1
|
Heir E, Jensen MR, Aasli AW, Berget I, Holck AL. Reduction and Growth Inhibition of Listeria monocytogenes by Use of Anti-Listerial Nisin, P100 Phages and Buffered Dry Vinegar Fermentates in Standard and Sodium-Reduced Cold-Smoked Salmon. Foods 2023; 12:4391. [PMID: 38137194 PMCID: PMC10743221 DOI: 10.3390/foods12244391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cold-smoked salmon are ready-to-eat products that may support the growth of pathogenic Listeria monocytogenes during their long shelf-life. Consumption of such contaminated products can cause fatal listeriosis infections. Another challenge and potential risk associated with CS salmon is their high levels of sodium salt. Excess dietary intake is associated with serious health complications. In the present study, anti-listerial bacteriocin (nisin), P100 bacteriophages (Phageguard L, PGL) and fermentates (Verdad N6, P-NDV) were evaluated as commercial bio-preservation strategies for increased control of L. monocytogenes in standard (with NaCl) and sodium-reduced (NaCl partially replaced with KCl) CS salmon. Treatments of CS salmon with nisin (1 ppm) and PGL (5 × 107 pfu/cm2) separately yielded significant initial reductions in L. monocytogenes (up to 0.7 log) compared to untreated samples. Enhanced additive reductions were achieved through the combined treatments of nisin and PGL. Fermentates in the CS salmon inhibited the growth of Listeria but did not lead to its eradication. The lowest levels of L. monocytogenes during storage were observed in nisin- and PGL-treated CS salmon containing preservative fermentates and stored at 4 °C, while enhanced growth was observed during storage at an abusive temperature of 8 °C. Evaluation of industry-processed standard and sodium-replaced CS salmon confirmed significant effects with up to 1.7 log reductions in L. monocytogenes levels after 34 days of storage of PGL- and nisin-treated CS salmon-containing fermentates. No differences in total aerobic plate counts were observed between treated (PGL and nisin) or non-treated standard and sodium-reduced CS salmon at the end of storage. The microbiota was dominated by Photobacterium, but with a shift showing dominance of Lactococcus spp. and Vagococcus spp. in fermentate-containing samples. Similar and robust reductions in L. monocytogenes can be achieved in both standard and sodium-replaced CS salmon using the bio-preservation strategies of nisin, PGL and fermentates under various and relevant processing and storage conditions.
Collapse
Affiliation(s)
- Even Heir
- Nofima AS—Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway; (M.R.J.); (A.W.A.); (I.B.); (A.L.H.)
| | | | | | | | | |
Collapse
|
2
|
Tomaś N, Myszka K, Wolko Ł. Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules 2023; 28:6654. [PMID: 37764430 PMCID: PMC10536532 DOI: 10.3390/molecules28186654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sodium chloride (NaCl) is a commonly used additive in minimally processed fish-based products. The addition of NaCl to fish products and packaging in a modified atmosphere is usually efficient with regard to limiting the occurrence of the aquatic environmental pathogen Pseudomonas aeruginosa. Given the negative effects of excess NaCl in the diet, there is a growing demand to reduce NaCl in food products with safer substituents, but the knowledge of their impact on antibiotic resistant P. aeruginosa is limited. This study aimed to evaluate the physiological and transcriptome characteristics of P. aeruginosa NT06 isolated from fish and to determine the effect of selected concentrations of alternative NaCl compounds (KCl/NaL/NaC) on the P. aeruginosa NT06 virulence phenotype and genotype. In the study, among the isolated microorganisms, P. aeruginosa NT06 showed the highest antibiotic resistance (to ampicillin, ceftriaxone, nalidixic acid, and norfloxacin) and the ability to grow at 4 °C. The Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) revealed the presence of 24 and 134 gene products assigned to AMR and VF in the P. aeruginosa NT06 transcriptome, respectively. KCl, KCl/NaL and KCl/NaL/NaC inhibited pyocyanin biosynthesis, elastase activity, and protease activity from 40 to 77%. The above virulence phenotypic observations were confirmed via RT-qPCR analyses, which showed that all tested AMR and VF genes were the most downregulated due to KCl/NaL/NaC treatment. In conclusion, this study provides insight into the potential AMR and VF among foodborne P. aeruginosa and the possible impairment of those features by KCl, NaL, and NaC, which exert synergistic effects and can be used in minimally processed fish-based products.
