1
|
Malheiro LFL, Oliveira CA, Portela FS, Mercês ÉAB, Benedictis LMD, Benedictis JMD, Andrade END, Magalhães ACM, Melo FFD, Oliveira PDS, Soares TDJ, Amaral LSDB. High-intensity interval training alleviates liver inflammation by regulating the TLR4/NF-κB signaling pathway and M1/M2 macrophage balance in female rats with cisplatin hepatotoxicity. Biochem Biophys Res Commun 2024; 733:150712. [PMID: 39317112 DOI: 10.1016/j.bbrc.2024.150712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Cisplatin (CDDP) is an antineoplastic drug whose adverse effects include hepatotoxicity. The inflammatory process is crucial in the progression of liver injuries. Exercise is known for its anti-inflammatory effects, but the influence of different training modalities on hepatoprotection is still unclear. This study aims to compare the impacts between preconditioning with high-intensity interval training (HIIT) and traditional continuous training of low (LT) and moderate (MT) intensities on inflammatory markers in Wistar female rats with CDDP-induced hepatotoxicity. Thirty-five rats were divided into five groups: control and sedentary (C + Sed), treated with CDDP and sedentary (CDDP + Sed), treated with CDDP and subjected to LT (CDDP + LT), treated with CDDP and subjected to MT (CDDP + MT), and treated with CDDP and subjected to HIIT (CDDP + HIIT). The training protocols consisted of treadmill running for 8 weeks before CDDP treatment. The rats were euthanized 7 days after the treatment. Liver samples were collected to evaluate the expression of various inflammatory markers and types of macrophages. Our results indicated that HIIT was the only protocol to prevent the increase in all analyzed pro-inflammatory cytokines and reduce the number of ED-1-positive cells, attenuating the TLR4/NF-κB signaling pathway in the liver. Additionally, HIIT increased the anti-inflammatory cytokine IL-10 and regulated M1/M2 macrophage polarization. Thus, this study suggests that preconditioning with HIIT is more effective in promoting hepatoprotective effects than LT and MT, regulating inflammatory markers through modulation of the TLR4/NF-κB signaling pathway and M2 macrophage polarization in the hepatic tissue of female rats treated with CDDP.
Collapse
Affiliation(s)
- Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Érika Azenatte Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Laís Mafra de Benedictis
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Júlia Mafra de Benedictis
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Patrícia da Silva Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | |
Collapse
|
2
|
Akhigbe RE, Adelowo OE, Ajani EO, Oyesetan RI, Oladapo DD, Akhigbe TM. Testicular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signaling. J Trace Elem Med Biol 2024; 85:127489. [PMID: 38943836 DOI: 10.1016/j.jtemb.2024.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Testicular toxicity is a complication of cisplatin therapy and it limits its use. Since cisplatin-induced testicular damage is mediated by inflammation and oxidative stress, evaluation of the protective role of antioxidant and anti-inflammatory molecules such as micronized purified flavonoid fraction (Daflon®) is pertinent. AIM Therefore, this study investigated the mitigating effect of daflon against cisplatin-induced testicular toxicity. Also, the impact of daflon on Nrf2/HO-1 and TLR4/NF-kB pathways, which are key pathways in cisplatin toxicity, was explored. MATERIALS AND METHODS After 2 weeks of acclimatization, 20 male albino Wistar rats were allotted at random into 4 equal groups; control, daflon-treated, cisplatin-treated, and cisplatin+daflon-treated. RESULTS Daflon significantly restored cisplatin-induced reductions in body weight (112.20±9.01 vs. 129.60±5.68, P= 0.0175), body weight gain (-39.80±9.52 vs. -16.80±16.53, P= 0.0154), and testicular weight (1.69±0.08 vs. 1.95±0.13, P= 0.0980) and alterations in testicular histology. In addition, daflon abrogated cisplatin-induced rise in testicular CK (55.53±2.77 vs. 37.40±3.29, P< 0.0001) and LDH (74.52±3.20 vs. 65.89±2.08, P= 0.0009) activities, and lactate content (180.50±4.19 vs. 166.20±2.78, P< 0.0001). Also, daflon alleviated cisplatin-induced suppression of GnRH (5.09±0.60 vs. 10.17±0.51, P< 0.0001), LH (1.33±0.07 vs. 2.77±0.13, P< 0.0001), FSH (0.51±0.10 vs. 1.82±0.09, P< 0.0001), and testosterone (2.39±0.11 vs. 4.70±0.33, P< 0.001) as well as lowered sperm quality. More so, daflon attenuated cisplatin-induced testicular oxidative stress, inflammation, and apoptosis