1
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
2
|
Xie S, Zhao S, Jiang X, Zhu Y, Liu J, Zhang B, Zhao H. Adsorption plasticizer by nanosphere adsorbent of persimmon tannin binding bovine serum protein. Food Chem 2024; 464:141653. [PMID: 39427610 DOI: 10.1016/j.foodchem.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
In this study, nanosphere (NS) of a persimmon tannin binding bovine serum protein (BSA-PT-NS) adsorbent were prepared. The BSA-PT-NS exhibited good adsorption capacity for the plasticizer diethyl phthalate (DEP), with an adsorption rate of 74.5 %. The BSA-PT-NSs were spherical and their surfaces appeared to be uneven. The FT-IR and XPS results indicated that the adsorption of DEP was mainly due to the phenol hydroxyl group on PT, and the CO and -NH- functional groups of BSA also contributed. The addition of Na+, Ca2+, and Mg2+ significantly decreased the adsorption rate (P < 0.05). The maximum DEP adsorption capacity of BSA-BT-NS was calculated to be 487.8 mg/g based on the Langmuir linear model. The adsorption kinetics results showed that the pseudo-first-order model fitted well. The DEP removal rate remained above 68 % after five cycles, demonstrating that the BSA-PT-NSs had excellent regeneration properties for DEP adsorption.
Collapse
Affiliation(s)
- Shanshan Xie
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Shuhui Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xiaoying Jiang
- China National Research Institute of Food and Fermentation Industries Corporation Limited, Beijing 100083, China
| | - Yadong Zhu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jing Liu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest, Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Ran B, Qin J, Wu Y, Wen F. Associations between mixed exposure to phthalates and latent tuberculosis infection among the general U.S. population from NHANES 2011-2012. Heliyon 2024; 10:e27958. [PMID: 38533017 PMCID: PMC10963332 DOI: 10.1016/j.heliyon.2024.e27958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Background People are constantly exposed to phthalates, but few reliable studies have focused on the connection between phthalate exposure and latent tuberculosis infection (LTBI). Methods Data were obtained from the National Health and Nutrition Examination Survey (NHANES) database (2011-2012). The LTBI was assessed by QuantiFERON®-TB Gold-In-Tube (QFT) or tuberculin skin testing (TST). The odds ratios (ORs) and 95% confidence intervals (CIs) per log10 unit change in the concentration of phthalate metabolites were calculated using crude and adjusted logistic regression models. The relationships between mixed phthalate concentrations and LTBI were assessed using Bayesian kernel machine regression (BKMR) models. Results According to the results of the multivariable logistic regression, in a fully adjusted model, only monobenzyl phthalate (MBZP) was negatively associated with LTBI in Q3 (OR (95% CI): 0.485 (0.286,0.823), P = 0.007). According to the restricted cubic spline (RCS) model, there was a linear dose‒response association between all 11 phthalate metabolites and LTBI (p for nonlinearity >0.05). We found a significant positive correlation between mixed phthalate metabolites and LTBI by using fully adjusted BKMR model. Conclusions Our analysis demonstrated that LTBI in the general U.S. population is linearly linked with exposure to single or combined phthalates.
Collapse
Affiliation(s)
- Bi Ran
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, 610041, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
6
|
Ornelas-Salas JT, Tapia-Picazo JC, De Leon-Rodriguez A. Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process. Foods 2024; 13:334. [PMID: 38275701 PMCID: PMC10814815 DOI: 10.3390/foods13020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study was to determine the origin, presence, and fate of the endocrine disruptor di-ethylhexil phthalate (DEHP) during tequila production. For this, three tequila factories (small, medium, and large) were monitored. DEHP concentrations in water, agave, additives, lubricating greases, neoprene seals, and materials of each stage process were analyzed using gas chromatography/mass spectrometry. DEHP mass balances were performed to identify the processes with significant changes in the inputs/outputs. DEHP was detected in agave at up to 0.08 ± 0.03 mg kg-1, water 0.02 ± 0.01 mg kg-1, lubricant greases 131.05 ± 2.80 mg kg-1, and neoprene seals 369.11 ± 22.52 mg kg-1. Whereas, tequila produced in the large, medium, and small factories contained 0.05 ± 0.01, 0.24 ± 0.04, and 1.43 ± 0.48 mg kg-1 DEHP, respectively. Furthermore, in waste materials (vinasses and bagasse) released, 534.26 ± 349.02, 947.18 ± 65.84, and 5222.60 ± 2836.94 mg of DEHP was detected for every 1000 L of tequila produced. The most significant increase in DEHP occurred during the sugar extraction and distillation stages. Results demonstrate that main raw materials, such as agave and water, contain DEHP, but lubricant greases and neoprene seals are the major sources of DEHP contamination. Identification of the contamination sources can help the tequila industry to take actions to reduce it, protect consumer health and the environment, and prevent circular contamination.
