1
|
Azizah RN, Verheyen GR, Shkedy Z, Van Miert S. Overview of in vitro-in vivo extrapolation approaches for the risk assessment of nanomaterial toxicity. NANOIMPACT 2024; 35:100524. [PMID: 39059748 DOI: 10.1016/j.impact.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Nanomaterials are increasingly used in many applications due to their enhanced properties. To ensure their safety for humans and the environment, nanomaterials need to be evaluated for their potential risk. The risk assessment analysis on the nanomaterials based on animal or in vivo studies is accompanied by several concerns, including animal welfare, time and cost needed for the studies. Therefore, incorporating in vitro studies in the risk assessment process is increasingly considered. To be able to analyze the potential risk of nanomaterial to human health, there are factors to take into account. Utilizing in vitro data in the risk assessment analysis requires methods that can be used to translate in vitro data to predict in vivo phenomena (in vitro-in vivo extrapolation (IVIVE) methods) to be incorporated, to obtain a more accurate result. Apart from the experiments and species conversion (for example, translation between the cell culture, animal and human), the challenge also includes the unique properties of nanomaterials that might cause them to behave differently compared to the same materials in a bulk form. This overview presents the IVIVE techniques that are developed to extrapolate pharmacokinetics data or doses. A brief example of the IVIVE methods for chemicals is provided, followed by a more detailed summary of available IVIVE methods applied to nanomaterials. The IVIVE techniques discussed include the comparison between in vitro and in vivo studies, methods to rene the dose metric or the in vitro models, allometric approach, mechanistic modeling, Multiple-Path Particle Dosimetry (MPPD), methods using organ burden data and also approaches that are currently being developed.
Collapse
Affiliation(s)
- Rahmasari Nur Azizah
- Thomas More University of Applied Sciences, Geel, Belgium; Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium.
| | | | - Ziv Shkedy
- Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
2
|
Motta G, Gualtieri M, Bengalli R, Saibene M, Belosi F, Nicosia A, Cabellos J, Mantecca P. An integrated new approach methodology for inhalation risk assessment of safe and sustainable by design nanomaterials. ENVIRONMENT INTERNATIONAL 2024; 183:108420. [PMID: 38199131 DOI: 10.1016/j.envint.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.
Collapse
Affiliation(s)
- Giulia Motta
- University of Milano Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy.
| | - Maurizio Gualtieri
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy.
| | - Rossella Bengalli
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy
| | - Melissa Saibene
- Centre for Advanced Microscopy, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Franco Belosi
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Alessia Nicosia
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Joan Cabellos
- Leitat Technological Center, c/de la Innovació 2, Terrassa, 08225 Barcelona, Spain
| | - Paride Mantecca
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
3
|
Ab Dullah SS, Sabran MR, Hasiah AH, Abdullah R. Risk assessment of aflatoxin B 1 in herbal medicines and plant food supplements marketed in Malaysia using margin of exposure and RISK21 approaches. Genes Environ 2023; 45:31. [PMID: 37993956 PMCID: PMC10666461 DOI: 10.1186/s41021-023-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin produced by several species of Aspergillus fungi which can cause liver cancer in animals and humans. This study aims to perform the risk assessment of AFB1 in herbal medicines and plant food supplements (PFS) in Malaysian market. A total of 31 herbal medicines and PFS were purchased through online platforms and over the counter using a targeted sampling strategy. Of 31 samples analysed using the ELISA method, 25 (80.6%) were contaminated with AFB1 at levels ranged from 0.275 to 13.941 μg/kg. The Benchmark Dose Lower Confidence level of 10 (BMDL10) of 63.46 ng/kg bw/day and the estimated dietary intake of the adult population ranged from 0.006 to 10.456 ng/kg bw/day were used to calculate the Margin of Exposure (MOE). The MOEs for 24 (96%) out of the 25 positive samples were lower than 10,000. The RISK21 matrix revealed that AFB1 exposure levels from herbal medicines and PFS differed greatly over the world. The calculated population risk of acquiring liver cancer from AFB1 exposure ranged from 0 to 0.261 cancers/100,000 populations/year and accounted for an estimated percentage of liver cancer incidence ranged from 0.002 to 4.149%. This study revealed a moderate risk of liver cancer attributable to AFB1 from herbal medicine and PFS among Malaysian populations and emphasised an urgency for risk management actions.
