1
|
Bhattacharjee S, Chacon-Teran MA, Findlater M, Louie SM, Bailoo JD, Deonarine A. Suspect screening-data independent analysis workflow for the identification of arsenolipids in marine standard reference materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610588. [PMID: 39282420 PMCID: PMC11398336 DOI: 10.1101/2024.08.31.610588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
There has been limited research into arsenolipid toxicological risks and health-related outcomes due to challenges with their separation, identification, and quantification within complex biological matrices (e.g., fish, seaweed). Analytical approaches for arsenolipid identification such as suspect screening have not been well documented and there are no certified standard reference materials, leading to issues with reproducibility and uncertainty regarding the accuracy of results. In this study, a detailed workflow for the identification of arsenolipids utilizing suspect screening coupled with data independent analysis is presented and applied to three commercially available standard reference materials (Hijiki seaweed, dogfish liver, and tuna). Hexane and dichloromethane/methanol extraction, followed by reversed-phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Using the workflow developed, mass fragmentation matching, mass error calculations, and retention time matching were performed to identify suspect arsenolipids. Arseno-fatty acids (AsFAs), arsenohydrocarbons (AsHCs), and arsenosugar phospholipids (AsSugPLs) were identified with high confidence; AsHC332, AsHC360, and AsSugPL720 in seaweed, AsHC332 in tuna, and AsFA474 and AsFA502 in the dogfish liver. AsHC332, AsHC360, and AsFA502 were identified as promising candidates for further work on synthesis, quantification using MS/MS, and toxicity testing.
Collapse
|
2
|
Coniglio D, Ventura G, Calvano CD, Losito I, Cataldi TRI. Strategies for the analysis of arsenolipids in marine foods: A review. J Pharm Biomed Anal 2023; 235:115628. [PMID: 37579719 DOI: 10.1016/j.jpba.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Arsenic-containing lipids, also named arsenolipids (AsLs), are a group of organic compounds usually found in a variety of marine organisms such as fish, algae, shellfish, marine oils, and microorganisms. Numerous AsLs have been recognised so far, from simple compounds such as arsenic fatty acids (AsFAs), arsenic hydrocarbons (AsHCs), and trimethylarsenio fatty alcohols (TMAsFOHs) to more complex arsenic-containing species, of which arsenophospholipids (AsPLs) are a case in point. Mass spectrometry, both as inductively coupled plasma (ICP-MS) and liquid chromatography coupled by an electrospray source (LC-ESI-MS), was applied to organic arsenicals playing a key role in extending and refining the characterisation of arsenic-containing lipids in marine organisms. Herein, upon the introduction of a systematic notation for AsLs and a brief examination of their toxicity and biological role, the most relevant literature concerning the characterisation of AsLs in marine organisms, including edible ones, is reviewed. The use of both ICP-MS and ESI-MS coupled with reversed-phase liquid chromatography (RPLC) has brought significant advancements in the field. In the case of ESI-MS, the employment of negative polarity and tandem MS analyses has further enhanced these advancements. One notable development is the identification of the m/z 389.0 ion ([AsC10H19O9P]-) as a diagnostic product ion of AsPLs, which is obtained from the fragmentation of the deprotonated forms of AsPLs ([M - H]-). The pinpointing product ions offer the possibility of determining the identity and regiochemistry of AsPL side chains. Advanced MS-based analytical methods may contribute remarkably to the understanding of the chemical diversity characterising the metalloid As in natural organic compounds of marine organisms.