Collapse
Affiliation(s)
- Jose Tomas Ornelas-Salas
- Tecnológico Nacional de México-Instituto Tecnológico de Aguascalientes, Departamento de Ingeniería Química, Av. Adolfo López Mateos 1801, Ote. Fracc. Bona Gens, Aguascalientes C.P. 20256, Ags., Mexico; (J.T.O.-S.); (J.C.T.-P.)
- Maestría en Procesos del Tequila, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle 3ª Sección, Zapopan C.P. 45129, Jal., Mexico
| | - Juan Carlos Tapia-Picazo
- Tecnológico Nacional de México-Instituto Tecnológico de Aguascalientes, Departamento de Ingeniería Química, Av. Adolfo López Mateos 1801, Ote. Fracc. Bona Gens, Aguascalientes C.P. 20256, Ags., Mexico; (J.T.O.-S.); (J.C.T.-P.)
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí C.P. 78216, SLP, Mexico
| |
Collapse
|
7
|
Zhang H, Ran M, Jiang L, Sun X, Qiu T, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. Mitochondrial dysfunction and endoplasmic reticulum stress induced by activation of PPARα leaded testicular to apoptosis in SD rats explored to di-(2-ethylhexyl) phthalate (DEHP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115711. [PMID: 37979351 DOI: 10.1016/j.ecoenv.2023.115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP), as a common endocrine disrupting chemicals, can induce toxicity to reproductive system. However, the mechanism remains to be explored. In our study, DEHP exposure induced testicular injury in rats. The high throughput transcriptional sequencing was performed to identify differentially expressed genes (DEGs) between the treatment and control groups. KEGG analysis revealed that DEGs were enriched in apoptosis, PPARα, and ER stress pathway. DEHP up-regulated the expression of PPARα, Bax, Bim, caspase-4. GRP78, PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. This view has also been confirmed in TM3 and TM4 cells. In vitro, after pre-treatment with GW6471 (an inhibitor of PPARα) or GSK (an inhibitor of PERK), the apoptosis was inhibited and mitochondrial dysfunction was improved. Moreover, the improvement of mitochondrial dysfunction decreased the expression of PERK pathway by using SS-31(a protective agent for mitochondrial function). Interestingly, ER stress promoted the accumulation of ROS by ERO1L (the downstream of CHOP during ER stress), and the ROS further aggravated the ER stress, thus forming a feedback loop during the apoptosis. In this process, a vicious cycle consisting of PERK, eIF2α, ATF4, CHOP, ERO1L, ROS was involved. Taken together, our results suggested that mitochondrial dysfunction and ER stress-ROS feedback loop caused by PPARα activation played a crucial role in DEHP-induced apoptosis. This work provides insight into the mechanism of DEHP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Maohuan Ran
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Tianming Qiu
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
8
|
Li G, Chen Y, Wu M, Chen K, Zhang D, Zhang R, Yang G, Huang X. Di (2-ethyl) hexyl phthalate induces liver injury in chickens by regulating PTEN/PI3K/AKT signaling pathway via reactive oxygen species. Comp Biochem Physiol C Toxicol Pharmacol 2023; 270:109639. [PMID: 37259793 DOI: 10.1016/j.cbpc.2023.109639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Di (2-ethyl) hexyl phthalate (DEHP) is a common environmental endocrine disruptor that induces oxidative stress, posing a significant threat to human and animal health. Oxidative stress can activate the PTEN/PI3K/AKT pathway, which is closely related to cell apoptosis. However, it is unclear whether DEHP induces apoptosis of chicken liver cells by regulating the PTEN/PI3K/AKT pathway through oxidative stress. In this experiment, male laying hens were continuously exposed to 400 mg/kg, 800 mg/kg, and 1600 mg/kg DEHP for 14 d, 28 d, and 42 d. The results showed that liver injury was aggravated with the dose of DEHP gavage, and the ROS/MDA levels in L, M, and H DEHP exposure groups were significantly increased, while the T-AOC/T-SOD/GSH-PX levels were decreased. Meanwhile, DEHP exposure up-regulated the mRNA and protein expression levels of PTEN/Bax/Caspase-9/Caspase-3 and down-regulated the mRNA and protein expression levels of PI3K/AKT/BCL-2, indicating that DEHP may lead to hepatocyte apoptosis through ROS regulation of PTEN/PI3K/AKT axis. In order to further clarify the relationship between oxidative stress and liver injury, we treated chicken hepatocellular carcinoma cell line (LMH) with 2.5 mM N-acetylcysteine (NAC). NAC attenuated these phenomena. In summary, our study suggests that DEHP can induce apoptosis of chicken liver through ROS activation of the PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menglin Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Di Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guijun Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Ding WJ, Huang SL, Huang S, Xu WP, Wei W. Di(2-ethylhexyl) phthalate mediates oxidative stress and