1
|
Silva MH. Investigating open access new approach methods (NAM) to assess biological points of departure: A case study with 4 neurotoxic pesticides. Curr Res Toxicol 2024; 6:100156. [PMID: 38404712 PMCID: PMC10891343 DOI: 10.1016/j.crtox.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Open access new approach methods (NAM) in the US EPA ToxCast program and NTP Integrated Chemical Environment (ICE) were used to investigate activities of four neurotoxic pesticides: endosulfan, fipronil, propyzamide and carbaryl. Concordance of in vivo regulatory points of departure (POD) adjusted for interspecies extrapolation (AdjPOD) to modelled human Administered Equivalent Dose (AEDHuman) was assessed using 3-compartment or Adult/Fetal PBTK in vitro to in vivo extrapolation. Model inputs were from Tier 1 (High throughput transcriptomics: HTTr, high throughput phenotypic profiling: HTPP) and Tier 2 (single target: ToxCast) assays. HTTr identified gene expression signatures associated with potential neurotoxicity for endosulfan, propyzamide and carbaryl in non-neuronal MCF-7 and HepaRG cells. The HTPP assay in U-2 OS cells detected potent effects on DNA endpoints for endosulfan and carbaryl, and mitochondria with fipronil (propyzamide was inactive). The most potent ToxCast assays were concordant with specific components of each chemical mode of action (MOA). Predictive adult IVIVE models produced fold differences (FD) < 10 between the AEDHuman and the measured in vivo AdjPOD. The 3-compartment model was concordant (i.e., smallest FD) for endosulfan, fipronil and carbaryl, and PBTK was concordant for propyzamide. The most potent AEDHuman predictions for each chemical showed HTTr, HTPP and ToxCast were mainly concordant with in vivo AdjPODs but assays were less concordant with MOAs. This was likely due to the cell types used for testing and/or lack of metabolic capabilities and pathways available in vivo. The Fetal PBTK model had larger FDs than adult models and was less predictive overall.
Collapse
|
2
|
Marciano LPA, Costa LF, Cardoso NS, Freire J, Feltrim F, Oliveira GS, Paula FBA, Silvério ACP, Martins I. Biomonitoring and risk assessment of human exposure to triazole fungicides. Regul Toxicol Pharmacol 2024; 147:105565. [PMID: 38185363 DOI: 10.1016/j.yrtph.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Risk assessment and biomarkers were evaluated in volunteers exposed to triazole fungicides in southern Minas Gerais, Brazil. Volunteers were divided into two groups: occupationally and environmentally exposed to pesticides (n = 140) and those unexposed (n = 50) from urban areas. Urine samples were analyzed by GC-MS for triazoles, and samples from men and women in the exposed group were quantified. Groups were further stratified by sex to evaluate the biomarkers results. Oxidative stress was indicated by biomarker analysis for occupationally exposed men with elevated malondialdehyde levels and reduced superoxide dismutase and catalase activity (p < 0.0001). Bile acid levels were also elevated in the exposed group (p < 0.0001). Biomarkers in this study suggest recent, reversible changes due to pesticide exposure. Liver enzyme levels showed no significant differences. The highest Estimated Daily Intake for epoxiconazole ranged from 0.534 to 6.31 μg/kg-bw/day for men and 0.657-8.77 μg/kg-bw/day for women in the exposed group. Considering the highest detected urinary triazole value, the calculated Hazard Quotient for epoxiconazole was 0.789 for men and 1.1 for women. Results indicate a health risk associated with environmental triazole exposure, highlighting the importance of biomonitoring in risk assessment to prevent intoxication and assist in mitigating adverse health effects from chronic pesticide exposure.