Collapse
Affiliation(s)
- Davide Coniglio
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
3
|
Davydiuk T, Tao J, Lu X, Le XC. Effects of Dietary Intake of Arsenosugars and Other Organic Arsenic Species on Studies of Arsenic Methylation Efficiency in Humans. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:236-248. [PMID: 37881591 PMCID: PMC10594586 DOI: 10.1021/envhealth.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Extensive research has used dimethylarsinic acid (DMA) in urine as a marker of arsenic methylation. The premise is that humans methylate inorganic arsenicals to monomethylarsonic acid (MMA) and DMA and excrete these arsenic species into the urine. However, DMA in urine not only comes from the methylation of inorganic arsenic but also could be a result of metabolism of other arsenic species, such as arsenosugars and arsenolipids. Most environmental health and epidemiological studies of arsenic methylation might have overlooked confounding factors that contribute to DMA in urine. Here we critically evaluate reported studies that used methylation indexes, concentration ratios of methylated arsenicals, or the percentage of DMA in urine as markers of arsenic methylation efficiency. Dietary intake of arsenosugars potentially confounds the calculation and interpretation of the arsenic methylation efficiencies. Many studies have not considered incidental dietary intake of arsenosugars, arsenolipids, and other organic arsenic species. Future studies should consider the dietary intake of diverse arsenic species and their potential effect on the urinary concentrations of DMA.
Collapse
Affiliation(s)
- Tetiana Davydiuk
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Jeffrey Tao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xiufen Lu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - X. Chris Le
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
4
|
Liu Q, Wu M, Jiang M. Arsenolipids in raw and cooked seafood products in southwest China: A non-targeted analysis. CHEMOSPHERE 2022; 307:135769. [PMID: 35868526 DOI: 10.1016/j.chemosphere.2022.135769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenolipids are the primary form of arsenic in the fat of marine organisms. Because seafood is a common source of arsenic exposure and some arsenolipids are toxic, studying the abundance and species of arsenolipids in seafood is crucial for health risk assessment. Current arsenolipid research is confined by analytical techniques and limited to raw seafood analysis, despite the fact that most seafood is ingested cooked. Therefore, the aim of this study is to evaluate which seafood contributes to arsenolipid dietary intake and investigate the changes in arsenolipids before and after cooking. In Chongqing, China, popular seafood such as clam, shrimp, oyster, abalone, hairtail, and yellow croaker were collected. The raw and cooked samples prepared from these seafood products were examined using a non-targeted screening approach established for arsenolipids, which coupled high-performance liquid chromatography with data-independent high-resolution quadrupole-time-of-flight electrospray ionization tandem mass spectrometry. Arsenic-containing hydrocarbons (AsHC330, AsHC332, and AsHC360), arsenic-containing fatty acids (AsFA362, AsFA390, AsFA404, AsFA418, and AsFA422), trimethylarsine oxide, and thiolated trimethylarsinic acid were detected. The species of arsenolipids in each type of seafood remained intact after heating in the microwave oven. In cooked samples, the concentrations of AsFA362 and AsFA390 were significantly lower than in raw samples, whereas the concentrations of other arsenolipids were unchanged. Microwave cooking did not result in the thiolation of the detected arsenolipids. The most detected species in raw and cooked samples were AsFA362, AsFA390, and AsFA418. Most arsenolipid species were found in the highest levels in hairtails and yellow croakers. It is the first time that arsenolipids have been found in the oyster, abalone, abalone liver, and yellow croaker. The present study contributes to a better understanding of arsenolipids exposure from seafood, which is useful for assessing the health risks of arsenic.
Collapse
Affiliation(s)
- Qingqing Liu
- College of Resource and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Min Jiang
- College of Resource and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
5
|
Lajin B, Feldmann J, Goessler W. Elution with 1,2-Hexanediol Enables Coupling of ICPMS with Reversed-Pase Liquid Chromatography under Standard Conditions. Anal Chem 2022; 94:8802-8810. [PMID: 35666989 PMCID: PMC9218959 DOI: 10.1021/acs.analchem.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The inductively coupled
plasma mass spectrometry (ICPMS) has been
attracting increasing attention for many applications as an element-selective
chromatographic detector. A major and fundamental limitation in coupling
ICPMS with liquid chromatography is the limited compatibility with
organic solvents, which has so far been addressed via a tedious approach,
collectively referred to as the “organic ICPMS mode”,
that can decrease detection sensitivity by up to 100-fold. Herein,
we report 1,2-hexanediol as a new eluent in high-performance liquid
chromatography–ICPMS which enables avoiding the current limitations.