activates p38MAPK/NF-kB to exacerbate diabetes-induced kidney injury in vitro and in vivo models. Toxicol Res (Camb) 2023; 12:332-343. [PMID: 37125328 PMCID: PMC10141783 DOI: 10.1093/toxres/tfad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Plasticizer di(2-ethylhexyl) phthalate (DEHP) is employed to make polyethylene polymers. Some studies in epidemiology and toxicology have shown that DEHP exposure over an extended period may be hazardous to the body, including nephrotoxicity, and aggravate kidney damage in the context of underlying disease. However, studies on the toxicity of DEHP in diabetes-induced kidney injury have been rarely reported. Using a high-fat diet (HFD) and streptozotocin (STZ, 35 mg/kg)-induced kidney injury in mice exposed to various daily DEHP dosages, we explored the impacts of DEHP on diabetes-induced kidney injury. We discovered that DEHP exposure significantly promoted the renal inflammatory response and oxidative stress in mice, with increased P-p38 and P-p65 protein levels and exacerbated the loss of podocin. The same findings were observed in vitro after stimulation of podocytes with high glucose (30 mmol/L) and exposure to DEHP. Our results suggest that DEHP exacerbates diabetes-induced kidney injury by mediating oxidative stress and activating p38MAPK/NF-κB.
Collapse
Affiliation(s)
- Wen-Jie Ding
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Shou-Lin Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Song Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Wei-Ping Xu
- The First Affiliated Hospital of USTC, Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Wei Wei
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
10
|
Shi X, Xu T, Cui W, Qi X, Xu S. Combined negative effects of microplastics and plasticizer DEHP: The increased release of Nets delays wound healing in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160861. [PMID: 36526177 DOI: 10.1016/j.scitotenv.2022.160861] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/12/2023]
Abstract
Environmental harmful pollutants microplastics (MPs) and di (2-ethyl) hexyl phthalate (DEHP) are widely residual in the environment, which may cause lesion to multiple apparatus by inducing oxidative stress, threatening the health of human and animals. Neutrophil extracellular traps (Nets) are involved in skin wound healing. Most studies focused on the individual effects of different poisons on animals and ecosystems, but there are few studies on the accumulation and interaction of multiple poisons. The purpose of this study is to explore the effect of DEHP and MPs co-exposure on skin wound healing and the formation of Nets. For this purpose, we detected this hypothesis by replicating the DEHP and MPs-exposed skin wound model in mice, as well as the co-culture system of neutrophil and fibroblast. The results displayed that MPs and DEHP exposure delayed skin healing, which was more pronounced in the combined exposure group. In vitro and in vivo experiments confirmed that compared with the DEHP or MPs group, the DEHP+MPs group had more significant oxidative stress, increased Nets release and inflammatory factors, and inhibited the Wnt/β-catenin pathway and fibrosis-related factors. N-acetylcysteine (NAC) attenuated these phenomena. Through the co-culture system, we confirmed that the overproduction of Nets induced fibroblasts to exacerbate inflammatory responses and inhibit Wnt pathway and fibrosis. Overall, DEHP and MPs can produce synergistic toxic injury in mice skin wounds, and the excessive activation of ROS/Nets can aggravate inflammatory and inhibit fibrosis, resulting in delayed wound healing.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Wu Y, Lu R, Lin Y, Wang J, Lou Z, Zheng X, Zhang L, Pan R, Lu G, Fang Q. DEHP mediates drug resistance by metabolic reprogramming in colorectal cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47780-47786. [PMID: 36749513 PMCID: PMC10097731 DOI: 10.1007/s11356-022-25110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
Long-term exposure to diethylhexyl phthalate (DEHP), an endocrine-disrupting chemical (EDCs) and plasticizer widely used in consumer products, has been reported to be significantly positively correlated with increased risks of different human diseases, including various cancers, while the potential effect of DEHP on colorectal cancer progression was little studied. In the present study, we showed that DEHP could trigger the metabolic reprogramming of colorectal cancer cells, promote cell growth and decrease fluorouracil (5-FU) sensitivity. Mechanistic studies indicated that DEHP could reduce glycolysis activity and increase oxidative phosphorylation (OXPHOS) in SW620 cells. In addition, in vivo experiments showed that DEHP promoted tumorigenic progression and decreased survival time in mice. Collectively, our findings suggest that DEHP may be a potent risk factor for colorectal cancer development.
