Gil E, Forbes-Hernández T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153170. [PMID: 31980299 DOI: 10.1016/j.phymed.2020.153170] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oxidative stress and inflammation contribute to the etiopathogenesis of several human chronic diseases, such as cancer, diabetes, cardiovascular diseases and metabolic syndrome. Besides classic stimuli, such as reactive oxidant species, endotoxins (i.e., bacteria lipopolysaccharide), cytokines or carcinogens, oxidative stress and inflammation can be triggered by a poor diet and an excess of body fat and energy intake. Strawberry and honey are common rich sources of nutrients and bioactive compounds, widely studied for their roles exerted in health maintenance and disease prevention. PURPOSE This review aims to summarize and update the effects of strawberry and honey against oxidative stress and inflammation, with emphasis on metabolism and on the main molecular mechanisms involved in these effects. METHODS A wide range of literature, published in the last 10 years, elucidating the effects of strawberry and honey in preventing oxidative stress and inflammation both in vitro (whole matrix and digested fractions) and in vivo was collected from online electronic databases (PubMed, Scopus and Web of Science) and reviewed. RESULTS Strawberry and honey polyphenols may potentially prevent the chronic diseases related to oxidative stress and inflammation. Several in vitro and in vivo studies reported the effects of these foods in suppressing the oxidative stress, by decreasing ROS production and oxidative biomarkers, restoring the antioxidant enzyme activities, ameliorating the mitochondrial antioxidant status and functionality, among others, and the inflammatory process, by modulating the mediators of acute and chronic inflammation essential for the onset of several human diseases. These beneficial properties are mediated in part through their ability to target multiple signaling pathways, such as p38 MAPK, AMPK, PI3K/Akt, NF-κB and Nrf2. CONCLUSIONS Available scientific literature show that strawberry and honey may be effective in preventing oxidative stress and inflammation. The deep evaluation of the factors that affect their metabolism as well as the assessment of the main molecular mechanisms involved are of extreme importance for the possible therapeutic and preventive benefit against the most common human diseases. However, published literature is still scarce so that deeper studies should be performed in order to evaluate the bioavailability of these food matrices and their effects after digestion.
Collapse
Affiliation(s)
- Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Xiumin Chen
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Emilio Gil
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Tamara Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| |
Collapse
|
12
|
Zhao D, Zhang LJ, Huang TQ, Kim J, Gu MY, Yang HO. Narciclasine inhibits LPS-induced neuroinflammation by modulating the Akt/IKK/NF-κB and JNK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153540. [PMID: 33773188 DOI: 10.1016/j.phymed.2021.153540] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuroinflammation is defined as innate immune system activation in the central nervous system, and is a complex response involved in removing pathogens, toxic components, and dead cells by activating microglial cells. However, over-activated microglia have been implicated in the pathogenesis of neurodegenerative diseases, because they release large amounts of neurotoxic factors. Thus, inhibiting microglial activation may represent an attractive approach for preventing neuroinflammatory disorders. The objective of this study was to investigate the effect of narciclasine (NA) on lipopolysaccharide (LPS)-induced neuroinflammation by evaluating related markers and neurotoxic factors. METHODS BV-2 cells were pre-incubated with NA at 0.1, 0.2, and 0.3 µM for 1h, and then co-treated with LPS for 12 h. Cellular medium and lysates were measured using a nitric oxide assay, enzyme-link immunosorbent assay (ELISA), western blotting, kinase activity assay, luciferase assay, and immunofluorescence assay. C57BL/6N mice were orally administered NA and intraperitoneally injected with LPS, and the cerebral cortex was examined using western blotting and immunofluorescence assays. RESULTS NA showed novel pharmacological activity, inhibiting pro-inflammatory factors, including TNF-α, IL-6, IL-18, NO, and PGE2, but increasing the anti-inflammatory cytokines IL-10 and TGF-β1 in LPS-induced microglial cells. Moreover, NA also attenuated the LPS-induced mRNA and proteins of iNOS and COX-2. The mechanistic study indicated that NA attenuates the secretion of pro-inflammatory factor by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways, and directly inhibits the catalytic activity of IKKα/β. Furthermore, we found that NA also reduced the expression of the microglial markers Iba-1, COX-2, and TNF-α in the mouse brain. CONCLUSION NA inhibits the over-expression of pro-inflammatory factors but it promotes anti-inflammatory cytokines by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways in experimental models. Thus, NA may be a potential candidate for relieving neuroinflammation.