Collapse
Affiliation(s)
- Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
3
|
Lian F, Cheng JH, Wang H, Sun DW. Effects of combined roasting and steam cooking on NaCl reduction and quality changes in marinated salmon flesh as compared with roasting and water bath cooking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Microbial Safety and Sensory Analyses of Cold-Smoked Salmon Produced with Sodium-Reduced Mineral Salts and Organic Acid Salts. Foods 2022; 11:foods11101483. [PMID: 35627053 PMCID: PMC9141012 DOI: 10.3390/foods11101483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cold-smoked (CS) salmon contains high levels of sodium salts, and excess dietary sodium intake is associated with an array of health complications. CS salmon may also represent a food safety risk due to possible presence and growth of the foodborne pathogen Listeria monocytogenes which may cause fatal human infections. Here we determine how reformulated CS salmon using commercial sodium-reduced salt replacers containing KCl (e.g., Nutek, Smart Salt, SOLO-LITE) and acetate-based preservative salts (Provian K, proviant NDV) affect sensory properties, quality, and microbial safety. Initial sensory screening of sodium-reduced CS salmon was followed by L. monocytogenes growth analyses in selected variants of reformulated CS salmon, and finally by analyses of CS salmon variants produced in an industrial smokehouse. Projective mapping indicated overall minor sensory changes in sodium-replaced samples compared with a conventional product with NaCl. Growth of L. monocytogenes was temperature-dependent (4 °C vs. 8 °C storage) with similar growth in sodium-reduced and conventional CS salmon. The addition of 0.9% of the preservative salts Provian K or Provian NDV gave up to 4 log lower L. monocytogenes counts in both sodium-reduced and conventional cold-smoked salmon after 29 days of chilled storage. No changes in pH (range 6.20−6.33), aw levels (range 0.960−0.973), or weight yield (96.8 ± 0.2%) were evident in CS salmon with salt replacers or Provian preservative salts. Analyses of CS salmon produced with selected mineral salt and preservative salt combinations in an industrial salmon smokery indicated marginal differences in sensory properties. Samples with the preservative salt Provian NDV provided L. monocytogenes growth inhibition and low-level total viable counts (<2.8 log/g) dominated by Photobacterium and Carnobacterium during storage. Production of sodium-reduced CS salmon with inhibiting salts provides a simple method to achieve a healthier food product with increased food safety.
Collapse
|
5
|
|
6
|
Arslaner A, Salik MA. Probiotic ice cream with
Malus floribunda
fruit sauce: Quality properties, mineral and volatile composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering Bayburt University 69000 Bayburt Turkey
| | - Mehmet Ali Salik
- Department of Food Engineering, Faculty of Agriculture Atatürk University 25240 Erzurum Turkey
| |
Collapse
|
7
|
Rybicka I, Silva M, Gonçalves A, Oliveira H, Marques A, Fernandes MJ, Fernandes MH, Alfaia CM, Fraqueza MJ, Nunes ML. The Development of Smoked Mackerel with Reduced Sodium Content. Foods 2022; 11:349. [PMID: 35159501 PMCID: PMC8834504 DOI: 10.3390/foods11030349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/04/2022] Open
Abstract
The World Health Organization recommends reducing salt (sodium chloride, NaCl) intake by 30% by 2025. Since smoked fish can deliver up to 4 g NaCl/100 g, the aim of this study was to develop safe, healthy and attractive smoked chub mackerel (Scomber japonicus) with a reduced NaCl content. Two brines (5% and 10%) were used with different ratios of NaCl and potassium chloride (KCl). In each brine, 0%, 25%, 50% and 75% of NaCl was replaced by KCl, resulting in 1.3, 1.1, 0.9 and 0.6 g NaCl (5% brine), and 2.6, 2.0, 1.2 and 0.8 g NaCl (10% brine) per 100 g, respectively. Similar yield, nutritional, safety, texture and colour properties were found in most formulations. The most desirable taste attributes (negligible bitterness and adequate saltiness) were obtained with a 5% brine prepared with 75% NaCl + 25% KCl. Such conditions seemed to allow for obtaining an attractive product for conscious consumers.
Collapse
Affiliation(s)
- Iga Rybicka
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (A.G.); (H.O.); (A.M.); (M.L.N.)
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Marlene Silva
- Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal;
- Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (A.G.); (H.O.); (A.M.); (M.L.N.)
- Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal;
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (A.G.); (H.O.); (A.M.); (M.L.N.)
- Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal;
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (A.G.); (H.O.); (A.M.); (M.L.N.)
- Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal;
| | - Maria José Fernandes
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.J.F.); (M.H.F.); (C.M.A.); (M.J.F.)
| | - Maria Helena Fernandes
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.J.F.); (M.H.F.); (C.M.A.); (M.J.F.)
| | - Cristina Mateus Alfaia
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.J.F.); (M.H.F.); (C.M.A.); (M.J.F.)
| | - Maria João Fraqueza
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.J.F.); (M.H.F.); (C.M.A.); (M.J.F.)
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (A.G.); (H.O.); (A.M.); (M.L.N.)
| |
Collapse
|
8
|
Influence of Partial Replacements of NaCl by KCl on Quality Characteristics and the Heterocyclic Aromatic Amine Contents of Bacon. Foods 2022; 11:foods11020143. [PMID: 35053875 PMCID: PMC8774441 DOI: 10.3390/foods11020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The influence of partial replacements of NaCl by KCl (0, 10, 20, and 30%) on the heterocyclic aromatic amine (HAAs) contents and quality characteristics of bacon were investigated. The Na+ content, moisture, aw, pH, L* value, and sensory saltiness decreased and K+ content, a* value, and sensory bitterness increased significantly with increased substituting rates of NaCl by KCl (p < 0.05). There were no significant differences between the control and KCl substitution samples for the b* value, redness, and sensory off-odor (p > 0.05). The creatine content was not affected by the different KCl-substituting rates during the marinating process (p > 0.05), but it diminished in the smoking and frying processes (p < 0.05). The increase in the KCl-substituting rates increased the total heterocyclic aromatic amine (HAA) contents in fried bacon (p < 0.05). Moreover, the nonpolar HAA content in bacon was higher than the polar HAA content (p < 0.05). In summary, the partial replacement of NaCl by KCl increased the total HAA content and led to changes in bacon quality.
Collapse
|
9
|
Effect of Salt Content Reduction on Food Processing Technology. Foods 2021; 10:foods10092237. [PMID: 34574347 PMCID: PMC8469246 DOI: 10.3390/foods10092237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Higher salt intake is associated with the risk of cardiovascular and kidney diseases, hypertension and gastric cancer. Salt intake reduction represents an effective way to improve people’s health, either by the right choice of food or by a reduction of added salt. Salt substitutes are often used and also herb homogenates are treated by high pressure technology. Salt reduction significantly influences the shelf life, texture, pH, taste, and aroma of cheese. The composition of emulsifying salts or starter cultures must be modified to enact changes in microbial diversity, protease activity and the ripening process. The texture becomes softer and aroma atypical. In bakery products, a salt reduction of only 20–30% is acceptable. Water absorption, dough development, length and intensity of kneading and stability of dough are changed. Gluten development and its viscoelastic properties are affected. The salt reduction promotes yeast growth and CO2 production. Specific volume and crust colour intensity decreased, and the crumb porosity changed. In meat products, salt provides flavour, texture, and shelf life, and water activity increases. In this case, myofibrillar proteins’ solubility, water binding activity and colour intensity changes were found. The composition of curing nitrite salt mixtures and starter cultures must be modified.