Collapse
Affiliation(s)
- Yue Wu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yujie Lin
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jinjin Wang
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zijian Lou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China.,Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China.,Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Gang Lu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qingxia Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
12
|
Liu P, Quan X, Zhang Q, Chen Y, Wang X, Xu C, Li N. Multi-omics reveals the mechanisms of DEHP driven pulmonary toxicity in ovalbumin-sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114355. [PMID: 36508822 DOI: 10.1016/j.ecoenv.2022.114355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The plasticizer di- (2-ethylhexyl) phthalate (DEHP) is considered a risk factor for allergic diseases and has attracted public attention for its adverse effects on health. However, respiratory adverse effects after DEHP exposure in food allergies have rarely been reported. MiRNAs are considered to be key regulators in the complex interrelationships between the host and microbiome and may be a potential factor involved in DEHP-induced pulmonary toxicity. To investigate the adverse effects of DEHP on the lung during sensitization, we established an ovalbumin (OVA)-sensitized mouse model exposed to DEHP and performed 16S rDNA gene sequencing, miRNA sequencing, and correlation analysis. Our results showed that DEHP aggravated the immune disorder in OVA-sensitized mice, which was mainly characterized by an increase in the proportion of Th2 lymphocytes, and further enhanced OVA-induced airway inflammation without promoting pulmonary fibrosis. Compared with the OVA group, DEHP interfered with the lung microbial community, making Proteobacteria the dominant phylum, while Bacteroidetes were significantly reduced. Differentially expressed miRNAs were enriched in the PI3K/AKT pathway, which was closely related to immune function and airway inflammation. The expression of miR-146b-5p was elevated in the DEHP group, which was positively correlated with the proportion of Th2 cells and significantly negatively correlated with the abundance of Bacteroidetes. The results indicate that DEHP may interfere with the expression of miR-146b-5p, affect the composition of the lung microbiota, induce an imbalance in T cells, and lead to immune disorders and airway inflammation. The current study uses multi-omics to reveal the potential link between the plasticizer DEHP and allergic diseases and provides new insights into the ecotoxicology of environmental exposures to DEHP.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Quan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Na Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
13
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Wu J, Qu R, Wang Q, Yang X, Zhu H, Zhang A, Sun J. Human exposure to phthalate esters in soils embodied in interregional food trade in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120388. [PMID: 36220577 DOI: 10.1016/j.envpol.2022.120388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous occurrence of phthalate esters (PAEs) in agricultural soil results in their inevitable accumulation in crops, potentially increasing the risk of human exposure to PAEs via daily food intake. Dietary health risk of PAEs not only depends on locally produced food but also the imported food from other regions. However, the impact of interregional food trade on human dietary exposure to PAEs has been seldom assessed. Herein, we investigated the impact of interregional food trade on the dietary exposure to PAEs that contributed from soil contamination in China. The average daily dietary intake of PAEs for the Chinese general population was 24.3 μg/kg/day when assuming the total consumption of crops from local market only, while the average daily dietary intake of PAEs for the Chinese general population was decreased by 2.9% when the effects of interregional food trade were involved into the calculation. Additionally, the interregional food trade remarkably increased the daily dietary intake of PAEs in the regions of Beijing-Tianjin region (47.8%), North (21.4%) and Central (4.26%). As a result, the hazard quotient value of PAEs in the regions of Beijing-Tianjin region, North and Central increased by 29.4%, 11.0% and 5.0%, respectively, owing to the consumption of imported crops from the highly PAEs contaminated regions. In contrast, the daily intake and hazard quotient value of PAEs in the regions of Central Coast, Northwest, Northeast and South Coast decreased due to the interregional trade. These results indicated that the interregional food trade promoted the transfer of PAEs between regions and thus altered the potential risk to the local population. Overall, this study highlights the importance of taking the interregional food trade into account to provide a more accurate risk assessment of dietary exposure to pollutants.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rongfei Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qianwen Wang
- Research and Teaching Center of Agriculture, Zhejiang Open University, Hangzhou, 310012, China
| | - Xindong Yang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haofeng Zhu
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
15
|
Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway. Food Chem Toxicol 2022; 171:113521. [PMID: 36423728 DOI: 10.1016/j.fct.2022.113521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polystyrene microplastics (PS-MPs) are new environmental pollutants that attracted increased attention. At present, the effects and underlying mechanisms of action of combined exposure of DEHP and PS-MPs on the kidney have not been elucidated. To investigate the renal toxicity of DEHP and PS-MPs exposure, we established single and combined DEHP and PS-MPs exposure models in mice and HEK293 cells, respectively. Hematoxylin and eosin staining, transmission electron microscopy, monodansylcadaverine staining, immunofluorescence, real-time quantitative PCR, Western blot analysis and other methods were used to detect relevant indicators. The results showed that the expression levels of ROS/AMPK/ULK1 and Ppargc1α/Mfn2 signaling pathway-related genes were significantly increased in the DEHP and PS-MPs exposure models. The mRNA and protein expression levels of autophagy markers were also upregulated. In addition, we found that the expression levels of mRNAs and proteins in the combined exposure group were more significantly increased than those in the single exposure group. In conclusion, combined exposure to DEHP and PS-MPs caused oxidative stress and activated the AMPK/ULK1 pathway, thereby inducing renal autophagy. Our results enhance the field of nephrotoxicity studies of plasticizers and microplastics and provide new light on combined toxicity studies of DEHP and PS-MPs.