Collapse
Affiliation(s)
- Dong Zhao
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Li Jun Zhang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Tian Qi Huang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Ming-Yao Gu
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Hyun Ok Yang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
13
|
Liu Z, Wang W, Luo J, Zhang Y, Zhang Y, Gan Z, Shen X, Zhang Y, Meng X. Anti-Apoptotic Role of Sanhuang Xiexin Decoction and Anisodamine in Endotoxemia. Front Pharmacol 2021; 12:531325. [PMID: 33967742 PMCID: PMC8099151 DOI: 10.3389/fphar.2021.531325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Endotoxemia is characterized by initial uncontrollable inflammation, terminal immune paralysis, significant cell apoptosis and tissue injury, which can aggravate or induce multiple diseases and become one of the complications of many diseases. Therefore, anti-inflammatory and anti-apoptotic therapy is a valuable strategy for the treatment of endotoxemia-induced tissue injury. Traditional Chinese medicine exhibits great advantages in the treatment of endotoxemia. In this review, we have analyzed and summarized the active ingredients and their metabolites of Sanhuang Xiexin Decoction, a famous formula in endotoxemia therapy. We then have summarized the mechanisms of Sanhuang Xiexin Decoction against endotoxemia and its mediated tissue injury. Furthermore, silico strategy was used to evaluate the anti-apoptotic mechanism of anisodamine, a well-known natural product that widely used to improve survival in patients with septic shock. Finally, we also have summarized other anti-apoptotic natural products as well as their therapeutic effects on endotoxemia and its mediated tissue injury.
Collapse
Affiliation(s)
- Zixuan Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiang Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Luo
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingrui Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiqiang Gan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institutes of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Živković L, Bajić V, Čabarkapa-Pirković A, Dekanski D, Forbes-Hernández TY, Zlatković-Švenda M, Perry G, Spremo-Potparević B. Strawberry (Fragaria ananassa duch.) Alba extract attenuates DNA damage in lymphocytes of patients with Alzheimer's disease. J Food Biochem 2021; 45:e13637. [PMID: 33547659 DOI: 10.1111/jfbc.13637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Increased levels of oxidative stress and oxidative DNA damage are common features in the pathology of Alzheimer's disease (AD) found in neurons and peripheral cells like peripheral blood lymphocytes (PBL). Natural products such as strawberry cultivar Alba are an important source of bioactive nutrients that could help in lowering both the oxidative stress and DNA damage levels. The objective was to estimate the effects of Alba extract on DNA damage in peripheral blood lymphocytes of sporadic AD (aged 60-84 years) patients, and healthy elderly (aged 69-83 years) and young (aged 21-30 years) individuals in in vitro conditions. Comet assay was used as a sensitive technique for the evaluation of PBL DNA damage levels. Reduction of basal DNA damage level in PBL was shown in the young group after the incubation with Alba extract ranging from 25 to 200 μg/ml, with 100 μg/ml being the most effective concentration. Selected Alba extract of 100 μg/ml was further used for PBL treatment of AD and healthy elderly age matched group, displaying potential to significantly attenuate DNA damage levels in both groups (p < .05). Alba extract displayed biological activity against oxidative DNA damage, suggesting that its functional ingredients may have beneficial health effects. PRACTICAL APPLICATIONS: The data obtained in this preliminary study displayed that strawberry Alba extract is efficient against DNA damage induced by endogenous and exogenous oxidative stress in peripheral blood lymphocytes of Alzheimer`s disease in vitro. An active area of future research of Alba cultivar should be to determine the trials in in vivo systems. Our findings also suggest that Alba cultivar's functional ingredients potentially may have beneficial health effects in AD.
Collapse
Affiliation(s)
- Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Vladan Bajić
- The Laboratory for Radiobiology and Molecular Genetics, Institute for Nuclear Research "Vinča", University of Belgrade, Belgrade, Serbia
| | | | | | - Tamara Yuliett Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Mirjana Zlatković-Švenda
- Clinical Rheumatology, Institute of Rheumatology, University of Belgrade School of Medicine, Belgrade, Serbia
| | - George Perry
- College of Sciences, The University of Texas, UTSA, San Antonio, TX, USA
| | | |
Collapse
|
15
|
Dermal absorption of gallium antimonide in vitro and pro-inflammatory effects on human dermal fibroblasts. Toxicol In Vitro 2020; 71:105064. [PMID: 33279584 DOI: 10.1016/j.tiv.2020.105064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Gallium antimonide (GaSb) is a group III-V compound semiconductor with a comparatively narrow band gap energy (0.73 eV at 300 K) that allows efficient operation in the near-infrared region. This property may be useful in developing new biomedical instruments such as epidermal optoelectronic devices. The present study investigated the absorption of GaSb in pig skin in vitro for 24 h using Franz cells. A donor solution was prepared by soaking GaSb thin films in synthetic sweat. The results showed that both gallium and antimony penetrated the skin, and permeation and resorption occurred for gallium. Histopathological findings showed no inflammatory responses in pig skin exposed to GaSb for 24 h. Cytotoxicity was significantly elevated after 3 and 7 days, and pro-inflammatory cytokines and IL-8 levels were low after 1 and 3 days but elevated 7 days following the direct culturing of human dermal fibroblasts (HDF) on GaSb thin films. These results demonstrate that the short-term cytotoxicity and pro-inflammatory effect of GaSb on HDF were relatively low.