evidenced by daflon-driven suppression of MDA (14.16±0.66 vs. 9.22±0.52, P< 0.0001), TNF-α (79.42±5.66 vs. 54.13±3.56, P< 0.0001), IL-1β (8.63±0.41 vs. 3.37±0.43, P< 0.0001), IL-6 (6.87±0.48 vs. 3.67±0.32, P< 0.0001), and caspase 3 activity (4.20±0.26 vs. 0.72±0.23, P< 0.0001) and DNA fragmentation (34.60±3.05 vs. 17.20±3.19, P< 0.0001), and upregulation of GSH level (0.07±0.03 vs. 0.36±0.03, P< 0.0001), and GPx (5.96±0.46 vs. 11.88±1.05, P< 0.0001), GST (5.16±0.71 vs. 11.50±0.81, P< 0.0001), SOD (1.29±0.15 vs. 2.81±0.29, P< 0.0001), and catalase activities (6.18±0.69 vs. 10.71±0.74, P< 0.0001). Furthermore, daflon upregulated testicular Nrf2 expression (40.25±2.65 vs. 66.62±4.01, P< 0.0001) and HO-1 (4.18±0.56 vs. 8.79±0.55, P< 0.0001) activity but downregulated TLR4 (11.63±0.89 vs. 7.23±0.43, P< 0.0001) and NF-kB levels (113.20±3.36 vs. 78.22±3.90, P< 0.0001) in cisplatin-treated rats. CONCLUSION Collectively, the ameliorative effect of daflon on cisplatin-induced testicular toxicity is associated with inhibition of oxidative stress and TLR4/NF-kB-mediated inflammatory pathways and activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | - Olayinka Emmanuel Adelowo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Esther Olamide Ajani
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Rachael Ibukun Oyesetan
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - David Damola Oladapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| |
Collapse
|
3
|
El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AGS, Hassanein MMH, Ali FEM, Bakr AG. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5649-5662. [PMID: 38285279 PMCID: PMC11329704 DOI: 10.1007/s00210-024-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS (7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathological heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclusion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hesham H Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Kingdom of Saudi Arabia
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Oliveira CA, Mercês ÉAB, Portela FS, Malheiro LFL, Silva HBL, De Benedictis LM, De Benedictis JM, Silva CCDE, Santos ACL, Rosa DP, Velozo HS, de Jesus Soares T, de Brito Amaral LS. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol 2024; 28:711-727. [PMID: 38678166 DOI: 10.1007/s10157-024-02490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | | | | | | | | | | | | | - Helloisa Souza Velozo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
| |
Collapse
|
5
|
Hussein S, Kamel GAM. Pioglitazone ameliorates cisplatin-induced testicular toxicity by attenuating oxidative stress and inflammation via TLR4/MyD88/NF-κB signaling pathway. J Trace Elem Med Biol 2023; 80:127287. [PMID: 37647787 DOI: 10.1016/j.jtemb.2023.127287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Cisplatin (CIS) is a chemotherapeutic agent widely used to cure several cancers. It exerts detrimental cellular effects that restrain its clinical application as an antineoplastic agent, as testicular damage. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is used to treat type-2 diabetes mellitus. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. The present study aimed to investigate the effect of PIO in a rat model of cisplatin-induced testicular toxicity and address the possible role of the Toll-like receptors (TLR4) / myeloid differentiation factor 88 (MyD88) / nuclear factor-kappa B (NF-kB) signal pathway. METHODS Rats received a single dose of cisplatin (7 mg/kg, IP) on the first day and PIO (10 mg/kg, P.O.) for 7 days. At the end of the treatment period, rats were killed. Testicular weights, histopathological alterations, and serum testosterone levels were determined. Moreover, tissue samples were collected for the estimation of oxidative stress parameters, inflammatory markers, and the determination of TLR4 /MyD88/NF-kB signaling. RESULTS Concurrent PIO administration with CIS markedly improved testicular weights, histopathological alteration, and serum testosterone level changes. Moreover, Concurrent PIO administration abrogated oxidative stress status and inflammatory markers caused by CIS administration. Furthermore, PIO inhibited the expression levels of TLR4, MyD88, and NF-κBp65, proteins that are activated by CIS administration. CONCLUSION These findings suggested that PIO can protect against cisplatin-induced testicular toxicity in rats through inhibition of the TLR4 /MyD88/NF-kB signal pathway.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo PN 11754, Egypt.