Unlike commonly used eluents, 1,2-hexanediol was remarkably compatible
with ICPMS detection at high flow rates of 1.5 mL min–1 and concentrations of at least 30% v/v, respectively, under the
standard conditions and instrumental setup normally used with 100%
aqueous media. Sensitivity for all tested elements (P, S, Cl, Br,
Se, and As) was enhanced with
10% v/v 1,2-hexanediol relative to that of 100% aqueous media by 1.5–7-fold
depending on the element. Concentrations of 1,2-hexanediol at ≤30%
v/v were superior in elution strength to concentrations at >90%
v/v
of the common organic phases, which greatly decreases the amount of
carbon required to elute highly hydrophobic compounds such as lipids
and steroids, enabling detection at ultra-trace levels. The proposed
approach was applied to detect arsenic-containing fatty acids in spiked
human urine, and detection limits of <0.01 μg As L–1 were achieved, which is >100-fold lower than those previously
reported
using the organic ICPMS mode. Nontargeted speciation analysis in Allium sativum revealed the presence of a large number
of hydrophobic sulfur-containing metabolomic features at trace levels.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Joerg Feldmann
- Institute of Chemistry, TESLA (Trace Element Speciation Laboratory), University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
6
|
Taylor VF, Karagas MR. Exposure to arsenolipids and inorganic arsenic from marine-sourced dietary supplements. CHEMOSPHERE 2022; 296:133930. [PMID: 35182530 PMCID: PMC9007862 DOI: 10.1016/j.chemosphere.2022.133930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
Dietary supplements sourced from marine environments, such as fish oils and seaweed-based supplements, are widely consumed to boost nutrient intakes, including by vulnerable populations such as pregnant women. Like other marine foods, these supplements are also a potential source of exposure to arsenic, including the known toxic species, inorganic arsenic, and the cytotoxic, lipid-soluble arsenic compounds, arsenic hydrocarbons. A study of 32 marine-sourced supplements found higher total arsenic concentrations (>1000 ng g-1) in supplements made from seaweed, krill and calanus oil, and in fish and fish liver products marketed as "unprocessed". Inorganic arsenic was only detectable in the seaweed samples, and was elevated (8900 ng g-1) in one product. Arsenic hydrocarbons were not detected in krill oil samples but were present at concentrations from 169 to 2048 ng g-1 in "unprocessed" fish and fish liver oil, and calanus oil. Survey data from the New Hampshire Birth Cohort Study (NHBCS) found 13.5% of pregnant women (n = 1997) reported taking fish oil supplements; and of those, most did so daily (75.6%, 6 or more times per week). Only a small percentage (9%) of those who reported consuming fish oil used products associated with higher arsenic levels. Higher urinary arsenic concentrations were found among women who consumed fish oil compared with those who did not, and specifically higher arsenobetaine and dimethyl arsenic concentrations. Dietary supplements are becoming common components of modern diets, and some marine-sourced dietary supplements are a source of inorganic arsenic and arsenic hydrocarbons.
Collapse
Affiliation(s)
- Vivien F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
7
|
Chávez-Capilla T. The Need to Unravel Arsenolipid Transformations in Humans. DNA Cell Biol 2022; 41:64-70. [PMID: 34941367 PMCID: PMC8787705 DOI: 10.1089/dna.2021.0476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
The main source of arsenic exposure to humans worldwide is the diet, in particular, drinking water, rice, and seafood. Although arsenic is often considered toxic, it can exist in food as more than 300 chemical species with different toxicities. This diversity makes it difficult for food safety and health authorities to regulate arsenic levels in food, which are currently based on a few arsenic species. Of particular interest are arsenolipids, a type of arsenic species widely found in seafood. Emerging evidence indicates that there are risks associated with human exposure to arsenolipids (e.g., accumulation in breast milk, ability to cross the blood-brain barrier and accumulate in the brain, and potential development of neurodegenerative disorders). Still, more research is needed to fully understand the impact of arsenolipid exposure, which requires establishing interdisciplinary collaborations.