Collapse
|
16
|
Battino M. Strawberry bioactive compounds and human health: The exciting story of an unbelievable bet. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Maurizio Battino
- Department of Clinical Sciences Faculty of Medicine Polytechnic University of Marche Ancona Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| |
Collapse
|
17
|
Sonowal H, Ramana KV. 2'-Hydroxyflavanone prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages. Toxicol In Vitro 2020; 69:104966. [PMID: 32800949 PMCID: PMC7572836 DOI: 10.1016/j.tiv.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2-HF) is a natural flavonoid isolated from citrus fruits. Multiple studies have demonstrated that 2-HF with its anti-proliferative and pro-apoptotic effects prevent the growth of various cancers. Although 2-HF is a well known anti-oxidative and chemopreventive agent, its role as an anti-inflammatory agent is not well established. In this study, we examined the effect of 2-HF on LPS-induced cytotoxicity and inflammatory response in murine RAW 264.7 macrophages. Flow cytometry analysis showed that pre-treatment of RAW 264.7 macrophages with 2-HF significantly prevented LPS-induced macrophage apoptosis. 2-HF also prevented LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, lipid peroxidation, and loss of mitochondrial membrane potential in murine macrophages. Most importantly, the release of multiple inflammatory cytokines and chemokines such as eotaxin, IL-2, IL-10, IL-12p40, LIX, IL-15, IL-17, MCP-1, and TNF-α induced by LPS in the macrophages was inhibited by 2-HF. 2-HF also prevented LPS-induced activation of protein kinases p38MAPK and SAPK/JNK. Apart from this, LPS-induced phosphorylation, nuclear translocation, and DNA-binding of the redox transcription factor, NF-κB, was prevented by 2-HF. Our results demonstrate that 2-HF by regulating ROS/MAPK/NF-κB prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages suggesting that the need of potential development of 2-HF as an anti-inflammatory agent to ameliorate various inflammatory complications.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
Gunjegaonkar SM, Wankhede SB, Shanmugarajan TS, Shinde SD. Bioactive role of plant stress hormone methyl jasmonate against lipopolysaccharide induced arthritis. Heliyon 2020; 6:e05432. [PMID: 33225090 PMCID: PMC7666351 DOI: 10.1016/j.heliyon.2020.e05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 10/26/2022] Open
Abstract
The current investigation was carried out to screen antiarthritic potential of Methyl Jasmonate (MJ) against lipopolysaccharide (LPS) induced arthritis. Cartilage damage was induced in experimental animals by intraplantar administration of LPS (1 mg/kg) and antiarthritic effect of MJ was screened in two doses of MJ-1 (20 mg/kg), MJ-2 (40 mg/kg) by intraperitoneally administration. Indomethacin (30 mg/kg p.o.) was used as standard drug. The severity of arthritis was evaluated by assessing arthritis score, secondary lesions, motility test, stair climbing ability, and dorsal flexion pain score method. The estimation of blood cytokine tumor necrosis factor- aplha (TNF-α),interleukine (IL-2 and IL-6) and thymus/spleen index was carried out to access the severity of inflammation. Estimation of hepaticenzymatic antioxidant activity superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx)and radiological examination was carried out on 28th day. Results indicated that MJ showed significant reduction in severity of arthritis by decreasing arthritis score, secondary lesions where as significant increase in motility, climbing ability and flexion pain score was observed. Significant decreased in blood cytokine viz. TNF-α, IL-2, IL-6 andthymus/spleen index was observed in MJ treated animals in dose dependent manner. MJ treated animals showed significant increased and restoration of hepatic antioxidant enzymatic activityof SOD, CAT, GSH, GPx where asradiological examination indicates protective effect on joint structure as compared to LPS treated rats. These current studies conclude that MJ has protective role in arthritis.