Collapse
Affiliation(s)
- Siti Soleha Ab Dullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
- Biomedical Research Policy and Strategic Planning Unit, Institute for Medical Research, National Institute of Health, Persiaran Setia Murni, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Ab Hamid Hasiah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Bates CA, Haber LT, Moore MM, Schoeny R, Maier A. Development of a framework for risk assessment of dietary carcinogens. Food Chem Toxicol 2023; 180:114022. [PMID: 37716495 DOI: 10.1016/j.fct.2023.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Although there are a number of guidance documents and frameworks for evaluation of carcinogenicity, none of the current methods fully reflects the state of the science. Common limitations include the absence of dose-response assessment and not considering the impact of differing exposure patterns (e.g., intermittent, high peaks vs. lower, continuous exposures). To address these issues, we have developed a framework for risk assessment of dietary carcinogens. This framework includes an enhanced approach for weight of evidence (WOE) evaluation for genetic toxicology data, with a focus on evaluating studies based on the most recent testing guidance to determine whether a chemical is a mutagen. Included alongside our framework is a discussion of resources for evaluating tissue dose and the temporal pattern of internal dose, taking into account the chemical's toxicokinetics. The framework then integrates the mode of action (MOA) and associated dose metric category with the exposure data to identify the appropriate approach(es) to low-dose extrapolation and level of concern associated with the exposure scenario. This framework provides risk managers with additional flexibility in risk management and risk communication options, beyond the binary choice of linear low-dose extrapolation vs. application of uncertainty factors.
Collapse
Affiliation(s)
| | - Lynne T Haber
- Risk Science Center, University of Cincinnati College of Medicine, USA
| | | | | | | |
Collapse
|
5
|
Wang SS, Lin P, Wang CC, Lin YC, Tung CW. Machine learning for predicting chemical migration from food packaging materials to foods. Food Chem Toxicol 2023:113942. [PMID: 37451598 DOI: 10.1016/j.fct.2023.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Food contact chemicals (FCCs) can migrate from packaging materials to food posing an issue of exposure to FCCs of toxicity concern. Compared to costly experiments, computational methods can be utilized to assess the migration potentials for various migration scenarios for further experimental investigation that can potentially accelerate the migration assessment. This study developed a nonlinear machine learning method utilizing chemical properties, material type, food type and temperature to predict chemical migration from package to food. Nine nonlinear algorithms were evaluated for their prediction performance. The ensemble model leveraging multiple algorithms provides state-of-the-art performance that is much better than previous linear regression models. The developed prediction models were subsequently applied to profile the migration potential of FCCs of high toxicity concern. The models are expected to be useful for accelerating the assessment of migration of FCCs from package to foods.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, 80756, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Chi Lin
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan.
| |
Collapse
|
6
|
Sayre RR, Setzer RW, Serre ML, Wambaugh JF. Characterizing surface water concentrations of hundreds of organic chemicals in United States for environmental risk prioritization. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:610-619. [PMID: 36446910 PMCID: PMC10619030 DOI: 10.1038/s41370-022-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Thousands of chemicals are observed in freshwater, typically at trace levels. Measurements are collected for different purposes, so sample characteristics vary. Due to inconsistent data availability for exposure and hazard, it is complex to prioritize which chemicals may pose risks. OBJECTIVE We evaluated the influence of data curation and statistical practices aggregating surface water measurements of organic chemicals into exposure distributions intended for prioritizing based on nation-scale potential risk. METHODS The Water Quality Portal includes millions of observations describing over 1700 chemicals in 93% of hydrologic subbasins across the United States. After filtering to maintain quality and applicability while including all possible samples, we compared concentrations across sample types. We evaluated statistical methods to estimate per-chemical distributions for chosen samples. Overlaps between resulting exposure ranges and distributions representing no-effect concentrations for multiple freshwater species were used to rank estimated chemical risks for further assessment. RESULTS When we apply explicit data quality and statistical assumptions, we find that there are 186 organic chemicals for which we can make screening-level estimates of surface water chemical concentration. Of the original 1700 observed chemicals, this number decreased primarily due to a predominance of censored values (that is, observations indicating concentrations too low to be measured). We further identify 423 chemicals where all measurements were censored but, through consideration of detection limits, risk might still be prioritized based on the detection limits themselves. In the final set of 1.5 million samples, the median environmental concentration of one chemical (acetic acid) exceeded the 5th percentile of no-effect concentrations for the most delicate freshwater species (the highest priority risk condition identified here), and a further 29 chemicals were identified for possible further evaluation based on a small margin between occurrence and toxicity values. SIGNIFICANCE This method shows the broad range of chemical concentrations seen for organic chemicals across the country and identifies methods of determining their central tendency, allowing for researchers to characterize higher-than-normal or lower-than-normal surface water conditions as well as providing an overall indication of the presence of organic chemicals in the United States. The highest chemical concentrations did not always indicate the highest-risk conditions. Even when accounting for the high level of uncertainty in these data due to differences in data collection and reporting across the set, some chemicals may still be categorized as higher environmental risk than others using this method, providing value to chemical safety decision makers and researchers by suggesting avenues for more focused investigation.