| |
Collapse
|
6
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Hamza AA, Heeba GH, Hassanin SO, Elwy HM, Bekhit AA, Amin A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed Pharmacother 2023; 165:115148. [PMID: 37450997 DOI: 10.1016/j.biopha.2023.115148] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cisplatin (CIS) is a broad-spectrum anti-carcinogen that causes cytotoxic effects both in normal and cancer cells. The purpose of this study was to test whether Hibiscus sabdariffa (HS) extract can reduce CIS-induced hepatotoxicity in rodents and to assess its anticancer activity in vitro. Treatment with HS extract at daily doses of 500 mg/kg before and after a single dose of CIS (10 mg/kg) reduced hepatotoxicity in Wistar male albino rats. HS extract reduced activity of hepatic damage marker enzymes ( i.e. alanine and aspartate aminotransferases), necrosis, and apoptosis in liver tissues of CIS-treated rats. This hepatic protection was associated with reduced oxidative stress in liver tissues. The antioxidant effects of HS were manifested as a normalization of malondialdehyde levels and glutathione levels which were all raised after CIS-induction. In addition, HS treatment resulted in a decrease of catalase, and superoxide dismutase activity. The combined effects of CIS and HS were also studied in two human lung cancer cell lines (A549 and H460). Treatment with HS (20 μg /mL) enhanced the cytotoxic activity of CIS both in A549 and H460 cell lines. Interestingly, HS increased CIS-induced apoptosis and oxidative stress more clearly in A549 cells indicating that HS extract in combination with CIS could increase the efficacy of CIS in the treatment of cancer.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Biology Department, National Organization for Drug Control and Research, Giza 12611, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Soha Osama Hassanin
- Biochemistry Department, Modern University for Technology and information, Cairo 11585, Egypt
| | - Hanan Mohamed Elwy
- Analytical Chemistry Department, National Organization for Drug Control and Research, Giza 12611, Egypt
| | | | - Amr Amin
- Department of Biology, College of Science U.A.E. University, P.O. Box 15551, Al-Ain, UAE.
| |
Collapse
|
8
|
Alyoussef A. Investigation of the Ability of Crocin to Treat Skin Cancer Chemically Induced in Mice via the Inhibition of the Wnt/β-Catenin and Fibrotic Pathway. Cureus 2023; 15:e38596. [PMID: 37284388 PMCID: PMC10239655 DOI: 10.7759/cureus.38596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Background The Wnt pathway is a major pathway in the pathogenesis of skin cancer. Moreover, crocin is one of the carotenoid compounds present in the flowers of gardenia and crocus. Crocin is responsible for the characteristic color of saffron. Aims This study was conducted to discover the therapeutic effects of crocin against skin cancer induced in mice by blocking the Wnt pathway with subsequent effects on inflammation and fibrosis. Methods For the induction of skin cancer in mice, the application of DMBA and Croton oil was used. The dorsal skin was used for the evaluation of the gene and protein expression of TGF-β, SMAD, Wnt, β-catenin, TNF-α, and NFκB. Part of the skin is stained with Mallory trichrome. Results The use of crocin for treating skin cancer mice significantly reduced both the number of tumors and the number of scratches. In addition, crocin inhibited epidermal hyperplasia. Finally, crocin reduced the gene expression and protein levels of Wnt, β-catenin, SMAD, NFκB; TGF-β and TNF-α. Conclusions Crocin produced therapeutic effects against skin cancer induced in mice by blocking the expression of Wnt followed by blocking the pro-inflammatory pathway through downregulation of NFκB and TNF-α. In addition, crocin blocked the fibrosis pathway via the downregulation of TGF-β.