Collapse
|
8
|
Xiong C, Glabonjat RA, Al Amin MH, Stiboller M, Yoshinaga J, Francesconi KA. Arsenolipids in salmon are partly converted to thioxo analogs during cooking. J Trace Elem Med Biol 2022; 69:126892. [PMID: 34798512 DOI: 10.1016/j.jtemb.2021.126892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Arsenic hydrocarbons, major arsenolipids occurring naturally in marine fish, have substantial cytotoxicity leading to human health-related studies of their distribution and abundance in foods. These studies have all investigated fresh foods; because most fish are cooked before being consumed, it is both food- and health-relevant to determine the arsenolipids present in cooked fish. METHODS We used HPLC/mass spectrometry to investigate the arsenolipids present in salmon (Salmo salar) before and after cooking by either baking or steaming. RESULTS In raw salmon (total As 2.74 mg kg-1 dry mass, of which 6% was lipid-soluble), major arsenolipids were three arsenic hydrocarbons (oxo-AsHC 332, oxo-AsHC 360, and oxo-AsHC 404, ca 55% of total arsenolipids) and a band of unidentified less-polar arsenolipids (ca 40%), trace amounts of another four arsenic hydrocarbons and two thioxo analogs were also detected. During the cooking process, 28% of the oxo-AsHCs were converted to their thioxo analogs. CONCLUSION Our study shows that arsenic hydrocarbons naturally present in fresh fish are partly converted to their thioxo analogs during cooking by either baking or steaming. The greater lipophilicity of the thioxo analogs could alter the mode of toxicity of arsenic hydrocarbons, and hence future food regulations for arsenic should consider the influence of cooking on the precise type of arsenolipid in fish.
Collapse
Affiliation(s)
- Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria.
| | - Ronald A Glabonjat
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Md Hasan Al Amin
- Faculty of Life Sciences, Toyo University, Gumma, 374-0193, Japan
| | - Michael Stiboller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria; Institute of Nutritional Science, Food Chemistry, University of Potsdam, 14558, Nuthetal, Germany
| | - Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, Gumma, 374-0193, Japan
| | | |
Collapse
|
9
|
Du R, Luo X, Huang Y, Chen L, Huang Z, Mao X, Liang Y, Zhang Q, Wang P. Polychlorinated dibenzo-p-dioxins and dibenzofurans in lotus from a lake historically polluted by the chlor-alkali industry: Occurrence, organ distribution and health risk from dietary intake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118395. [PMID: 34687778 DOI: 10.1016/j.envpol.2021.118395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the organ distribution and exposure risk from dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were investigated for lotus collected from Ya-er Lake, a lake in Hubei Province, Central China that was historically polluted by the chlor-alkali industry. The highest concentrations of PCDD/Fs were found in the main and fibrous lotus roots, with mean values of 48.9 ± 90.1 pg/g and 94.6 ± 143 pg/g, respectively. In all the investigated samples, Octa-CDD (OCDD) and Octa-CDF (OCDF) were the predominant congeners, at 26% and 17% of Σ17 PCDD/Fs, respectively, followed by 1,2,3,4,6,7,8-HpCDF (9%). The distribution ratios of PCDD/Fs in adjacent lotus organs indicated that PCDD/Fs accumulated easily in edible organs, such as lotus seeds, membrane and leaves. The WHO-TEQ in the edible lotus organs and the probable daily intake (PDI) of lotus products by residents were calculated: the toxic equivalents in the lotus fruit parts reached a mean of 2 pg WHO-TEQ2005/g dw, and the mean weekly intake of lotus products for adolescents living around Ya-er Lake was 2.3 pg WHO-TEQ/kg bw/week. These results suggested that long-term consumption of lotus products from Ya-er Lake presents a health hazard to residents.