Collapse
Affiliation(s)
- S M Gunjegaonkar
- JSPM's Charak College of Pharmacy and Research, Department of Pharmacology, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - S B Wankhede
- JSPM's Charak College of Pharmacy and Research, Department of Pharmaceutical Chemistry, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - T S Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies, School of Pharmaceutical Sciences, Department of Pharmaceutics, Velan Nagar, P. V. Vaithiyalingam Road, Pallavaram, Chennai, 600 117, Tamil Nadu, India
| | - S D Shinde
- Shri. R. D. Bhakt College of Pharmacy, Department of Pharmacology, Jalna 431203, Maharashtra, India
| |
Collapse
|
19
|
Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants (Basel) 2020; 9:antiox9111157. [PMID: 33233648 PMCID: PMC7699719 DOI: 10.3390/antiox9111157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation is characterized by an overproduction of several inflammatory mediators (e.g., reactive species and interleukins -IL) that play a central role in numerous diseases. The available therapies are often associated with serious side effects and, consequently, the need for safer drugs is of utmost importance. A plant traditionally used in the treatment of inflammatory conditions is Salvia officinalis. Therefore, conventional maceration and infusion of its leaves were performed to obtain hydroethanolic (HE-T) and aqueous extracts (AE-T), respectively. Their efficacy was compared to soxhlet extracts, namely aqueous (AE-S), hydroethanolic (HE-S), and ethanolic extracts (EE-S). Thin-layer chromatography demonstrated the presence of rosmarinic acid, carnosol, and/or carnosic acid in the different extracts. Generally, soxhlet provided extracts with higher antioxidant activities than traditional extraction. Moreover, under an inflammatory scenario, EE-S were the most effective, followed by HE-S, HE-T, AE-T, and AE-S, in the reduction of IL-6 and TNF-α production. Interestingly, the extracts presented higher or similar anti-inflammatory activity than diclofenac, salicylic acid, and celecoxib. In conclusion, the extraction method and the solvents of extraction influenced the antioxidant activity, but mainly the anti-inflammatory activity of the extracts. Therefore, this natural resource can enable the development of effective treatments for oxidative stress and inflammatory diseases.
Collapse
|
20
|
Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Res Int 2020; 136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
21
|
Olennikov DN, Vasilieva AG, Chirikova NK. Fragaria viridis Fruit Metabolites: Variation of LC-MS Profile and Antioxidant Potential during Ripening and Storage. Pharmaceuticals (Basel) 2020; 13:ph13090262. [PMID: 32971880 PMCID: PMC7559413 DOI: 10.3390/ph13090262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fragaria viridis Weston or creamy strawberry is one of the less-known species of the Fragaria genus (Rosaceae family) with a wide distribution in Eurasia and is still in the shadow of more popular relatives F. ananassa (garden strawberry) or F. vesca (wild strawberry). Importantly, there is a lack of scientific knowledge on F. viridis compounds, their stability in the postharvest period, and bioactivity. In this study, metabolites of F. viridis fruits in three ripening stages were characterized with high-performance liquid chromatography with photodiode array and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PAD-ESI-tQ-MS). In total, 95 compounds of various groups including carbohydrates, organic acids, phenolics, and triterpenes, were identified for the first time. The quantitative content of the compounds varied differently during the ripening progress; some of them increased (anthocyanins, organic acids, and carbohydrates), while others demonstrated a decrease (ellagitannins, flavonols, etc.). The most abundant secondary metabolites of F. viridis fruits were ellagitannins (5.97–7.54 mg/g of fresh weight), with agrimoniin (1.41–2.63 mg/g) and lambertianin C (1.20–1.86 mg/g) as major components. Antioxidant properties estimated by in vitro assays (2,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC)) showed good antioxidant potential in all ripening stages of F. viridis fruits. The pilot human experiment on the effect of F. viridis fruit consumption on the serum total antioxidant capacity confirmed the effectiveness of this kind of strawberry. Postharvest storage of ripe fruits at 4 °C and 20 °C lead to declining content in the majority of compounds particularly ascorbic acid, ellagitannins, and flavonols, with the most significant loss at room temperature storage. These results suggest that F. viridis fruits are a prospective source of numerous metabolites that have potential health benefits.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia
- Correspondence: ; Tel.: +7-9021-600-627
| | - Aina G. Vasilieva
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia; (A.G.V.); (N.K.C.)
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia; (A.G.V.); (N.K.C.)