Collapse
|
9
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
10
|
Shafiey SI, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Protective effects of rivaroxaban against cisplatin-induced testicular damage in rats: Impact on oxidative stress, coagulation, and p-NF-κB/VCAM-1 signaling. Food Chem Toxicol 2022; 169:113419. [PMID: 36122812 DOI: 10.1016/j.fct.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Coagulation is a main pathway in various diseases pathogenesis including testicular damage. This study evaluated rivaroxaban (RVX) protective effects in testicular impairment by cisplatin (CP). Rats were randomly allocated into five groups: Control, RVX (7 mg/kg/day), CP (10 mg/kg), RVX 5 mg + CP and RVX 7 mg + CP. Serum testosterone and testicular ALT, AST, and ALP were assessed. Testicular oxidative stress and antioxidant parameters and inflammatory indicators including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were assessed. qRT-PCR was used to determine mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (stAR). Protein expressions of p-Nuclear factor kappa B (p- NF-κB) and vascular cell adhesion protein-1 (VCAM-1) were analyzed by Western blot analysis. Tissue factor (TF) expression was immunohistochemically analyzed. Results revealed that RVX significantly increased serum testosterone and sperm count while significantly reduced IL-1β and TNF-α. It significantly decreased tissue MDA and NO contents while increased SOD and GPx. In addition, RVX attenuated CP-induced histopathological aberrations and normalized TF. It also decreased the VCAM-1 and p-NF-κB expression and showed strong expression of 3β-HSD, 17β-HSD, and stAR, indicating improvement of steroidogenesis. In conclusion, RVX counteracted testicular damage by CP via suppressing oxidative stress, inflammation, and coagulation and downregulating p-NF-κB/VCAM-1 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
11
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Zhou Q, Zhang N, Hu T, Xu H, Duan X, Liu B, Chen F, Wang M. Dietary phenolic-type Nrf2-activators: implications in the control of toxin-induced hepatic disorders. Food Funct 2022; 13:5480-5497. [PMID: 35411358 DOI: 10.1039/d1fo04237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous studies have exemplified the importance of nuclear factor erythroid 2-related factor 2 (Nrf2) activation in the alleviation of toxin-induced hepatic disorders primarily through eliminating oxidative stress. Whereafter, increasingly more efforts have been contributed to finding Nrf2-activators, especially from dietary polyphenols. The present review summarized the phenolic-type Nrf2-activators published in the past few decades, analyzed their effectiveness based on their structural characteristics and outlined their related mechanisms. It turns out that flavonoids are the largest group of phenolic-type Nrf2-activators, followed by nonflavonoids and phenolic acids. When counting on subgroups, the top three types are flavonols, flavones, and hydroxycinnamic acids, with curcuminoids having the highest effective doses. Moreover, most polyphenols work through the phosphorylation of Nrf2. Besides, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) are the frequent targets of these Nrf2-activators, which indirectly mediate the behavior of Nrf2. However, current data are not sufficient to conclude any structure-activity relationship.
Collapse
Affiliation(s)
- Qian Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Nana Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Tingyan Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Xinxing Duan
- Schlegel Research Institute for Aging & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| |
Collapse
|
13
|
Zhang Y, Liang X, Bao X, Xiao W, Chen G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur J Med Chem 2022; 235:114291. [DOI: 10.1016/j.ejmech.2022.114291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023]
|
14
|
Ferah Okkay I, Okkay U, Aydin IC, Bayram C, Ertugrul MS, Mendil AS, Hacimuftuoglu A. Centella asiatica extract protects against cisplatin-induced hepatotoxicity via targeting oxidative stress, inflammation, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33774-33784. [PMID: 35029831 DOI: 10.1007/s11356-022-18626-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
This study was designed to investigate the protective effects of Centella asiatica (CA) on cisplatin-induced hepatotoxicity and to clarify the underlying mechanism by biochemical, molecular, immunohistochemical, and histopathological analyses. Rats were pre-treated with two doses of CA (100 and 200 mg/kg, p.o.) for 14 consecutive days. Then, on the 15th day, hepatotoxicity was induced by a single cisplatin injection (10 mg/kg i.p.). On the 18th day, the rats were euthanized. CA effectively alleviated cisplatin-induced hepatic injury via reduction in AST, ALT, and ALP enzymes and a decrease in oxidative stress (decreased MDA and ROS, and increased SOD, CAT, and GSH). CA also mitigated the inflammatory damage by the inhibition of TNF-α, IL-1β, and NF-κB. The liver expression of caspase-3 and Bax was downregulated, while Bcl-2 was upregulated. Moreover, immunohistochemical results confirmed the recovery with CA by downregulation of iNOS and 8-OHdG expression. These results showed that with its antioxidant, anti-inflammatory, and anti-apoptotic activities, CA could help alleviate the hepatotoxic effects of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25100, Erzurum, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Cagri Aydin
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Sait Ertugrul
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother 2021; 144:112328. [PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia.
| | | | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
18
|
Fan X, Huang J, Xu C, Bao M, Xia W, Zhu C. Differential expression of microRNAs in human endometrium after implantation of an intrauterine contraceptive device containing copper. Mol Hum Reprod 2021; 27:6357049. [PMID: 34427668 DOI: 10.1093/molehr/gaab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine devices containing copper placement will release a large amount of Cu2+ into the uterine fluid, leading to local endometrial damage and inflammation, which is considered to be one of the causes of abnormal uterine bleeding. Studies have shown that the metabolism and function of metal ions are related to the regulation of microRNA. The aims of this study were to investigate changes in endometrial microRNA levels after implantation of an intrauterine device containing copper and to preliminarily explore the signalling pathways involved in abnormal uterine bleeding. The subjects were fertile women, aged 25-35, without major obstetrics and gynaecology diseases. Human endometrial tissues were collected before implantation or removal of the intrauterine device containing copper. High-throughput microRNA sequencing was performed on human endometrial tissues, and real-time quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of relevant genes. MicroRNA sequencing results showed that 72 miRNAs were differentially expressed in the endometrial tissue after the insertion of the intrauterine device containing copper. Implantation of an intrauterine device containing copper implantation can up-regulate the expression of miR-144-3p in endometrial tissue, and therefore, decreases the mRNA and protein expression levels of genes related to endometrial injury and tissue repair, including the MT/NF-κB/MMP damage pathway and the THBS-1/TGF-β/SMAD3 repair pathway. In this study, the molecular mechanisms of abnormal uterine bleeding due to an intrauterine device containing copper were preliminarily investigated. The information will be beneficial for the clinical treatment of abnormal uterine bleeding caused by intrauterine device.
Collapse
Affiliation(s)
- Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Computational Design of Novel Allosteric Inhibitors for Plasmodium falciparum DegP. Molecules 2021; 26:molecules26092742. [PMID: 34066964 PMCID: PMC8141111 DOI: 10.3390/molecules26092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.
Collapse
|
20
|
Seyedmajidi M, Bijani F, Zabihi E, Bijani A, Nouri H, Nafarzadeh S. Evaluation of apoptotic effect of crocin, cisplatin, and their combination in human oral squamous cell carcinoma cell line HN5. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.324029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Zhang J, Yang S, Wang K, Huang Y, Yang N, Yang Z, Zheng Z, Wang Y. Crocin induces autophagic cell death and inhibits cell invasion of cervical cancer SiHa cells through activation of PI3K/AKT. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1180. [PMID: 33241029 PMCID: PMC7576020 DOI: 10.21037/atm-20-5882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Cervical cancer is a prevalent tumor mainly induced by Human Papilloma Virus (HPV). Autophagy was inactivated with HPV to promote cancer progression. Here we explored the effects of crocin on cervical cancer cells, mainly on autophagy and apoptosis. Methods SiHa cells were treated with crocin, and proliferation, metastases, apoptosis and autophagy were measured using a CCK-8 assay, transwell migration assay, flow cytometry and immunofluorescence. Protein levels were measured using western blotting. The antitumor effects of crocin were validated in female BALB/c nude mice injected with SiHa cells. Results The result showed that 2, 4, 8 and 16 mM of crocin significantly reduced the viability of SiHa cells within 24 h. Subsequently, 0, 1, 2 and 4 mM crocin concentrations were used in later experiments. Treatment with crocin reduced invasive cells, while increasing autophagic and apoptotic cells dose-dependently. The enhanced apoptosis and autophagy were partly validated by an increase in cleaved caspase-3/caspase-3, cleaved caspase-9/caspase9, LC3B II/I, Beclin1 and ATG7. AMPK and mTOR were inactivated with crocin treatment, while PI3K was activated. These results indicated that crocin might promote autophagy and apoptosis by inactivating AMPK and mTOR signaling. Tumor progression was inhibited in mice treated with 50 mg/kg/d of crocin, which was demonstrated by smaller tumor volumes, less VEGF expression, more intense caspase-3 staining and increased LC3B II/I in the tumor tissues. Conclusions Crocin inhibited the progression of cervical cancer in vitro and in vivo, possibly through inactivation of AMPK and mTOR, inhibition of proliferation and invasion, and promotion of autophagy and apoptosis. These results support the potential therapeutic value of crocin in treating cervical cancer.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shaoping Yang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Kana Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Nian Yang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhongmei Yang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenrong Zheng
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|