Collapse
Affiliation(s)
- Luiz P A Marciano
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Luiz F Costa
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Naiane S Cardoso
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Josiane Freire
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernando Feltrim
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Geovana S Oliveira
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernanda B A Paula
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
3
|
Yue Y, Sun X, Tian S, Yan S, Sun W, Miao J, Huang S, Diao J, Zhou Z, Zhu W. Multi-omics and gut microbiome: Unveiling the pathogenic mechanisms of early-life pesticide exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105770. [PMID: 38458664 DOI: 10.1016/j.pestbp.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The extensive application of pesticides in agricultural production has raised significant concerns about its impact on human health. Different pesticides, including fungicides, insecticides, and herbicides, cause environmental pollution and health problems for non-target organisms. Infants and young children are so vulnerable to the harmful effects of pesticide exposure that early-life exposure to pesticides deserves focused attention. Recent research lays emphasis on understanding the mechanism between negative health impacts and early-life exposure to various pesticides. Studies have explored the impacts of exposure to these pesticides on model organisms (zebrafish, rats, and mice), as well as the mechanism of negative health effects, based on advanced methodologies like gut microbiota and multi-omics. These methodologies help comprehend the pathogenic mechanisms associated with early-life pesticide exposure. In addition to presenting health problems stemming from early-life exposure to pesticides and their pathogenic mechanisms, this review proposes expectations for future research. These proposals include focusing on identifying biomarkers that indicate early-life pesticide exposure, investigating transgenerational effects, and seeking effective treatments for diseases arising from such exposure. This review emphasizes how to understand the pathogenic mechanisms of early-life pesticide exposure through gut microbiota and multi-omics, as well as the adverse health effects of such exposure.
Collapse
Affiliation(s)
- Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Ma S, Xin H, Zhao P, Feng S, Chen J, Yin S, Wei Y, Shi Y, Jin G, Di X, Zhang H. Comprehensive Stereoselectivity Assessment of Toxicokinetics, Tissue Distribution, Cytotoxicity, and Environmental Fate of Chiral Pesticide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19760-19771. [PMID: 38036940 DOI: 10.1021/acs.jafc.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Propiconazole (PRO) has been widely used in the treatment of fungal infection in fruits, vegetables, cereals, and seeds. In this study, a newly established chiral liquid chromatography tandem mass spectrometry method was applied to the systemic stereoselectivity evaluation of PRO enantiomers, including toxicokinetics, tissue distributions, cytotoxicity, accumulation, and degradation. Our results showed that both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO had lower Cmax and AUC0-∞ and higher CLz/F values in plasma and lower accumulation concentrations in the liver, heart, and brain. In cytotoxic assays, cis (-)-2S,4R-PRO exhibited the lowest cytotoxicity in PC12 neuronal, N9 microglia, SH-SY5Y neuroblastoma, and MRC5 lung fibroblast cell lines. Moreover, the Eisenia fetida incubation experiment revealed that the accumulations of both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO were higher than those of their antipodes in E. fetida. In summary, our findings first suggested that the application of cis (-)-2S,4R-PRO for agriculture would hugely reduce the environmental risk.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang 261031, People's Republic of China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jialin Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Yanan Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
García-Cansino L, García MÁ, Marina ML, Câmara JS, Pereira JA. Simultaneous microextraction of pesticides from wastewater using optimized μSPEed and μQuEChERS techniques for food contamination analysis. Heliyon 2023; 9:e16742. [PMID: 37287615 PMCID: PMC10241853 DOI: 10.1016/j.heliyon.2023.e16742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Food contamination with pesticides poses significant risks to consumer safety and undermines confidence in food supply chains. Detecting pesticides in food samples is a challenging task that requires efficient extraction techniques. This study aims to compare and validate two microextraction techniques, μSPEed and μQuEChERS-dSPE, for the simultaneous extraction of eight pesticides (paraquat, thiabendazole, asulam, picloram, ametryn, atrazine, linuron, and cymoxanil) from wastewater samples. A good analytical performance was obtained for both methodologies, with selectivity, linearity in the range 0.5-150 mg L-1 with coefficients of determination up to 0.9979, limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.02 to 0.05 mg L-1 and from 0.06 to 0.17 mg L-1, respectively, precision below 14.7 mg L-1, and recoveries from wastewater samples in the range of 66.1-99.9%. The developed methodologies are simpler, faster, and require less sample and solvent volumes than conventional methodologies, having a lower impact on the environment. Nevertheless, the μSPEed approach was found to be more efficient, easier to perform, and with a higher greener profile. This study highlights the potential of microextraction techniques for the analysis of pesticide residues in food and environmental samples. Overall, it presents a fast and efficient method for the analysis of pesticides in wastewater samples, which can be useful for monitoring and controlling pesticide contamination in the environment.