Collapse
Affiliation(s)
- Risa R Sayre
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC, 27599, USA.
| | - R Woodrow Setzer
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Marc L Serre
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC, 27599, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
DNA adducts as link between in vitro and in vivo carcinogenicity - A case study with benzo[ a]pyrene. Curr Res Toxicol 2022; 4:100097. [PMID: 36590448 PMCID: PMC9794893 DOI: 10.1016/j.crtox.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
To reduce the need for animal tests, in vitro assays are often used as alternative methods. To derive toxic doses for higher tier organisms from in vitro assay results, quantitative in vitro-in vivo extrapolation (qIVIVE) based on physiological-based toxicokinetic (PBTK) models is typically the preferred approach. Such PBTK models require many input parameters to address the route from dose to target site concentration. However, respective data is very often not available. Hence, our aim is to call attention to an alternative way to build a link between animal (in vivo) and cell-derived (in vitro) toxicity data. To this end, we selected the carcinogenic chemical benzo[a]pyrene (BaP) for our study. Our approach relates both in vitro assay and in vivo data to a main intermediate marker structure for carcinogenicity on the subcellular level - the BaP-DNA adduct BaP-7,8-dihydrodiol-9,10-epoxide-deoxyguanosine. Thus, BaP dose is directly linked to a measure of the toxicity-initiating event. We used Syrian hamster embryo (SHE) and Balb/c 3T3 cell transformation assay as in vitro data and compared these data to outcomes of in vivo carcinogenicity tests in rodents. In vitro and in vivo DNA adduct levels range within three orders of magnitude. Especially metabolic saturation at higher doses and interspecies variabilities are identified and critically discussed as possible sources of errors in our simplified approach. Finally, our study points out possible routes to overcome limitations of the envisaged approach in order to allow for a reliable qIVIVE in the future.
Collapse
|
8
|
EU’s next generation risk assessment: hurdles and opportunities for new approach methodologies. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
AbstractThe EU’s decision to ban animal testing for toxicity testing, has positively influenced the pace of developing New Approach Methodologies (NAMs). This development also supports replacing animal methods in other forms of risk assessment (RA), such as for oral-toxicity testing. This study aims to identify the hurdles and opportunities for validation and implementation of NAMs in the current EU’s chemical RA. Through conducting semi-structured interviews with 14 stakeholders, experiences and perspectives about the validation and implementation of NAMs in RA for orally ingested chemicals were analyzed. Stakeholders considered the use of NAMs for RA processes both a cultural and generational issue. Both were perceived as hurdles for reaching the next generation RA approach. The differing views on NAMs originated from experience and stakeholder positions, but communication and collaboration on developing future RA approaches could support overcoming this skepticism. Irrespectively of their background, all interviewees were generally optimistic that NAMs will support the development of more accurate and sustainable RA. This research highlights the need for the EU to adjust legislation and guidance documents to shift in testing requirements from the traditional overexposure approach to more predictive, mechanistic testing in RA, which will take time. This study, however, shows that—when all stakeholders engage in communication and confidence building—NAMs can already play an important role in reducing and refining animal testing.