Collapse
|
16
|
Naveen KV, Saravanakumar K, Zhang X, Sathiyaseelan A, Wang MH. Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory- A review. ENVIRONMENTAL RESEARCH 2022; 214:113781. [PMID: 35780847 DOI: 10.1016/j.envres.2022.113781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are utilized as plasticizers in plastic products to enhance their durability, transparency, and elasticity. However, phthalates are not covalently bonded to the polymer matrix of the phthalate-containing products and can be gradually released into the environment through biogeochemical processes. Hence, phthalates are now pervasive in our environment, including our food. Reports suggested that phthalates exposure to the mammalian systems is linked to various health consequences. It has become vital to develop highly efficient strategies to reduce phthalates from the environment. In this context, the utilization of fungi for phthalate bioremediation (mycoremediation) is advantageous due to their highly effective enzyme secretory system. Extracellular and intracellular enzymes of fungi are believed to break down the phthalates by ester hydrolysis to produce phthalic acid and alcohol, and subsequent digestion of the benzene rings of phthalic acid and their metabolites. The present review scrutinizes and highlights the knowledge gap in phthalate prevalence, exposure to mammals, and associated human health challenges. Furthermore, discusses the role of fungi and their secretory enzymes in the biodegradation of phthalates and gives a perspective to better describe and tackle this continuous threat.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
17
|
Li G, Zhao CY, Wu Q, Kang Z, Zhang JT, Guan SY, Jin HW, Zhang YB, Na XL. Di(2-ethylhexyl) phthalate disturbs cholesterol metabolism through oxidative stress in rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103958. [PMID: 35970509 DOI: 10.1016/j.etap.2022.103958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used and has been implicated in hepatotoxicity, although the mechanism is unclear. Here, we investigated the effect of DEHP on hepatic cholesterol metabolism in SD rats exposed to 0 and 300 mg/kg/day DEHP for 12 weeks. An RNA-Seq analysis was performed to describe the hepatic responses to long-term DEHP exposure in combination with serological and oxidative stress parameter measurements. DEHP increased the serum levels of total cholesterol (TC), high-density lipoprotein (HDL), and alanine transaminase (ALT). Moreover, DEHP increased the content of malondialdehyde (MDA) and decreased antioxidant enzyme activities in the liver. Transcriptomic results revealed that DEHP dramatically changed the cholesterol metabolism pathway and oxidation-reduction process and depressed gene expression involved in cholesterol efflux and monooxygenase activity. Total antioxidant capacity (T-AOC) positively correlated with Abcg5 and Abcg8. Overall, this study showed the mechanisms underlying hepatotoxicity caused by DEHP, providing new insights into understanding DEHP poisoning.
Collapse
Affiliation(s)
- Gang Li
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China; Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, China
| | - Chen-Yang Zhao
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Qian Wu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Zhen Kang
- Department of Environment Hygiene Harbin Center for Disease Control and Prevention, Harbin 150086, Heilongjiang Province, China
| | - Jia-Tai Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Si-Yuan Guan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Hong-Wei Jin
- Guangming District Center for Disease Control and Prevention, Guangming District, Shenzhen 518106, Guangdong Province, China
| | - Yun-Bo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China.
| | - Xiao-Lin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
18
|
Sun H, Lei C, Yuan Y, Xu J, Han M. Nanoplastic impacts on the foliar uptake, metabolism and phytotoxicity of phthalate esters in corn (Zea mays L.) plants. CHEMOSPHERE 2022; 304:135309. [PMID: 35709832 DOI: 10.1016/j.chemosphere.2022.135309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic pollution in terrestrial plants is of increasing concern for its negative effects on living organisms. However, the impacts of nanoplastics on chemical processes and plant physiology of phthalate esters (PAEs) remain unclear. The present work offers insight into the foliar uptake, metabolism and phytotoxicity of two typical PAEs, namely, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), in corn (Zea mays L.) seedlings and the effects of amino-functionalized polystyrene nanoplastics (PSNPs-NH2). The presence of PSNPs-NH2 increased DBP and DEHP accumulation in the leaves by 1.36 and 1.32 times, respectively. PSNPs-NH2 also promoted the leaf-to-root translocation of DBP and DEHP, with the translocation factor increasing by approximately 1.05- and 1.16-fold, respectively. Furthermore, the addition of PSNPs-NH2 significantly enhanced the transformation of PAEs to their primary metabolites, mono-butyl phthalate and mono(2-ethylhexyl) phthalate in corn leaves and roots. The co-presence of PSNPs-NH2 and PAEs showed stronger impairment of photosystem II efficiency via the downregulation of transporter D1 protein, thus exhibiting a greater inhibitory effect on plant growth. Our findings reveal that nanoplastics promote the foliar uptake and transformation of PAE chemicals in crops and exacerbate their toxicity to crop plants, thereby threatening agricultural safety and human health.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China.