Collapse
Affiliation(s)
- Laura García-Cansino
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - José S. Câmara
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
- Faculdade de Ciências Exatas e Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| | - Jorge A.M. Pereira
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| |
Collapse
|
6
|
Di S, Cang T, Liu Z, Xie Y, Zhao H, Qi P, Wang Z, Xu H, Wang X. Comprehensive evaluation of chiral pydiflumetofen from the perspective of reducing environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154033. [PMID: 35192824 DOI: 10.1016/j.scitotenv.2022.154033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The spatial structures of chiral pesticide enantiomers can affect their activity, toxicity and behavior, thereby altering exposure risk. Identifying enantiomer differences and developing high-efficiency green enantiopure pesticide is an important strategy for reducing the negative effects of pesticides. In this study, after confirming the absolute configuration of pydiflumetofen enantiomers, fungicidal activity evaluation indicated that the activity of S-(+)-pydiflumetofen was 81.3-421 times higher than R-(-)-pydiflumetofen on three kinds of phytopathogens that control Fusarium wilt (Fusarium spp.), Alternaria rot (Alternaria alternata) and Southern blight (Sclerotinia rolfsii), which might be caused by the stronger binding ability of S-(+)-pydiflumetofen with the active site of the target protein. The coexistence of R-(-)-pydiflumetofen would enhance the toxicity of S-(+)-pydiflumetofen on zebrafish through synergistic effect. Low-activity R-(-)-pydiflumetofen was preferentially dissipated in soybean, soybean plants, cabbage and celery, which was opposite in soil. The persistence of S-(+)-pydiflumetofen in crops and degradability in soil were advantageous for pesticide effects and environmental protection. Based on the maximum residue limit (MRL) and hazard quotient (HQ), the dietary risks were determined to be acceptable for all crops. Thus, developing enantiopure S-(+)-pydiflumetofen products might be a high-efficiency and low-risk strategy, and more studies should be conducted in this aspect.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yunye Xie
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Liu Z, Chen D, Lyu B, Wu Z, Li J, Zhao Y, Wu Y. Occurrence of Phenylpyrazole and Diamide Insecticides in Lactating Women and Their Health Risks for Infants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4467-4474. [PMID: 35357189 DOI: 10.1021/acs.jafc.2c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the exposure of infants to phenylpyrazole and diamide insecticides during lactation, we collected 3467 breast milk samples of lactating women from 100 cities of 24 provinces in China and prepared 100 pooled samples together city-by-city. Among phenylpyrazole insecticides, fipronil and its metabolites (63-100%) were widely detected in breast milk, with total detection concentrations ranging from 178 to 2947 ng/L (median: 921 ng/L). Among diamide insecticides, chlorantraniliprole and flubendiamide were detected in breast milk, but their detection frequencies (20-85%) and concentration levels (nondetected to 89.9 ng/L) were far lower than those of total fipronils. The average estimated daily intake of infants exposed to total fipronils through breast milk is 209 ng/kg-bw/day by upper-bound scenario evaluation, which is higher than the acceptable daily intake (200 ng/kg-bw/day). This study indicates that infants have far higher exposure levels to fipronil than adults, while exposure levels to other types of phenylpyrazoles and diamide insecticides are low.