Collapse
|
9
|
Rietdijk J, Aggarwal T, Georgieva P, Lapins M, Carreras-Puigvert J, Spjuth O. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155058. [PMID: 35390365 DOI: 10.1016/j.scitotenv.2022.155058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental chemicals are commonly studied one at a time, and there is a need to advance our understanding of the effect of exposure to their combinations. Here we apply high-content microscopy imaging of cells stained with multiplexed dyes (Cell Painting) to profile the effects of Cetyltrimethylammonium bromide (CTAB), Bisphenol A (BPA), and Dibutyltin dilaurate (DBTDL) exposure on four human cell lines; both individually and in all combinations. We show that morphological features can be used with multivariate data analysis to discern between exposures from individual compounds, concentrations, and combinations. CTAB and DBTDL induced concentration-dependent morphological changes across the four cell lines, and BPA exacerbated morphological effects when combined with CTAB and DBTDL. Combined exposure to CTAB and BPA induced changes in the ER, Golgi apparatus, nucleoli and cytoplasmic RNA in one of the cell lines. Different responses between cell lines indicate that multiple cell types are needed when assessing combination effects. The rapid and relatively low-cost experiments combined with high information content make Cell Painting an attractive methodology for future studies of combination effects. All data in the study is made publicly available on Figshare.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Tanya Aggarwal
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Polina Georgieva
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
10
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
11
|
Beal MA, Gagne M, Kulkarni SA, Patlewicz G, Thomas RS, Barton-Maclaren TS. Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. ALTEX 2022; 39:123-139. [PMID: 34818430 PMCID: PMC8973434 DOI: 10.14573/altex.2106171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Internationally, there are thousands of existing and newly introduced chemicals in commerce, highlighting the ongoing importance of innovative approaches to identify emerging chemicals of concern. For many chemicals, there is a paucity of hazard and exposure data. Thus, there is a crucial need for efficient and robust approaches to address data gaps and support risk-based prioritization. Several studies have demonstrated the utility of in vitro bioactivity data from the ToxCast program in deriving points of departure (PODs). ToxCast contains data for nearly 1,400 endpoints per chemical, and the bioactivity concentrations, indicative of potential adverse outcomes, can be converted to human-equivalent PODs using high-throughput toxicokinetics (HTTK) modeling. However, data gaps need to be addressed for broader application: the limited chemical space of HTTK and quantitative high-throughput screening data. Here we explore the applicability of in silico models to address these data needs. Specifically, we used ADMET predictor for HTTK predictions and a generalized read-across approach to predict ToxCast bioactivity potency. We applied these models to profile 5,801 chemicals on Canada’s Domestic Substances List (DSL). To evaluate the approach’s performance, bioactivity PODs were compared with in vivo results from the EPA Toxicity Values database for 1,042 DSL chemicals. Comparisons demonstrated that the bioactivity PODs, based on ToxCast data or read-across, were conservative for 95% of the chemicals. Comparing bioactivity PODs to human exposure estimates supports the identification of chemicals of potential interest for further work. The bioactivity workflow shows promise as a powerful screening tool to support effective triaging of chemical inventories.
Collapse
Affiliation(s)
- Marc A. Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Matthew Gagne
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sunil A. Kulkarni
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russell S. Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
12
|
Li L, Sangion A, Wania F, Armitage JM, Toose L, Hughes L, Arnot JA. Development and Evaluation of a Holistic and Mechanistic Modeling Framework for Chemical Emissions, Fate, Exposure, and Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127006. [PMID: 34882502 PMCID: PMC8658982 DOI: 10.1289/ehp9372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Large numbers of chemicals require evaluation to determine if their production and use pose potential risks to ecological and human health. For most chemicals, the inadequacy and uncertainty of chemical-specific data severely limit the application of exposure- and risk-based methods for screening-level assessments, priority setting, and effective management. OBJECTIVE We developed and evaluated a holistic, mechanistic modeling framework for ecological and human health assessments to support the safe and sustainable production, use, and disposal of organic chemicals. METHODS We consolidated various models for simulating the PROduction-To-EXposure (PROTEX) continuum with empirical data sets and models for predicting chemical property and use function information to enable high-throughput (HT) exposure and risk estimation. The new PROTEX-HT framework calculates exposure and risk by integrating mechanistic computational modules describing chemical behavior and fate in the socioeconomic system (i.e., life cycle emissions), natural and indoor environments, various ecological receptors, and humans. PROTEX-HT requires only molecular structure and chemical tonnage (i.e., annual production or consumption volume) as input information. We evaluated the PROTEX-HT framework using 95 organic chemicals commercialized in the United States and demonstrated its application in various exposure and risk assessment contexts. RESULTS Seventy-nine percent and 97% of the PROTEX-HT human exposure predictions were within one and two orders of magnitude, respectively, of independent human exposure estimates inferred from biomonitoring data. PROTEX-HT supported screening and ranking chemicals based on various exposure and risk metrics, setting chemical-specific maximum allowable tonnage based on user-defined toxicological thresholds, and identifying the most relevant emission sources, environmental media, and exposure routes of concern in the PROTEX continuum. The case study shows that high chemical tonnage did not necessarily result in high exposure or health risks. CONCLUSION Requiring only two chemical-specific pieces of information, PROTEX-HT enables efficient screening-level evaluations of existing and premanufacture chemicals in various exposure- and risk-based contexts. https://doi.org/10.1289/EHP9372.