Collapse
|
10
|
Marquès M, Torres CM, García-Fernández F, Mantur-Vierendeel A, Roe M, Wilson AM, Reuver M, Nadal M, Domingo JL. FishChoice 2.0: Information on health benefits / risks and sustainability for seafood consumers. Food Chem Toxicol 2021; 155:112387. [PMID: 34252473 DOI: 10.1016/j.fct.2021.112387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Since seafood is a significant source of nutrients with known health benefits, its consumption is promoted as a healthy food choice. However, seafood can also contain potentially hazardous environmental pollutants. In the context of the ECsafeSEAFOOD FP7 project, FishChoice (www.fishchoice.eu) was developed as a communication tool to help to the consumers to take the most appropriate decisions on their seafood consumption habits. FishChoice relies on scientific information that allows calculating, on an individual basis, intakes of nutrients and pollutants derived from seafood consumption. In the framework of the EU-H2020 funded SEAFOODTOMORROW project, an optimized version of the online tool has been released. FishChoice is available in 25 EU languages with a customized list of seafood species per EU country, considering specific (national) consumption habits. The list of nutrients has been extended according to the latest EFSA recommendations, while pollutants data incorporate results from recent studies. The sustainability of seafood consumption has been also implemented, providing recommendations to help preserve the marine environment. Finally, FishChoice is suitable not only for consumers, but also health professionals, schools and academia, as well as the industrial sector and public health providers.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Carmen M Torres
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Technology Centre of Catalonia EURECAT, Sustainability area - Water, Air and Soil, Marcel·lí Domingo, 2, 43007 Tarragona, Spain
| | - Fernando García-Fernández
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | | | - Mark Roe
- EuroFIR AISBL, 40 Rue Washington, 1050 Brussels, Belgium
| | | | | | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| |
Collapse
|
11
|
Cunha SC, Siminel D, Guàrdia MD, de Alda ML, López-Garcia E, Muñoz I, Ferreira R, Eljarrat E, Fernandes JO. Effect of processing smoked salmon on contaminant contents. Food Chem Toxicol 2021; 153:112276. [PMID: 34015427 DOI: 10.1016/j.fct.2021.112276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The influence of the type of smoking process (natural/liquid; hot/cold) and salt (NaCl or KCl) on the levels of polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in smoked salmon was evaluated. One parent compound - BDE 47 - and two methoxylated forms - 2'-MeO-BDE-68 and 6-MeO-BDE-47 - were detected in all the samples. Among the 14 PAHs analysed, naphthalene was the most abundant followed by phenanthrene and fluorene. Only smoked salmon treated with NaCl presented quantifiable levels of chrysene and benzo[b]fluoranthene. Among the four smoking processes evaluated, natural smoke led to higher levels of PAHs. Risk characterization tools, such as hazard index (HI) and incremental lifetime cancer risk (ILCR), showed that the risk of both PBDEs and PAHs to human health through the consumption of smoked salmon was very low.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - D Siminel
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria D Guàrdia
- IRTA-Food Technology Programme, Finca Camps i Armet, Monells, Girona, E-17121, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ester López-Garcia
- Water, Environmental and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Israel Muñoz
- IRTA-Food Technology Programme, Finca Camps i Armet, Monells, Girona, E-17121, Spain
| | - R Ferreira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ethel Eljarrat
- Water, Environmental and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - José O Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Estévez A, Camacho C, Correia T, Barbosa V, Marques A, Lourenço H, Serrano C, Sapata M, Duarte MP, Pires C, Gonçalves A, Nunes ML, Oliveira H. Strategies to reduce sodium levels in European seabass sausages. Food Chem Toxicol 2021; 153:112262. [PMID: 34004227 DOI: 10.1016/j.fct.2021.112262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Considering the increasing demand towards "ready-to-cook" processed seafood products, recognised as being potential contributors to high sodium (Na) intake by consumers, this study aimed to assess the effect of sodium chloride (NaCl) reduction on physicochemical, microbiological and sensory properties of European seabass (Dicentrarchus labrax) sausages stored in chilling conditions during 5 weeks. Three formulations were tested in comparison with a control (100% NaCl, CTR): (i) 50% NaCl+50% ME (oleoresins microcapsules) (F1); (ii) 50% NaCl+50% KCl (F2); and (iii) only 50% NaCl (F3). The NaCl reduction mainly affected the texture and the salty taste, resulting in softer and perceived as less salty sausages after processing. However, hardness differences disappeared after 5 weeks. It seems that an antioxidant protection was obtained in sausages formulated with oleoresins microcapsules. No or low growth of psychrotrophic and mesophilic bacteria was observed (≤2.40 log CFU/g). Decreasing NaCl content and/or partially replacing it (50%) by KCl or oleoresins microcapsules seem to be suitable solutions to reduce Na (30.9-36.3%) levels, while maintaining the chilled sausages quality for 5 weeks. The partial replacement of NaCl by KCl also allows obtaining a product richer in K (997.2 mg/100 g), which ingestion may contribute for a cardiovascular protective effect.
Collapse
Affiliation(s)
- Anabel Estévez
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Tatiana Correia
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Vera Barbosa
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Helena Lourenço
- Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Carmo Serrano
- National Institute of Agriculture and Veterinary Research, Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Margarida Sapata
- National Institute of Agriculture and Veterinary Research, Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Maria Paula Duarte
- Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Carla Pires
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospecting, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| |
Collapse
|