| |
Collapse
|
22
|
Wang H, Zhang M, Ma Y, Wang B, Huang H, Liu Y, Shao M, Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41088-41095. [PMID: 32805964 DOI: 10.1021/acsami.0c11735] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROSs), acting as functionalized molecules in intracellular enzyme reactions and intercellular communication of immune response, play vital roles in biological metabolism. However, the inevitably excessive ROS-induced oxidative stress is harmful for organ tissue, causing unexpected local anaphylaxis or inflammation. Here, we demonstrate carbon dots (CDs), made of citric acid and glutathione via one-step hydrothermal method, as a highly efficient intracellular ROS scavenger for alleviating the lipopolysaccharide (LPS)-induced inflammation in macrophage. These CDs have broad-spectrum antioxidant properties and the total antioxidant activity exceeds 51.6% higher than that of the precursor, namely, glutathione, in the same mass concentration. Moreover, their antioxidative performance in macrophage inflammation induced by LPS was investigated, and it was found that CDs can efficiently remove up to 98% of intracellular ROS, notably inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, and decrease the expression level of inflammatory factor IL-12. Our results suggested that CDs can serve as a highly efficient intracellular ROS scavenger and could be employed to cope with oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - MengLing Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Bo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
23
|
Effects of Agaricus blazei polypeptide on cell senescence by regulation of Keap1/Nrf2/ARE and TLR4/NF-κBp65 signaling pathways and its mechanism in D-gal-induced NIH/3T3 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Highly sensitive detection of lipopolysaccharide based on collaborative amplification of dual enzymes. Anal Chim Acta 2020; 1126:31-37. [DOI: 10.1016/j.aca.2020.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
|
25
|
Herath KHINM, Mihindukulasooriya SP, Kim HJ, Kim A, Kim HJ, Jeon YJ, Jee Y. Oral administration of polyphenol-rich Sargassum horneri suppresses particulate matter exacerbated airway inflammation in murine allergic asthma: Relevance to the TLR mediated NF-κB pathway inhibition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Labadie M, Vallin G, Petit A, Ring L, Hoffmann T, Gaston A, Potier A, Schwab W, Rothan C, Denoyes B. Metabolite Quantitative Trait Loci for Flavonoids Provide New Insights into the Genetic Architecture of Strawberry ( Fragaria × ananassa) Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6927-6939. [PMID: 32469530 DOI: 10.1021/acs.jafc.0c01855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered. These results pave the way for the discovery of genetic variations underlying flavonoid mQTLs and for marker-assisted selection of strawberry varieties with improved sensorial and nutritional quality.
Collapse
Affiliation(s)
- Marc Labadie
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Guillaume Vallin
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aurélie Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
- INVENIO, MIN de Brienne, 110 quai de Paludate, Bordeaux 33800, France
| | - Ludwig Ring
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Amèlia Gaston
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aline Potier
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | | | - Béatrice Denoyes
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| |
Collapse
|
27
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
28
|
Antioxidant Action and In Vivo Anti-Inflammatory and Antinociceptive Activities of Myrciaria floribunda Fruit Peels: Possible Involvement of Opioidergic System. Adv Pharmacol Pharm Sci 2020; 2020:1258707. [PMID: 32399519 PMCID: PMC7201827 DOI: 10.1155/2020/1258707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
This work evaluated the antioxidant properties and in vivo antinociceptive and anti-inflammatory effects of extracts obtained from fruit peels of Myrciaria floribunda (H. West ex Willd.) O. Berg (Myrtaceae). This plant is popularly known in Brazil as Cambuí or camboim. Different extracts were submitted to comparative analysis to determine the content of selected phytochemical classes (levels of total phenols, flavonoids, and monomeric anthocyanins) and the in vitro antioxidant potentials. The extract with higher potential was selected for in vivo evaluation of its antinociceptive and anti-inflammatory action. Finally, the chemical characterization of this extract was performed by high-performance liquid chromatography (HPLC). MfAE (extract obtained using acetone as solvent) showed the higher levels of phenols (296 mg GAE/g) and anthocyanins contents (35.65 mg Cy-3-glcE/g) that were associated with higher antioxidant activity. MfAE also exhibited in vivo anti-inflammatory and analgesic propertiers. This fraction inhibited the inflammatory and neurogenic phases of pain, and this effect was reversed by naloxone (suggesting the involvement of opioidergic system). MfAE reduced the abdominal contortions induced by acetic acid. The HPLC analysis revealed the presence of gallic acid (and its derivatives) and ellagic acid. Taken together, these data support the use of M. floribunda fruit peels for development of functional foods and nutraceutics.
Collapse
|
29
|
Fragaria Genus: Chemical Composition and Biological Activities. Molecules 2020; 25:molecules25030498. [PMID: 31979351 PMCID: PMC7037259 DOI: 10.3390/molecules25030498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The strawberries represent in our days one of the main fresh fruits consumed globally, inevitably leading to large amounts of by-products and wastes. Usually appreciated because of their specific flavor, the strawberries also possess biological properties, including antioxidant, antimicrobial, or anti-inflammatory effects. In spite of the wide spread of the Fragaria genus, few species represent the subject of the last decade scientific research. The main components identified in the Fragaria species are presented, as well as several biological properties, as emerging from the scientific papers published in the last decade.