Collapse
Affiliation(s)
- Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada, USA
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alessandro Sangion
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Liisa Toose
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Lauren Hughes
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Jon A. Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Li D, Li L. Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase. TOXICS 2021; 9:308. [PMID: 34822699 PMCID: PMC8621763 DOI: 10.3390/toxics9110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
The linear dose-response relationship has long been assumed in assessments of health risk from an incremental chemical emission relative to background emissions. In this study, we systematically examine the relevancy of such an assumption with real-world data. We used the reported emission data, as background emissions, from the 2017 U.S. National Emission Inventory for 95 organic chemicals to estimate the central tendencies of exposures of the general U.S. population. Previously published nonlinear dose-response relationships for chemicals were used to estimate health risk from exposure. We also explored and identified four intervals of exposure in which the nonlinear dose-response relationship may be linearly approximated with fixed slopes. Predicted rates of exposure to these 95 chemicals are all within the lowest of the four intervals and associated with low health risk. The health risk may be overestimated if a slope on the dose-response relationship extrapolated from toxicological assays based on high response rates is used for a marginal increase in emission not substantially higher than background emissions. To improve the confidence of human health risk estimates for chemicals, future efforts should focus on deriving a more accurate dose-response relationship at lower response rates and interface it with exposure assessments.
Collapse
Affiliation(s)
| | - Li Li
- Correspondence: (D.L.); (L.L.)
| |
Collapse
|
14
|
Williams AJ, Lambert JC, Thayer K, Dorne JLCM. Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: A practical guide for human risk assessment. ENVIRONMENT INTERNATIONAL 2021; 154:106566. [PMID: 33934018 PMCID: PMC9667884 DOI: 10.1016/j.envint.2021.106566] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/19/2023]
Abstract
For the past six decades, human health risk assessment of chemicals has relied on in vivo data from human epidemiological and experimental animal toxicological studies to inform the derivation of non-cancer toxicity values. The ongoing evolution of this risk assessment paradigm in an environmental landscape of data-poor chemicals has highlighted the need to develop and implement non-testing methods, so-called New Approach Methodologies (NAMs). NAMs include a growing number of in silico and in vitro data streams designed to inform hazard properties of chemicals, including kinetics and dynamics at different levels of biological organization, environmental fate and transport, and exposure. NAMs provide a fit-for-purpose science-basis for human hazard and risk characterization of chemicals ranging from data-gap filling applications to broad evidence-based decision-making. Systematic assembly and delivery of empirical and predicted data for chemicals are paramount to advancing chemical evaluation, and software tools serve an essential role in delivering these data to the scientific community. The CompTox Chemicals Dashboard (from here on referred to as the "Dashboard") is one such tool and is a publicly available web-based application developed by the US Environmental Protection Agency to provide access to chemistry, toxicity and exposure information for ~900,000 chemicals. The Dashboard is increasingly becoming a valuable resource for assessors tasked with the evaluation of potential human health risks associated with chemical exposures. In this context, the significant amount of information present in the Dashboard facilitates: 1) assembly of information on physicochemical properties and environmental fate and transport and exposure parameters and metrics; 2) identification of cancer and non-cancer health effects from extant human and experimental animal studies in the public domain and/or information not available in the public domain (i.e., "grey literature"); 3) systematic literature searching and review for developing cancer and non-cancer hazard evidence bases; and 4) access to mechanistic information that can aid or augment the analysis of traditional toxicology evidence bases, or potentially, serve as the primary basis for informing hazard identification and dose-response when traditional bioassay data are lacking. Finally, in silico predictive tools developed to conduct structure-activity or read-across analyses are also available within the Dashboard. This practical tutorial is intended to address key questions from the human health risk assessment community dealing with chemicals in both food and in the environment. Perspectives for future development or refinement of the Dashboard highlight foreseen activities to further support the research and risk assessment community in cancer and non-cancer chemical evaluations.