Collapse
Affiliation(s)
- Zhibin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330096, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116085, China
| | - Jingguang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
8
|
Paolini L, Hausser N, Zhang T. Chiral resolution of the insecticide fipronil enantiomers and the simultaneous determination of its major transformation products by high-performance liquid chromatography interfaced with mass spectrometry. Chirality 2022; 34:473-483. [PMID: 35048416 DOI: 10.1002/chir.23412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023]
Abstract
A high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was developed using a chiral column based on amylose tris(3-chloro-5-methylphenylcarbamate) for analysis of fipronil (a popular insecticidal nerve agent) and the related transformation products. The optimized method reached the goal of the simultaneous and complete separation of the multiple fiproles in a single run, including the chiral separation of fipronil enantiomers, fipronil metabolites, and photoproducts. The efficacy of such a method was demonstrated by its application in analyzing a series of fipronil samples exposed to sunlight conditions. In general terms, our study provided experimental approaches and an efficient analytical tool for monitoring the environmental fate of fipronil as well as its multitransformation products upon its applications either in agricultural or any other areas.
Collapse
Affiliation(s)
- Léa Paolini
- R&D department, Chiral Technologies Europe, Illkirch Cedex, France
| | - Nicolas Hausser
- R&D department, Chiral Technologies Europe, Illkirch Cedex, France
| | - Tong Zhang
- R&D department, Chiral Technologies Europe, Illkirch Cedex, France
| |
Collapse
|
9
|
Chen D, Li J, Zhao Y, Wu Y. Human Exposure of Fipronil Insecticide and the Associated Health Risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:63-71. [PMID: 34971309 DOI: 10.1021/acs.jafc.1c05694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fipronil, as an emerging phenylpyrazole insecticide, is ubiquitous in the environment and food due to its broad spectrum and persistent characteristics, but the research on pathways of human exposure to fipronil and the associated health risk is relatively unclear. In this regard, we summarize potential human exposures to fipronil through ingestion and inhalation, as well as results of human biomonitoring studies. This scientific information will contribute to future assessment of fipronil exposure and subsequent characterization of human health risks. Additionally, this Perspective highlights the lack of epidemiological studies and total diet studies for the general population on fipronil.
Collapse
Affiliation(s)
- Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
10
|
Wu S, Li H, You J. Identification of Cytochrome P450 Isozymes Involved in Enantioselective Metabolism of Fipronil in Fish Liver: In Vitro Metabolic Kinetics and Molecular Modeling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:230-239. [PMID: 34714951 DOI: 10.1002/etc.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Fipronil has been frequently detected in waterways worldwide at concentrations that threaten aquatic organisms, yet the metabolic behavior of fipronil enantiomers in aquatic organisms is largely unknown, which is of significance in enantioselective toxicity evaluation. We quantitatively identified the specific cytochrome P450 (CYP) isozymes involved in metabolizing fipronil enantiomers in tilapia by combining in vitro metabolic kinetic assays and molecular docking. Inhibition studies suggested that CYP1A enzyme was the main isoform catalyzing metabolism of fipronil and that CYP3A contributed in a limited way to the metabolism in fish liver S9. Both the dissipation rate constant and the maximum metabolic velocity of R-(-)-fipronil were greater than those of S-(+)-fipronil in tilapia liver S9, suggesting that tilapia selectively metabolized R-(-)-fipronil. The CYP1A1 isozyme exhibited the highest binding capacity to R-(-)-fipronil and S-(+)-fipronil (binding energy -9.39 and -9.17 kcal/mol, respectively), followed by CYP1A2 (-7.30 and -6.94 kcal/mol, respectively) and CYP3A4 (-7.16 and -6.91 kcal/mol, respectively). The results of in vitro metabolic assays and molecular docking were consistent, that is, CYP1A, specifically CYP1A1, exhibited a higher metabolic capacity to fipronil than CYP3A, and fish liver S9 selectively metabolized R-(-)-fipronil. The present study provides insight into the enantioselective metabolic behavior and toxicological implications of the in vitro metabolic kinetics of fipronil in fish. Environ Toxicol Chem 2022;41:230-239. © 2021 SETAC.