Collapse
|
30
|
Derouich M, Bouhlali EDT, Bammou M, Hmidani A, Sellam K, Alem C. Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco. SCIENTIFICA 2020; 2020:3971041. [PMID: 33029447 PMCID: PMC7530510 DOI: 10.1155/2020/3971041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 05/08/2023]
Abstract
For a long time, Apiaceae species have been widely employed in the southeast of Morocco for culinary and folk healing purposes. In the current study, we investigated three Apiaceae herbs known as coriander (Coriandrum sativum), celery (Apium graveolens), and parsley (Petroselinum crispum) for their antioxidant, antiperoxidative, and antihemolytic properties. The HPLC-DAD has been used to classify and measure phenolic compounds. The major phenolic compounds studied were p-coumaric, chlorogenic, caffeic acids, luteolin, and quercetin. The polyphenol level was also estimated via Folin-Ciocalteu's method, aluminium chloride, and acidified vanillin. Parsley showed the highest polyphenol level and, thus, showed potential antioxidant activities demonstrated by DPPH, ABTS scavenging tests, and reducing power (FRAP), as well as TBARS assays. Very strong correlations were depicted among phenol levels and antioxidant assays (R 2 ≥ 0.910) and among antihemolytic activity and flavonoids (R 2 ≥ 0.927), indicating the implication of phenolic compounds, mainly flavonoids, in the antiradical properties. These finding may prove the traditional use of these Apiaceae species in the management of numerous disorders cited within the Moroccan pharmacopoeia.
Collapse
Affiliation(s)
- Mgal Derouich
- Biochemistry of Natural Products, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
- Biology, Environment and Health Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Eimad Dine Tariq Bouhlali
- National Institute for Agricultural Research, Regional Center of Errachidia, 52000 Errachidia, Morocco
| | - Mohamed Bammou
- Biology, Environment and Health Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Abdelbasset Hmidani
- Biochemistry of Natural Products, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| |
Collapse
|
31
|
Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: Systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol 2019; 135:110922. [PMID: 31669599 DOI: 10.1016/j.fct.2019.110922] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Anthocyanins are natural bioactive compounds that have several health benefits. This systematic review and meta-analysis assessed the impact of dietary anthocyanins on markers of systemic and vascular inflammation. Meta-analysis of 32 randomised controlled trials indicated that dietary anthocyanins significantly decreased levels of C-reactive protein (CRP; -0.33 mg/l, 95% CI: -0.55 to -0.11, P = 0.003), interleukin-6 (IL-6; -0.41 ρg/ml, 95% CI: -0.70 to -0.13, P = 0.004), tumor necrosis factor-alpha (TNF-α; -0.64 ρg/ml, 95% CI: -1.18 to -0.09, P = 0.023), intercellular adhesion molecule-1 (-52.4 ng/ml, 95% CI: -85.7 to -19.1, P = 0.002), and vascular adhesion molecule-1 (VCAM-1; -49.6 ng/ml, 95% CI: -72.7 to -26.5, P < 0.001) while adiponectin level was significantly increased (0.75 μg/ml, 95% CI: 0.23 to 1.26, P = 0.004). The levels of interleukin-1β (IL-1β; -0.45 ρg/ml, 95% CI: -3.77 to 2.88, P = 0.793) and P-selectin (-6.98 ng/ml, 95% CI: -18.1 to 4.15, P = 0.219) did not significantly change. Subgroup analyses showed that administration of higher doses of anthocyanins (>300 mg/day) significantly decreased levels of CRP, IL-6, TNF-α, and VCAM-1. The results indicate that dietary anthocyanins reduce the levels of systemic and vascular inflammation in the subjects.
Collapse
Affiliation(s)
- Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Elham Sarmast
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Parichehr Fatehi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Tina Jafari
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Sharhekord, Iran; Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
32
|
Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-κB and JNK-dependent MAPK pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Xiao J, Sarker SD, Nahar L, Cao H. Report on the 2nd International Symposium on Phytochemicals in Medicine and Food (4-7 April 2017, FuZhou, China). Food Chem 2019; 272:182-184. [PMID: 30309530 DOI: 10.1016/j.foodchem.2018.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/20/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023]
Abstract
The second International Symposium on Phytochemicals in Medicine and Food (2-ISPMF), organized by the Phytochemical Society of Europe (PSE), the Phytochemical Society of Asia (PSA) and the International Society for Chinese Medicine (ISCM), was held on 4-7 April 2017 in FuZhou, China. This symposium created a stage for more than 290 scientists from 33 countries to discuss the latest research in phytochemicals for food and human health. The program comprised 14 plenary lectures, 27 invited talks, 49 short oral presentations, a graduate student forum consisting of 22 oral presentations, and more than 110 posters. 2-ISPMF received supports from several international journals.