Collapse
Affiliation(s)
- Rui Du
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Xi Luo
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, 430010, China
| | - Yani Huang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Lufeng Chen
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zichun Huang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Xiaowei Mao
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
10
|
Yoshinaga J, Komatsuda S, Fujita R, Amin MHA, Oguri T. Carbon and nitrogen stable isotope ratios of diet of the Japanese and diet-hair offset values. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:563-575. [PMID: 34719303 DOI: 10.1080/10256016.2021.1990276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The stable isotope ratios of carbon and nitrogen (δ13C and δ15N) were measured in composite samples of Japanese food and hair. Three hundred eighty-nine foodstuffs were collected in Tokyo and Gunma Prefecture, Japan, in 2020. The foodstuffs were classified into 15 food categories, prepared as usually consumed, and mixed to make 15 composite samples representing each of the food categories. Similarly prepared samples for foodstuffs collected in 2011 and 2015 were also examined. Composite hair samples were collected from a barber shop in Tokyo and a beauty salon in Gunma in 2019. The δ13C and δ15N values of the food and hair composites were measured by elemental analyzer/isotope ratio mass spectrometry after defatting. The δ13C and δ15N values of the food composite varied from composite to composite and according to year of collection. The whole-diet δ13C values were -21.1, -22.0, and -21.5 ‰ for the 2011, 2015, and 2020 samples, respectively; the δ15N values were 5.0, 4.4, and 4.4 ‰, respectively. Diet-hair offset values of δ13C and δ15N were calculated to be 1.9 and 4.3 ‰ for δ13C and δ15N, respectively. These offset values will be important for dietary analysis and nutritional research using hair isotope ratios.
Collapse
Affiliation(s)
- Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, Oura, Japan
| | | | - Raiki Fujita
- Faculty of Life Sciences, Toyo University, Oura, Japan
| | | | - Tomoko Oguri
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
11
|
Glabonjat RA, Raber G, Holm HC, Van Mooy BAS, Francesconi KA. Arsenolipids in Plankton from High- and Low-Nutrient Oceanic Waters Along a Transect in the North Atlantic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5515-5524. [PMID: 33789045 DOI: 10.1021/acs.est.0c06901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the natural occurrence of arsenic-containing lipids (arsenolipids) in marine organisms is now well established, the possible role of these unusual compounds in organisms and in the cycling of arsenic in marine systems remains largely unexplored. We report the finding of arsenolipids in 61 plankton samples collected from surface marine waters of high- and low-nutrient content along a transect spanning the Gulf Stream in the North Atlantic Ocean. Using high-performance liquid chromatography (HPLC) coupled to both elemental and molecular mass spectrometry, we show that all 61 plankton samples contained six identifiable arsenolipids, namely, three arsenosugar phospholipids (AsPL958, 10-13%; AsPL978, 13-25%; and AsPL1006, 7-10% of total arsenolipids), two arsenic-containing hydrocarbons (AsHC332, 4-10% and AsHC360, 1-2%), and a methoxy-sugar arsenolipid that contained phytol (AsSugPhytol, 1-3%). The relative amounts of the six arsenolipids showed clear dependence on the nutrient status of the ambient water with plankton collected from high-nutrient waters having less of the arsenosugar phospholipids and more of the three non-P containing arsenolipids compared to low-nutrient waters. By combining these first field data of arsenolipids in plankton with reported global phytoplankton productivity, we estimate that the oceans' phytoplankton transform per year 50 000-100 000 tons of arsenic into arsenolipids.