Collapse
Affiliation(s)
- Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA.
| | - Jason C Lambert
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Kris Thayer
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Jean-Lou C M Dorne
- Scientific Committee and Emerging Risks Unit, Department of Risk Assessment and Scientific Assistance, European Food Safety Authority, 43126 Parma, Italy
| |
Collapse
|
15
|
Kim KB, Kwack SJ, Lee JY, Kacew S, Lee BM. Current opinion on risk assessment of cosmetics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:137-161. [PMID: 33832410 DOI: 10.1080/10937404.2021.1907264] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Risk assessment of cosmetic ingredients is a useful scientific method to characterize potential adverse effects resulting from using cosmetics. The process of risk assessment consists of four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Hazard identification of chemicals refers to the initial stage of risk assessment and generally utilizes animal studies to evaluate toxicity. Since 2013, however, toxicity studies of cosmetic ingredients using animals have not been permitted in the EU and alternative toxicity test methods for animal studies have momentum to be developed for cosmetic ingredients. In this paper, we briefly review the alternative test methods that are available for cosmetic ingredients including read-across, in silico, in chemico, and invitro methods. In addition, new technologies such as omics and artificial intelligence (AI) have been discussed to expand or improve the knowledge and hazard identification of cosmetic ingredients. Aggregate exposure of cosmetic ingredients is another safety issue and methods for its improvement were reviewed. There have been concerns over the safety of nano-cosmetics for a long time, but the risk of nano-cosmetics remains unclear. Therefore, current issues of cosmetic risk assessment are discussed and expert opinion will be provided for the safety of cosmetics.
Collapse
Affiliation(s)
- Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, South Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Gyeongnam, Suwon, Gyeonggi-Do, South Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Investigating Molecular Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity Screening of Chemicals Added to Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073332. [PMID: 33804855 PMCID: PMC8036665 DOI: 10.3390/ijerph18073332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023]
Abstract
The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.
Collapse
|
17
|
Luijten M, Wackers PFK, Rorije E, Pennings JLA, Heusinkveld HJ. Relevance of In Vitro Transcriptomics for In Vivo Mode of Action Assessment. Chem Res Toxicol 2020; 34:452-459. [PMID: 33378166 DOI: 10.1021/acs.chemrestox.0c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, we reported an in vitro toxicogenomics comparison approach to categorize chemical substances according to similarities in their proposed toxicological modes of action. Use of such an approach for regulatory purposes requires, among others, insight into the extent of biological concordance between in vitro and in vivo findings. To that end, we applied the comparison approach to transcriptomics data from the Open TG-GATEs database for 137 substances with diverging modes of action and evaluated the outcomes obtained for rat primary hepatocytes and for rat liver. The results showed that a relatively small number of matches observed in vitro were also observed in vivo, whereas quite a large number of matches between substances were found to be relevant solely in vivo or in vitro. The latter could not be explained by physicochemical properties, leading to insufficient bioavailability or poor water solubility. Nevertheless, pathway analyses indicated that for relevant matches the mechanisms perturbed in vitro are consistent with those perturbed in vivo. These findings support the utility of the comparison approach as tool in mechanism-based risk assessment.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Paul F K Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
18
|
Li D, Sangion A, Li L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. ENVIRONMENT INTERNATIONAL 2020; 145:106108. [PMID: 32927283 PMCID: PMC7470762 DOI: 10.1016/j.envint.2020.106108] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Disinfection of surfaces has been recommended as one of the most effective ways to combat the spread of novel coronavirus (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, overexposure to disinfecting chemicals may lead to unintended human health risks. Here, using an indoor fate and chemical exposure model, we estimate human exposure to 22 disinfecting chemicals on the lists recommended by various governmental agencies against COVID-19, resulting from contact with disinfected surfaces and handwashing. Three near-field exposure routes, i.e., mouthing-mediated oral ingestion, inhalation, and dermal absorption, are considered to calculate the whole-body uptake doses and blood concentrations caused by single use per day for three age groups (3, 14, and 24-year-old). We also assess the health risks by comparing the predicted whole-body uptake doses with in vivo toxicological data and the predicted blood concentrations with in vitro bioactivity data. Our results indicate that both the total exposure and relative contribution of each exposure route vary considerably among the disinfecting chemicals due to their diverse physicochemical properties. 3-year-old children have consistent higher exposure than other age groups, especially in the scenario of contact with disinfected surfaces, due to their more frequent hand contact and mouthing activities. Due to the short duration of handwashing, we do not expect any health risk from the use of disinfecting chemicals in handwashing. In contrast, exposure from contact with disinfected surfaces may result in health risks for certain age groups especially children, even the surfaces are disinfected once a day. Interestingly, risk assessments based on whole-body uptake doses and in vivo toxicological data tend to give higher risk estimates than do those based on blood concentrations and in vitro bioactivity data. Our results reveal the most important exposure routes for disinfecting chemicals used in the indoor environment; they also highlight the need for more accurate data for both chemical properties and toxicity to better understand the risks associated with the increased use of disinfecting chemicals in the pandemic.