Collapse
Affiliation(s)
- Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
34
|
Afrin S, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Manna PP, Battino M, Giampieri F. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem Toxicol 2018; 121:203-213. [DOI: 10.1016/j.fct.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 01/02/2023]
|
35
|
Giampieri F, Islam MS, Greco S, Gasparrini M, Forbes Hernandez TY, Delli Carpini G, Giannubilo SR, Ciavattini A, Mezzetti B, Mazzoni L, Capocasa F, Castellucci M, Battino M, Ciarmela P. Romina: A powerful strawberry with in vitro efficacy against uterine leiomyoma cells. J Cell Physiol 2018; 234:7622-7633. [PMID: 30317591 DOI: 10.1002/jcp.27524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
Uterine leiom yomas are benign tumors highly prevalent in reproductive women. In thecurrent study, initially, we aimed to screen five different strawberry cultivars (Alba, Clery, Portola, Tecla, and Romina) to identify efficient cultivars in terms of phytochemical characterization and biological properties by measuring phenolic and anthocyanin content as well as antioxidant capacity, and by measuring apoptotic rate and reactive oxygen species (ROS) production in uterine leiomyoma cells. Next, we focused on the most efficient ones, cultivar Alba (A) and Romina (R) as well as Romina anthocyanin (RA) fraction for their ability to regulate oxidative phosphorylation (oxygen consumption rate [OCR]) glycolysis (extracellular acidification rate [ECAR]), and also fibrosis. Leiomyoma and myometrial cells were treated with a methanolic extract of A and R (250 μg/ml) or with RA (50 μg/ml) for 48 hr to measure OCR and ECAR, as well as gene expression associated with fibrosis. In the leiomyoma cells, RA was more effective in inducing apoptosis and increasing intracellular ROS levels, followed by R and A. In myometrial cells, all strawberry treatments increased the cellular viability and decreased ROS concentrations. Leiomyoma cells showed also a significant decrease in ECAR, especially after RA treatment, while OCR was slightly increased in both myometrial and leiomyoma cells. R and RA treatment significantly decreased collagen 1A1, fibronectin, versican, and activin A messenger RNA expression in leiomyoma cells. In conclusion, this study suggests that Romina, or its anthocyanin fraction, can be developed as a therapeutic and/or preventive agent for uterine leiomyomas, confirming the healthy effects exerted by these fruits and their bioactive compounds.
Collapse
Affiliation(s)
- Francesca Giampieri
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Botany, Biotechnology and Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | - Andrea Ciavattini
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Mazzoni
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Franco Capocasa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Maurizio Battino
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
36
|
Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem Toxicol 2018; 120:578-587. [DOI: 10.1016/j.fct.2018.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
|
37
|
Beeswax by-Products Efficiently Counteract the Oxidative Damage Induced by an Oxidant Agent in Human Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19092842. [PMID: 30235888 PMCID: PMC6165090 DOI: 10.3390/ijms19092842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
The antioxidant capacity and the phytochemical composition of two by-products from beeswax recycling processes were recently investigated. The aim of the present work was to evaluate the efficacy of one of these by-products, MUD1, against the oxidative stress induced by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) in human dermal fibroblast (HDF) cells. After a preliminary viability assay, the protective effect of MUD1 was investigated through the measurement of apoptosis level, the reactive oxygen species (ROS) and nitrite (NO2−) production, the level of protein and lipid biomarkers (carbonyl groups, total glutathione and thiobarbituric acid-reactive substance) of oxidative damage, and the measurement of antioxidant enzymes activities (glutatione peroxidase, glutathione reductase, glutathione transferase, superoxide dismutase and catalase). The obtained results showed that MUD1 exerted protective effects on HDF, increasing cell viability and counteracted the oxidative stress promoted by AAPH-treatment, and improved mitochondria functionality and wound healing capacities. This work shows the antioxidant effects exerted by beeswax by-products, demonstrating for the first time their potential against oxidative stress in human dermal fibroblast cells; however, further research will be necessary to evaluate their potentiality for human health by more deeply in vitro and in vivo studies.
Collapse
|
38
|
Claudia DP, Mario CH, Arturo NO, Omar Noel MC, Antonio NC, Teresa RA, Zenón Gerardo LT, Margarita DM, Marsela Alejandra ÁI, Yessica Rosalina CM, Vanessa SQ, Francisco Enrique G, Iván TV, Janette FC, María Del Rayo CC, José PC. Phenolic Compounds in Organic and Aqueous Extracts from Acacia farnesiana Pods Analyzed by ULPS-ESI-Q-oa/TOF-MS. In Vitro Antioxidant Activity and Anti-Inflammatory Response in CD-1 Mice. Molecules 2018; 23:E2386. [PMID: 30231503 PMCID: PMC6225385 DOI: 10.3390/molecules23092386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acacia farnesiana (AF) pods have been traditionally used to treat dyspepsia, diarrhea and topically for dermal inflammation. Main objectives: (1) investigate the antioxidant activity and protection against oxidative-induced damage of six extracts from AF pods and (2) their capacity to curb the inflammation process as well as to down-regulate the pro-inflammatory mediators. METHODS Five organic extracts (chloroformic, hexanic, ketonic, methanolic, methanolic:aqueous and one aqueous extract) were obtained and analyzed by UPLC-ESI-Q-oa/TOF-MS. Antioxidant activity (DPPH•, ORAC and FRAP assays) and lipid peroxidation (TBARS assay) were performed. Assessment of anti-inflammatory properties was made by the ear edema induced model in CD-1 mice and MPO activity assay. Likewise, histological analysis, IL-1β, IL-6, IL-10, TNF-α, COX measurements plus nitrite and immunohistochemistry analysis were carried out. RESULTS Methyl gallate, gallic acid, galloyl glucose isomer 1, galloyl glucose isomer 2, galloyl glucose isomer 3, digalloyl glucose isomer 1, digalloyl glucose isomer 2, digalloyl glucose isomer 3, digalloyl glucose isomer 4, hydroxytyrosol acetate, quinic acid, and caffeoylmalic acid were identified. Both organic and aqueous extracts displayed antioxidant activity. All extracts exhibited a positive effect on the interleukins, COX and immunohistochemistry assays. CONCLUSION All AF pod extracts can be effective as antioxidant and topical anti-inflammatory agents.