Collapse
Affiliation(s)
- Ronald A Glabonjat
- Institute of Chemistry, University of Graz, NAWI-Graz, 8010 Graz, Austria
| | - Georg Raber
- Institute of Chemistry, University of Graz, NAWI-Graz, 8010 Graz, Austria
| | - Henry C Holm
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | | |
Collapse
|
12
|
Zheng Y, Tian C, Dong L, Tian L, Glabonjat RA, Xiong C. Effect of arsenic-containing hydrocarbon on the long-term potentiation at Schaffer Collateral-CA1 synapses from infantile male rat. Neurotoxicology 2021; 84:198-207. [PMID: 33848561 DOI: 10.1016/j.neuro.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023]
Abstract
Arsenic-containing hydrocarbons (AsHCs) are common constituents of marine organisms and have potential toxicity to human health. This work is to study the effect of AsHCs on long-term potentiation (LTP) for the first time. A multi-electrode array (MEA) system was used to record the field excitatory postsynaptic potential (fEPSP) of CA1 before and after treatment with AsHC 360 in hippocampal slices from infantile male rats. The element content of Na, K, Ca, Mg, Mn, Cu, Zn, and As in the hippocampal slices were analyzed by elemental mass spectrometry after the neurophysiological experiment. The results showed that low AsHC 360 (1.5 μg As L-1) had no effect on the LTP, moderate AsHC 360 (3.75-15 μg As L-1) enhanced the LTP, and high AsHC 360 (45-150 μg As L-1) inhibited the LTP. The enhancement of the LTP by promoting Ca2+ influx was proved by a Ca2+ gradient experiment. The inhibition of the LTP was likely due to damage of synaptic cell membrane integrity. This study on the neurotoxicity of AsHCs showed that high concentrations have a strong toxic effect on the LTP in hippocampus slices of the infantile male rat, which may lead to a negative effect on the development, learning, and memory.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA; Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
13
|
Yoshinaga J, Narukawa T. Dietary intake and urinary excretion of methylated arsenicals of Japanese adults consuming marine foods and rice. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:622-629. [PMID: 33625959 DOI: 10.1080/19440049.2021.1877836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dietary intake and urinary excretion of monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB) were measured in 150 adult Japanese subjects. Duplicate diet (DD) samples and first void of urine on the next morning of DD sampling day were collected and analysed for arsenic species with liquid chromatography-ICP mass spectrometry. Median (min-max) intakes of MMA, DMA and AsB were <2.3 (<2.3-<2.3), 4.57 (<2.3-24.3), and 13.6 (<2.4-231) μg As/day, respectively, and median urinary concentrations were 1.90 (<0.37-26.), 21.9 (<0.27-141) and 19.6 (<0.37-1063) ng As/mg creatinine, respectively. Interrelationships between intake levels and urinary concentrations were mostly significant with positive coefficients indicating mutual association due to co-exposure, metabolism and/or dietary habit. Urinary concentrations and intake levels of AsB were also positively correlated confirming the applicability of urine analysis as biomarker of exposure. The present descriptive results provide with essential piece of information in assessing health risk of methylated arsenicals for population who consume marine products and rice.
Collapse
Affiliation(s)
- Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Tomohiro Narukawa
- National Metrology Institute of Japan, National Institute of Advanced Industrial Sciences and Technology, Ibaraki, Japan
| |
Collapse
|
14
|
Kato LS, Ferrari RG, Leite JVM, Conte-Junior CA. Arsenic in shellfish: A systematic review of its dynamics and potential health risks. MARINE POLLUTION BULLETIN 2020; 161:111693. [PMID: 33022493 DOI: 10.1016/j.marpolbul.2020.111693] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is the most toxic element for humans. Presenting naturally in aquatic ecosystems and due to anthropogenic action, this semi-metal transfers to shellfish through the food chain. This systematic review aims to explain the dynamic of arsenic in the marine aquatic system, investigating factors that affect its bioaccumulation. A total of 64 articles were considered from three databases. The key abiotic factor influencing the presence of arsenic in shellfish is anthropogenic contamination, followed by geographic location. The crucial biotic factor is the genetics of each species of shellfish, including their diet habits, habitat close to the sediment, metabolic abilities, physiological activities of organisms, and metal levels in their habitats and food. Finally, arsenic presents an affinity for specific tissues in shellfish. Despite containing mostly less toxic organic arsenic, shellfish are a relevant source of arsenic in the human diet.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, number 149 - Bloco A, Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Center for Food Analysis (NAL-LADETEC), Rio de Janeiro 21941-598, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, number 149 - Bloco A, Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Center for Food Analysis (NAL-LADETEC), Rio de Janeiro 21941-598, Brazil; Department of Food Technology, Universidade Federal Fluminense (UFF), Rio de Janeiro 24220-000, Brazil.