| | - Chunli Lei
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Yihao Yuan
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Jianhong Xu
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Ming Han
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
19
|
Dai XY, Zhu SY, Chen J, Li MZ, Zhao Y, Talukder M, Li JL. Lycopene alleviates di(2-ethylhexyl) phthalate-induced splenic injury by activating P62-Keap1-NRF2 signaling. Food Chem Toxicol 2022; 168:113324. [PMID: 35917956 DOI: 10.1016/j.fct.2022.113324] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant. It has been determined that DEHP is involved in multiple health disorders. Lycopene (Lyc) is a natural carotenoid pigment, with anti-inflammatory and antioxidant properties. However, it is not clear whether Lyc can protect the spleen from DEHP-induced oxidative damage. A total of 140 mice were randomly divided into seven groups (n = 20) and continuously gavaged with corn oil, distilled water, DEHP (500 or 1000 mg/kg BW/day) and/or Lyc (5 mg/kg BW/day) for 28 days. Histopathological and ultrastructural results showed a DEHP-induced inflammatory response and mitochondrial injuries. Moreover, DEHP exposure induced redox imbalance, which resulted in the up-regulation of ROS activity and MDA content, and the down-regulation of T-AOC, T-SOD and CAT in the DEHP groups. Simultaneously, our results also demonstrated that DEHP-induced kelch-like ECH-associated protein 1 (Keap1) expression was downregulated, and the expression levels of P62, nuclear factor erythroid 2-related factor (NRF2) and their downstream target genes were up-regulated. However, the supplementary Lyc reverted these changes to normal levels. Together, Lyc prevented DEHP-induced splenic injuries by regulating the P62-Keap1-NRF2 signaling pathway. Hence, the protective effects of Lyc might be a therapeutic strategy to ameliorate DEHP-induced splenic damage.
Collapse
Affiliation(s)
- Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
20
|
Halloran MW, Nicell JA, Leask RL, Marić M. Bio‐based glycerol plasticizers for flexible poly(vinyl chloride) blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.52778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jim A. Nicell
- Department of Civil Engineering McGill University Montréal Quebec Canada
| | - Richard L. Leask
- Department of Chemical Engineering McGill University Montréal Quebec Canada
| | - Milan Marić
- Department of Chemical Engineering McGill University Montréal Quebec Canada
| |
Collapse
|
21
|
Yang L, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Wang S, Yang G. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food Chem Toxicol 2022; 164:113046. [PMID: 35447293 DOI: 10.1016/j.fct.2022.113046] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023]
Abstract
Exposure to Di (2-ethylhexyl) phthalate (DEHP) has been associated with toxic effects of the reproductive system. However, the exact mechanism remains to be elucidated. In this study we explored the testicular toxicity induced by DEHP, and the probable molecular mechanism in the process. In vivo, the results demonstrated that DEHP affected testosterone levels and blood-testosterone barrier (BTB) integrity and caused ferroptosis. We further demonstrated that DEHP up-regulated the expression of p38α, p-p38α, p53, p-p53, SAT1, ALOX15. This view has also been confirmed in TM4 cells. After pre-treatment with fer-1 or si-MAPK14, the expression of either p53, p-p53, SAT1 and ALOX15 up-regulated by MEHP was inhibited in vitro. Interestingly, p38α can prevent the accumulation of lipid ROS, and the production of lipid ROS in turn promoted the expression of p38α, thus forming a feedback loop during the ferroptosis. In this process, a vicious cycle consisting of p38α, p53, SAT1, ALOX15, lipid ROS was involved. This study provides new mechanistic insights into DEHP-induced toxicity of the reproductive system.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
22
|
Zeng LJ, Huang YH, Lü H, Geng J, Zhao HM, Xiang L, Li H, Li YW, Mo CH, Cai QY, Li QX. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152854. [PMID: 34995579 DOI: 10.1016/j.scitotenv.2021.152854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Uptake pathway and accumulation variation of soil and airborne phthalates (PAEs) in plastic greenhouses by vegetables remains unclear. Here, pot experiments of Chinese flowering cabbage were designed to distinguish root or leaf uptake pathways of PAEs, and investigate the mitigation of spraying PAE-degrading strain in PAE accumulation by vegetables. The results showed that leaves of Chinese flowering cabbage grown in plastic greenhouses absorbed more PAEs from air than those of outside greenhouses. Airborne PAEs were mainly stored in leaf surfaces of vegetables grown inside greenhouse, while PAEs absorbed by roots from soil were translocated and mainly stored in mesophyll, especially in cell walls and organelles. PAE concentrations in mesophyll elevated with increasing soil PAE levels, whereas those in leaf surfaces were not influenced by soil PAE levels. The values of bioconcentration factors for leaves inside greenhouses were significantly (1.39-3.47 fold) higher than those outside. PAE-degrading strain (Rhodococcus pyridinivorans XB) sprayed on leaf surfaces could grow well and Rhodococcus was the dominant genus as confirmed by Illumina high-throughput sequencing. PAE-degrading strain effectively reduced PAEs by 12.9%-34.9% in leaf surface, but not those in vegetables grown in high-PAE soil. This study demonstrated mitigation of spraying PAE-degrading strain in PAE accumulation by vegetable leaves from air of plastic greenhouse.