Collapse
Affiliation(s)
- Siqi Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Habenschus MD, Carrão DB, de Albuquerque NCP, Perovani IS, Moreira da Silva R, Nardini V, Lopes NP, Dias LG, Moraes de Oliveira AR. In vitro enantioselective inhibition of the main human CYP450 enzymes involved in drug metabolism by the chiral pesticide tebuconazole. Toxicol Lett 2021; 351:1-9. [PMID: 34407455 DOI: 10.1016/j.toxlet.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 μM, αKi = 3.2 ± 0.5 μM; Ki = 0.6 ± 0.3 μM, αKi = 1.3 ± 0.3 μM) and CYP2C9 (Ki = 0.7 ± 0.1 μM, αKi = 2.7 ± 0.5 μM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 μM) and CYP2C19 (Ki = 0.23 ± 0.02 μM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.
Collapse
Affiliation(s)
- Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Luís Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Musarurwa H, Tavengwa NT. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2021; 223:121515. [PMID: 33303131 DOI: 10.1016/j.talanta.2020.121515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Supramolecular solvent-based micro-extraction is a very important green technique for the isolation and pre-concentration of pesticide residues in food and environmental samples prior to their chromatographic analysis. The attractive features of supramolecular solvent-based micro-extraction include its simplicity, high pre-concentration factor, fastness, accuracy, low cost, less consumption of chemical reagents and environmental friendliness. The supramolecular solvent is generated from a ternary mixture of amphiphiles, water and a water miscible dispersion and coacervating solvent. Tehydrofuran is one of the solvents commonly used as both a dispersion solvent and a coacervating agent. This paper gives a recent comprehensive review on the application of alkanols as amphiphiles during supramolecular solvent-based micro-extraction of pesticide residues in food and environmental samples. Other researchers used long chain fatty acids as amphiphiles during pesticide analysis in food and environmental samples using supramolecular solvent-based micro-extraction, and this is discussed in this paper. The incorporation of ferrofluids in supramolecular solvents enables phase separation using a magnet instead of the time-consuming centrifugation technique. This paper also gives a detailed review of the application of ferrofluid-based supramolecular solvent micro-extraction of pesticide residues in food and environmental samples.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
14
|
Development of a Pass-through SPE Cartridge for the Rapid Determination of Fipronil and Its Metabolites in Chicken Eggs by LC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01902-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
de Albuquerque NCP, Carrão DB, Habenschus MD, Fonseca FS, Moreira da Silva R, Lopes NP, Rocha BA, Barbosa Júnior F, de Oliveira ARM. Risk assessment of the chiral pesticide fenamiphos in a human model: Cytochrome P450 phenotyping and inhibition studies. Food Chem Toxicol 2020; 146:111826. [PMID: 33127494 DOI: 10.1016/j.fct.2020.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Fenamiphos (FS) is a chiral organophosphate pesticide that is used to control nematodes in several crops. Enantioselective differences may be observed in FS activity, bioaccumulation, metabolism, and toxicity. Humans may be exposed to FS through occupational and chronic (food, water, and environmental) exposure. FS may cause undesirable CYP450 pesticide-drug interactions, which may impact human health. Here, the CYP450 isoforms involved in enantioselective FS metabolism were identified, and CYP450 inhibition by rac-FS, (+)-FS, and (-)-FS was evaluated to obtain reliable information on enantioselective FS risk assessment in humans. CYP3A4 and CYP2E1 metabolized FS enantiomers, and CYP2B6 may participate in rac-FS metabolism. In addition, rac-FS, (+)-FS, and (-)-FS were reversible competitive CYP1A2, CYP2C19, and CYP3A4/5 inhibitors. High stereoselective inhibition potential was verified; rac-FS and (-)-FS strongly inhibited and (+)-FS moderately inhibited CYP1A2. Stereoselective differences were also detected for CYP2C19 and CYP3A4/5, which were strongly inhibited by rac-FS, (+)-FS, and (-)-FS. Our results indicated a high potential for CYP450 drug-pesticide interactions, which may affect human health. The lack of stereoselective research on the effect of chiral pesticides on the activity of CYP450 isoforms highlights the importance of assessing the risks of such pesticides in humans.