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, number 149 - Bloco A, Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Center for Food Analysis (NAL-LADETEC), Rio de Janeiro 21941-598, Brazil; Department of Food Technology, Universidade Federal Fluminense (UFF), Rio de Janeiro 24220-000, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
15
|
Doerge DR, Twaddle NC, Churchwell MI, Beland FA. Reduction by, ligand exchange among, and covalent binding to glutathione and cellular thiols link metabolism and disposition of dietary arsenic species with toxicity. ENVIRONMENT INTERNATIONAL 2020; 144:106086. [PMID: 32889486 DOI: 10.1016/j.envint.2020.106086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is a common contaminant in the earth's crust and widely distributed in food and drinking water. As exposures have been associated with human disease, including cancer, diabetes, lung and cardiovascular disorders, and there is accumulating evidence that early life exposures are important in the etiology. Mode-of-action analysis includes a critical role for metabolic activation of As species to reactive trivalent intermediates that disrupt cellular regulatory systems by covalent binding to thiol groups. The central role of glutathione (GSH) in the chemical reactions of metabolism and disposition of arsenic species was investigated here. The chemical kinetics were measured for reactions in which GSH is a ligand for trivalent As complex formation, a reductant for pentavalent As species, and a participant in ligand exchange reactions with other biological As-thiol complexes. The diverse reactions of GSH with As species demonstrate prominent roles in: (1) metabolic activation via reduction; (2) transport from tissues that are the primary sources of reactive trivalent As intermediates following ingestion (intestine and liver) to downstream target organs (e.g., lung, kidney, and bladder); and (3) oxidation to the terminal metabolite, dimethylarsinic acid (DMAV), which is excreted. Studies of As metabolism and disposition emphasize the link between metabolic activation vs. excretion of As (i.e., internal dosimetry of reactive species) and the disruption of critical cellular thiol-based regulatory processes that define the dose-response characteristics of disease in human epidemiological studies and animal models and underpin risk assessment.
Collapse
Affiliation(s)
- Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
16
|
Narukawa T, Iwai T, Chiba K. Simultaneous speciation analysis of inorganic arsenic and methylmercury in edible oil by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. Talanta 2020; 210:120646. [DOI: 10.1016/j.talanta.2019.120646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
|
17
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations - A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:943-960. [PMID: 31913614 PMCID: PMC7250045 DOI: 10.1021/acs.jafc.9b07532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, has led to the assumption of their nontoxicity. Recent toxicokinetic studies show that some organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to investigate and compare the bioavailability, metabolic transformation, and elimination from the body of organoarsenicals to the well-established physiological consequences of inorganic arsenic and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang B Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
18
|
Al Amin MH, Xiong C, Francesconi KA, Itahashi Y, Yoneda M, Yoshinaga J. Variation in arsenolipid concentrations in seafood consumed in Japan. CHEMOSPHERE 2020; 239:124781. [PMID: 31514006 DOI: 10.1016/j.chemosphere.2019.124781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
Variation in arsenolipid concentrations was assessed in 18 seafood samples including fish, shellfish, and crustaceans purchased in Japan. Analyses were performed by high performance liquid chromatography-inductively coupled plasma mass spectrometry/electrospray ionization tandem mass spectrometry. Stable isotope ratios for nitrogen and carbon were also measured in the samples for obtaining trophic level information of the species. Arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) were detected in the seafood samples; the toxic AsHCs were found in all of the seafood samples with large variation in the concentrations (83 ± 73 ng As/g fw, coefficient of variation = 88%). Our previous point estimate of health risk of AsHCs intake via seafood consumption in Japan, based on average AsHC concentration in seafood, suggested insignificant risk, and the present study supports our previous estimate. AsHC concentrations significantly correlated with lipid content of the seafood samples (r = 0.67, p < 0.01), a result expected because of the fat solubility of the compounds. The AsHCs concentrations, however, were not significantly correlated with nitrogen stable isotope ratios suggesting that AsHCs do not biomagnify. The source of the observed large variation in AsHC concentrations will be the subject of further investigation.