Collapse
Affiliation(s)
- Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
23
|
Kang L, Chen J, Wang J, Zhao T, Wei Y, Wu Y, Han L, Zheng X, Shen L, Long C, Wei G, Wu S. Multiple transcriptomic profiling: potential novel metabolism-related genes predict prepubertal testis damage caused by DEHP exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13478-13490. [PMID: 34595713 DOI: 10.1007/s11356-021-16701-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The toxic effect of di(2-ethylhexyl) phthalate (DEHP) on prepubertal testes was examined in this study. We treated 3-week-old male mice with 4.8 mg/kg/day (milligram/kilogram/day) (no observed adverse effect level), 30 mg/kg/day (high exposure dose relative to humans), 100 mg/kg/day (level causing a reproductive system disorder), and 500 mg/kg/day (dose causing a multigenerational reproductive system disorder) of DEHP via gavage. Obvious abnormalities in the testicular organ coefficient, spermatogenic epithelium, and testosterone levels occurred in the 500 mg/kg DEHP group. Ribonucleic acid sequencing (RNA-seq) showed that differentially expressed genes (DEGs) in each group could enrich reproduction and reproductive process terms according to the gene ontology (GO) results, and coenrichment of metabolism pathway was observed by the Reactome pathway analysis. Through the analysis of common genes in the metabolism pathway, we discovered that DEHP exposure at 4.8 to 500 mg/kg or 100 mg/kg caused the same damages to the prepubertal testis. In general, we identified two key transcriptional biomarkers (fatty acid binding protein 3 (Fabp3) and carboxylesterase (Ces) 1d), which provided new insight into the gene regulatory mechanism associated with DEHP exposure and will contribute to the prediction and diagnosis of prepuberty testis injury caused by DEHP.
Collapse
Affiliation(s)
- Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lindong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China.
| |
Collapse
|
24
|
Sherif NAEH, El-Banna A, Abdel-Moneim RA, Sobh ZK, Balah MIF. The possible thyroid disruptive effect of di-(2-ethyl hexyl) phthalate and the potential protective role of selenium and curcumin nanoparticles: a toxicological and histological study. Toxicol Res (Camb) 2021; 11:108-121. [PMID: 35237416 PMCID: PMC8882772 DOI: 10.1093/toxres/tfab122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the ubiquitous pollutants worldwide. This study aimed to clarify the potential thyroid disrupting effect of DEHP and explore the probable ameliorative effects of selenium nanoparticles (Se-NPs) and curcumin nanoparticles (CUR-NPs). Forty-two male albino rats were divided into seven groups (n = 6): Group I (negative control); group (II) orally received DEHP (500 mg/kg BW, dissolved in corn oil); Group (III) orally received Se-NPs (.2 mg/kg BW) in combination with DEHP; Group (IV) orally received CUR-NPs (15 mg/kg BW) alongside with DEHP; Group V (corn oil); Group VI (Se-NPs) and Group VII (CUR-NPs). The duration of the experiment was 30 days. DEHP administration significantly decreased serum free T4 and significantly increased serum free T3 as compared to control group, whereas thyroid-stimulating hormone showed no significant change. DEHP disrupted redox status leading to accumulation of malondialdehyde and depletion of reduced glutathione. Histologically, the effect of DEHP on thyroid follicles was confirmed by light and electron microscopic examination and morphometric analysis. Se-NPs slightly improved thyroid parameters as well as redox status. CUR-NPS reinstated the values of all studied thyroid parameters to nearly control levels. This research provides Se-NPs and CUR-NPs as novel protective agents against DEHP-thyroid disrupting effects.