Collapse
Affiliation(s)
- Dingsheng Li
- School of Community Health Sciences, University of Nevada Reno, Reno, NV 89557-274, United States
| | - Alessandro Sangion
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Li Li
- School of Community Health Sciences, University of Nevada Reno, Reno, NV 89557-274, United States.
| |
Collapse
|
19
|
Donato MT, Tolosa L. Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food Chem Toxicol 2020; 147:111872. [PMID: 33220391 DOI: 10.1016/j.fct.2020.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Safety evaluation of thousands of chemicals that are directly added to or come in contact with food is needed. Due to the central role of the liver in intermediary and energy metabolism and in the biotransformation of foreign compounds, the hepatotoxicity assessment is essential. New approach methodologies have been proposed for the safety evaluation of compounds with the idea of rapidly gaining insight into effects on biochemical mechanisms and cellular processes and screening large number of compounds. In this sense, high-content screening (HCS) is the application of automated microscopy and image analysis for better understanding of complex biological functions and mechanisms of toxicity. HCS multiparametric measurements have been shown to be a useful tool in early toxicity testing during drug development, but also in assessing the impact from food chemicals and environmental toxicants. Reviewing the use of cellular imaging technology in the safety evaluation of food-relevant chemicals offers evidence about the impact of this technology in safety assessment.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
20
|
Krebs J, McKeague M. Green Toxicology: Connecting Green Chemistry and Modern Toxicology. Chem Res Toxicol 2020; 33:2919-2931. [DOI: 10.1021/acs.chemrestox.0c00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Johanna Krebs
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Department of Health Sciences and Technology, ETH Zürich, Universitätstrasse 2, Zurich, Switzerland CH 8092
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Faculty of Science, Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
21
|
Kostal J, Voutchkova-Kostal A. Going All In: A Strategic Investment in In Silico Toxicology. Chem Res Toxicol 2020; 33:880-888. [PMID: 32166946 DOI: 10.1021/acs.chemrestox.9b00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As vast numbers of new chemicals are introduced to market annually, we are faced with the grand challenge of protecting humans and the environment while minimizing economically and ethically costly animal testing. In silico models promise to be the solution we seek, but we find ourselves at crossroads of future development efforts that would ensure standalone applicability and reliability of these tools. A conscientious effort that prioritizes experimental testing to support the needs of in silico models (versus regulatory needs) is called for to achieve this goal. Using economic analogy in the title of this work, we argue that a prudent investment is to go all-in to support in silico model development, rather than gamble our future by keeping the status quo of a "balanced portfolio" of testing approaches. We discuss two paths to future in silico toxicology-one based on big-data statistics ("broadsword"), and the other based on direct modeling of molecular interactions ("scalpel")-and offer rationale that the latter approach is more transparent, is better aligned with our quest for fundamental knowledge, and has a greater potential to succeed if we are willing to transform our toxicity-testing paradigm.
Collapse
Affiliation(s)
- Jakub Kostal
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052-0066, United States
| | - Adelina Voutchkova-Kostal
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052-0066, United States
| |
Collapse
|