Collapse
Affiliation(s)
- Md Hasan Al Amin
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8563, Japan; Faculty of Life Sciences, Toyo University, Izumino 1-1-1, Itakura, Ora, Gunma, 374-0193, Japan
| | - Chan Xiong
- Institute of Chemistry-NAWI Graz, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Kevin A Francesconi
- Institute of Chemistry-NAWI Graz, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Yu Itahashi
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
| | - Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, Izumino 1-1-1, Itakura, Ora, Gunma, 374-0193, Japan.
| |
Collapse
|
19
|
Bornhorst J, Ebert F, Meyer S, Ziemann V, Xiong C, Guttenberger N, Raab A, Baesler J, Aschner M, Feldmann J, Francesconi K, Raber G, Schwerdtle T. Toxicity of three types of arsenolipids: species-specific effects inCaenorhabditis elegans. Metallomics 2020; 12:794-798. [DOI: 10.1039/d0mt00039f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AsHCs and AsTAG are highly bioavailable toC. elegans., AsHCs are metabolized byC. elegans., AsHCs but not AsTAG and AsFA affect survival and development inC. elegans.
Collapse
|
20
|
Camurati JR, Salomone VN. Arsenic in edible macroalgae: an integrated approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:1-12. [PMID: 31578125 DOI: 10.1080/10937404.2019.1672364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arsenic is a metalloid naturally present in marine environments. Various toxic elements including arsenic (As) are bioaccumulated by macroalgae. This metalloid is subsequently incorporated as arsenate into the organism due to similarity to phosphate. In recent decades, the use of macroalgae in food has increased as a result of their numerous benefits; however, As consumption may exert potential consequences for human health. The objective of this review was to discuss the articles published up to 2019 on As in seaweed, including key topics such as speciation, toxicity of the most common species in marine macroalgae, and their effects on human health. Further, this review will emphasize the extraction methods and analysis techniques most frequently used in seaweed and the need to develop certified reference materials (CRMs) in order to support the validation of analytical methodologies for As speciation in macroalgae. Finally, this review will discuss current legislation in relation to the risk associated with consumption. The number of articles found and the different approaches, biological, analytical and toxicological, show the growing interest there has been in this field in the last few years. In addition, this review reveals aspects of As chemistry that need further study, such as transformation of organic metalloid species during digestion and cooking, which necessitates analytical improvement and toxicological experiments. Taken together our findings may contribute to revision of current legislation on As content in edible seaweed relating to human health in a growing market.
Collapse
Affiliation(s)
- Julieta R Camurati
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
21
|
Twaddle NC, Vanlandingham M, Beland FA, Doerge DR. Metabolism and disposition of arsenic species from controlled dosing with dimethylarsinic acid (DMAV) in adult female CD-1 mice. V. Toxicokinetic studies following oral and intravenous administration. Food Chem Toxicol 2019; 130:22-31. [DOI: 10.1016/j.fct.2019.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
|
22
|
Wolle MM, Stadig S, Conklin SD. Market Basket Survey of Arsenic Species in the Top Ten Most Consumed Seafoods in the United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8253-8267. [PMID: 31294564 DOI: 10.1021/acs.jafc.9b02314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study focused on the determination of arsenic species in the top ten most consumed seafoods in the United States. Fifty-four samples were collected from local supermarkets, and their species identities were confirmed by DNA barcoding. The total arsenic in the samples varied greatly in the range of 8-22200 ng/g (wet mass). Speciation analysis based on extraction of water-soluble and nonpolar arsenic showed that inorganic arsenic (iAs) was found only in clams and crabs, while arsenobetaine (AsB) predominates in most samples. Among the other arsenicals, trimethylarsoniopropionate (TMAP) was found in most matrices with higher concentrations in crabs, and arsenosugars existed in most clams and crabs. Nonpolar arsenic accounted for 1-46% of the total arsenic in the samples. The accuracy of the analytical results was evaluated using standard reference materials and spike recovery tests. The survey showed that the iAs concentrations in America's most consumed seafood products are much lower than the tolerable intake set by the Joint FAO/WHO Expert Committee, even at the highest levels found in this study.
Collapse
Affiliation(s)
- Mesay Mulugeta Wolle
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Sarah Stadig
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Sean D Conklin
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| |
Collapse
|
23
|
|
24
|
Mac Monagail M, Morrison L. Arsenic speciation in a variety of seaweeds and associated food products. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Freitas AC, Gomes AM. Analytical approaches for proteomics and lipidomics of arsenic in algae. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/bs.coac.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Chen L, Zhang L. Arsenic speciation in Asiatic algae: Case studies in Asiatic continent. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|