Collapse
Affiliation(s)
- Naima Abd El-Halim Sherif
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Asmaa El-Banna
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Zahraa Khalifa Sobh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Manal Ibrahim Fathy Balah
- Correspondence address. Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Egypt. Tel: +2 01007327966; E-mail: ; ORCID ID: 0000-0002-6018-5364. Permanent address: Champolion street, Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
25
|
Wang J, Li X, Wang C, Li Y, Wang J, Fang R, Wang J, Chen J, Dong J. Exposure to di-(2-ethylhexyl) phthalate reduces secretion of GDNF via interfering with estrogen pathway and downregulating ERK/c-fos signaling pathway in astrocytes. Food Chem Toxicol 2021; 158:112592. [PMID: 34624416 DOI: 10.1016/j.fct.2021.112592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine-disrupting chemical (EDC) that can increase the risk of central nervous system disease. This study aimed to investigate the in vitro and in vivo effects of DEHP exposure on GDNF secretion and the underlying mechanisms. Pregnant Wistar rats were randomly assigned into four groups and administered 0, 30, 300, or 750 mg/kg DEHP daily by oral gavage. In addition, primary astrocytes were exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP. Our results showed that DEHP exposure reduced GDNF levels and downregulated the ERK/c-fos signaling pathway in the cerebral cortex of male, but not female, offspring. Moreover, exogenous estrogen could overcome the decreased GDNF levels in astrocytes caused by MEHP exposure. MEHP also decreased p300 levels and downregulated the ERK/c-fos signaling pathway in primary astrocytes. Honokiol restored GDNF levels following MEHP exposure by activating the ERK/c-fos signaling pathway, while the inhibitor U0126 further reduced the GDNF levels. These results suggested that DEHP exposure could interfere with the normal effects of estrogen in the brain and downregulate the ERK/c-fos signaling pathway to decrease the GDNF secretion from astrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Yan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jinmiao Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jingsi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| |
Collapse
|
26
|
Leng Y, Ren L, Niu S, Zhang T, Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol 2021; 155:112413. [PMID: 34273429 DOI: 10.1016/j.fct.2021.112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The endocrine disruptive capability of plasticizers to activate nuclear receptors has attracted great interest. This study is aimed to assess the potential glucocorticoid effects of metabolites of plasticizers. The effects of metabolites of plasticizers on the transcriptional activity of glucocorticoid receptor (GR) were investigated using reporter gene assays. All of them failed to exhibit agonistic/antagonistic effects on GR. However, a combination of dexamethasone and monobutyl phthalate (MBP) could synergistically activate GR. MBP combined with dexamethasone also enhanced GR nuclear translocation by Western blot, while mifepristone restrained GR cytoplasmic-to-nuclear translocation. MBP co-treated with dexamethasone resulted in synergistic induction of PEPCK and MKP-1 gene expression by real-time PCR and PEPCK protein level by Western blot. Furthermore, the carboxyl and ester groups of MBP have influences on the charge distribution of MBP, leading to change of electrostatic interactions between MBP and GR by calculations on electronic properties. Both hydrophobic and hydrogen bonding interactions play a crucial role in the stabilization between MBP and GR conducted by molecular docking and dynamics simulation. This work confirms that GR could remain stable upon binding to MBP. In conclusion, dexamethasone and MBP could synergistically activate GR, resulting in synergetic enhancement of subsequent GR-mediated endocrine disrupting effect.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shu Niu
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
27
|
Zhang Z, Jiang P, Liu D, Feng S, Leng Y, Zhang P, Haryono A, Li Z, Li Y. Synthesis of novel plasticizer ester end-capped oligomeric lactic acid and its plasticizing performance in poly(vinyl chloride). NEW J CHEM 2021. [DOI: 10.1039/d1nj01604k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel high efficiency plasticizer, an ester-capped oligomeric lactic acid mixture (EOL), was successfully synthesized by a two-step esterification reaction, with l-lactic acid as the main raw material.
Collapse
Affiliation(s)
- Zheming Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - PingPing Jiang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dekai Liu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Shan Feng
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Agus Haryono
- Research Center for Chemistry
- Indonesian Institute of Sciences (LIPI)
- Kawasan Puspiptek
- Serpong 15314
- Indonesia
| | - Zhenhua Li
- Shandong Kexing Chemical Co., Ltd
- Dongying 257300
- P. R. China
| | - Yuchao Li
- Shandong Kexing Chemical Co., Ltd
- Dongying 257300
- P. R. China
| |
Collapse
|