Collapse
Affiliation(s)
- Delgadillo Puga Claudia
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Cuchillo-Hilario Mario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Navarro Ocaña Arturo
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Medina-Campos Omar Noel
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Nieto Camacho Antonio
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Ramírez Apan Teresa
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | | | - Díaz Martínez Margarita
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Álvarez-Izazaga Marsela Alejandra
- Departamento de Nutrición Aplicada y Educación Nutricional, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | | | | | - Gómez Francisco Enrique
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Torre-Villalvazo Iván
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Furuzawa Carballeda Janette
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | | | - Pedraza-Chaverri José
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| |
Collapse
|
39
|
Zhang J, Giampieri F, Afrin S, Battino M, Zheng X, Reboredo-Rodriguez P. Structure-stability relationship of anthocyanins under cell culture condition. Int J Food Sci Nutr 2018; 70:285-293. [PMID: 30160540 DOI: 10.1080/09637486.2018.1506753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work aims to evaluate the structure-stability relationship of anthocyanins in cell culture. An early degradation time (CT10) and half-degradation time (CT50) were used to characterise the stability of 10 of the most common anthocyanins, incubated with DMEM at 37 °C, pH = 7.4, 5% CO2 for different time periods. According to the glycosylation, the glycosylated forms were more stable than the not glycosylated forms. The methylation at 3'' or 5' position at ring B enhanced their stability; contrarily, the hydroxylation at 3' or 5' position at ring B weakened their stability. Glycosylated forms were much more stable in water than in the culture medium. Although not glycosylated forms were also instable in water, their stability was improved compared with culture medium. Together with the cell culture experiments and, in order to avoid artefacts, stability tests of polyphenols should be performed in parallel experiments with DMEM.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Francesca Giampieri
- b Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Italy
| | - Sadia Afrin
- b Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Italy
| | - Maurizio Battino
- b Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Italy
| | - Xiaodong Zheng
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Patricia Reboredo-Rodriguez
- b Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Italy.,c Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science , University of Vigo , Ourense Campus , Ourense , Spain
| |
Collapse
|
40
|
Ariza MT, Forbes-Hernández TY, Reboredo-Rodríguez P, Afrin S, Gasparrini M, Cervantes L, Soria C, Martínez-Ferri E, Battino M, Giampieri F. Strawberry and Achenes Hydroalcoholic Extracts and Their Digested Fractions Efficiently Counteract the AAPH-Induced Oxidative Damage in HepG2 Cells. Int J Mol Sci 2018; 19:E2180. [PMID: 30049933 PMCID: PMC6121376 DOI: 10.3390/ijms19082180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.
Collapse
Affiliation(s)
- María Teresa Ariza
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodríguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Lucía Cervantes
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Carmen Soria
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Elsa Martínez-Ferri
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
41
|
Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int J Mol Sci 2018; 19:ijms19061573. [PMID: 29799460 PMCID: PMC6032343 DOI: 10.3390/ijms19061573] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Phenolics, which are secondary metabolites of plants, exhibit remarkable bioactivities. In this contribution, we have focused on their protective effect against chronic diseases rather than their antioxidant activities, which have been widely discussed in the literature. A large body of epidemiological studies has proven the bioactivities of phenolics in both standard compounds and natural extracts: namely, anticancer, anti-inflammatory, and antibacterial activities as well as reducing diabetes, cardiovascular disease, and neurodegenerative disease. Phenolics also display anti-analgesic, anti-allergic, and anti-Alzheimer’s properties. Thus, this review provides crucial information for better understanding the bioactivities of phenolics in foods and fills a gap in the existing collective and overall knowledge in the field.
Collapse
|