Collapse
Affiliation(s)
- Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciele Saraiva Fonseca
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Bruno Alves Rocha
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270, Campus Diadema, SP, Brazil
| | - Fernando Barbosa Júnior
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
16
|
El‐Mekabaty A, Etman HA, Mosbah A, Fadda AA. Synthesis and Biological Screening of Some Pyrimidinone‐Based Heterocycles from Enamines. ChemistrySelect 2020. [DOI: 10.1002/slct.202001760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Hassan A. Etman
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed Mosbah
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed A. Fadda
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| |
Collapse
|
17
|
Dai L, Nie C, Sun W, Xiao Y, Mao Y, Wu Z, Liao L, Xiao X. Complexation and enantioselectivity of sulfur/selenium-substituted uranyl-salophens with R/S-chiral lactone for RRS/SSR-3, 5-Dimethyl-2-(3-fluorophenyl)-2-morpholinols. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07137-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Anwer KE, Sayed GH. Conventional and microwave reactions of 1,3‐diaryl‐5,4‐enaminonitrile‐pyrazole derivative with expected antimicrobial and anticancer activities. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kurls E. Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of ScienceAin Shams University Abbassia Egypt
| | - Galal H. Sayed
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of ScienceAin Shams University Abbassia Egypt
| |
Collapse
|
19
|
Carrão DB, Perovani IS, de Albuquerque NCP, de Oliveira ARM. Enantioseparation of pesticides: A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115719] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
You X, Zheng H, Ge J, Fang S, Suo F, Kong Q, Zhao P, Zhang G, Zhang C, Li Y. Effect of Biochar on the Enantioselective Soil Dissipation and Lettuce Uptake and Translocation of the Chiral Pesticide Metalaxyl in Contaminated Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13550-13557. [PMID: 31721576 DOI: 10.1021/acs.jafc.9b05559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Enantioselectivity is usually ignored when assessing potential biochar-based methods of redressing pesticide contamination of soils. In this study, the effect of woodchip biochar (WBC) on the enantioselective dissipation of metalaxyl in soil and its uptake and translocation by lettuce were investigated. S-metalaxyl (T1/2 = 29.8 days) dissipated more quickly than R-metalaxyl (T1/2 = 36.4 days) in unamended soil. The addition of WBC to the soil decreased the dissipation rate and the enantioselectivity of metalaxyl. Metalaxyl distribution showed opposing enantioselectivity in lettuce, with roots and shoots showing preferences for R-metalaxyl and S-metalaxyl, respectively. Enrichment with WBC decreased the concentrations of metalaxyl and metalaxyl acid enantiomers in lettuce and reduced the ability of the shoots to transport the highly toxic R-metalaxyl from roots. This is the first study to provide evidence that amending soil with biochar affects the enantioselective uptake and translocation of a chiral pesticide.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study , Ocean University of China , Qingdao 266100 , China
| | - Jing Ge
- Institute of Food Quality and Safety , Jiangsu Academy of Agricultural Sciences , Zhongling Street , Nanjing 210014 , China
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Peng Zhao
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Guangyu Zhang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| |
Collapse
|
21
|
Habenschus MD, Nardini V, Dias LG, Rocha BA, Barbosa F, de Oliveira ARM. In vitro enantioselective study of the toxicokinetic effects of chiral fungicide tebuconazole in human liver microsomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:96-105. [PMID: 31176252 DOI: 10.1016/j.ecoenv.2019.05.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Tebuconazole (TEB) is a chiral triazole fungicide that is globally marketed and used as a racemic mixture to control plant pathogens. Due to its use as a racemic mixture, TEB may exhibit enantioselective toxicokinetics toward nontarget organisms, including humans. Therefore, the in vitro enantioselective metabolism of TEB by cytochrome P450 enzymes (CYP450) was studied using human liver microsomes, and the in vivo toxicokinetic parameters were predicted. A new enantioselective, reversed-phase LC-MS/MS method was developed and validated to analyze the enantiomers of TEB and its main metabolite, 1-hydroxytebuconazole (TEBOH). In vitro metabolic parameters were obtained, and in vitro-in vivo extrapolations were performed. Michaelis-Menten and atypical biphasic kinetic profiles were observed with a total intrinsic clearance ranging from 53 to 19 mL min-1 mg-1. The in vitro-in vivo extrapolation results showed that TEB first passage effect by the liver seems to be negligible, with hepatic clearance and extraction ratios ranging from 0.53 to 5.0 mL min-1 kg-1 and 2.7-25%, respectively. Preferential metabolism of (+)-TEB to rac-TEB and (-)-TEB was observed, with preferential production of (+)-TEBOH. Furthermore, reaction phenotyping studies revealed that, despite the low hepatic clearance in the first pass metabolism of TEB, multiple human CYP450 isoforms were involved in TEB metabolism when TEBOH enantiomers were generated, mainly CYP3A4 and CYP2C9, which makes TEB accumulation in the human body more difficult due to multiple metabolic pathways.
Collapse
Affiliation(s)
- Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Luís Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Bruno Alves Rocha
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14049-903, Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14049-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
22
|
Carrão DB, Habenchus MD, de Albuquerque NCP, da Silva RM, Lopes NP, de Oliveira ARM. In vitro inhibition of human CYP2D6 by the chiral pesticide fipronil and its metabolite fipronil sulfone: Prediction of pesticide-drug interactions. Toxicol Lett 2019; 313:196-204. [PMID: 31278966 DOI: 10.1016/j.toxlet.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
Fipronil is a chiral insecticide employed worldwide in crops, control of public hygiene and control of veterinary pests. Humans can be exposed to fipronil through occupational, food, and environmental contamination. Therefore, the risk assessment of fipronil in humans is important to protect human health. Fipronil sulfone is the major metabolite formed during fipronil metabolism by humans. Since the CYP450 enzymes are the main ones involved in drug metabolism, the evaluation of their inhibition by fipronil and its main metabolite is important to predict drug-pesticide interactions. The aim of this work was to investigate the inhibition effects of rac-fipronil, S-fipronil, R-fipronil and fipronil sulfone on the main human CYP450 isoforms. The results showed that CYP2D6 is the only CYP450 isoform inhibited by these xenobiotics. In addition, no enantioselective differences were observed in the inhibition of CYP450 isoforms by fipronil and its individuals' enantiomers. Rac-fipronil, S-fipronil and R-fipronil are moderate CYP2D6 inhibitors showing a competitive inhibition profile. On the other hand, the metabolite fipronil sulfone showed to be a strong inhibitor of CYP2D6 also by competitive inhibition. These results highlight the importance of metabolite evaluation on pesticide safety since the metabolism of fipronil into fipronil sulfone increases the risk of pesticide-drug interactions for drugs metabolized by CYP2D6.
Collapse
Affiliation(s)
- Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenchus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
23
|
Myclobutanil enantioselective risk assessment in humans through in vitro CYP450 reactions: Metabolism and inhibition studies. Food Chem Toxicol 2019; 128:202-211. [DOI: 10.1016/j.fct.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
|