1
|
Fatima S, Alrashoudi RH, Alqarni SS, Alshehri S, Alsaigh SM, Malik A, Siddiqi NJ, Umrani A. Vitamin C Ameliorates Potassium Dichromate-Induced Oxidative Stress and Mitochondrial Dysfunction via PGC-1α/Nrf-2/TFAM Pathway. J Biochem Mol Toxicol 2025; 39:e70061. [PMID: 39714218 DOI: 10.1002/jbt.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024]
Abstract
Exposure to potassium dichromate (K2Cr2O7) is well known for its nephrotoxic effects on humans and animals. This study investigated the protective effects of vitamin C against K2Cr2O7-induced nephrotoxicity, focusing on its impact on altered carbohydrate metabolism, mitochondrial dysfunction, and associated molecular mechanisms in the cortical and medullary kidney segments. Male Wistar rats (n = 8) were divided into four groups: Group I received saline, Group II received a single 250 mg/kg body weight (bwt) intraperitoneal (i.p.) injection of vitamin C, Group III received K2Cr2O7 (15 mg/kg bwt, i.p.), and Group IV received vitamin C 6 h before K2Cr2O7 administration. Vitamin C significantly mitigated K2Cr2O7-induced nephrotoxic effects, restoring normal renal function and histological architecture. It preserved the activities of glycolytic and gluconeogenic enzymes altered by K2Cr2O7. Additionally, vitamin C mitigated K2Cr2O7-induced mitochondrial dysfunction by maintaining tricarboxylic acid (TCA) cycle enzymes, electron transport chain proteins, mitochondrial DNA copy number, and ATP content. It also reduced oxidative stress markers and enhanced antioxidant enzyme activity. The protective mechanism of vitamin C against K2Cr2O7-induced renal damage involved upregulation of the protein expression of peroxisome proliferation-activated receptor-γ coactivator-1α (PGC-1α), which further elevated the protein expression of nuclear factor erythroid 2-related factor-2 (Nrf-2) and transcription factor A, mitochondrial (TFAM), crucial for protecting cells from oxidative stress, enhancing mitochondrial function, and promoting cellular health. Overall, this study highlights the significant protective role of vitamin C against K2Cr2O7-induced renal damage by preserving carbohydrate metabolism and mitigating mitochondrial dysfunction through the PGC-1α/Nrf-2/TFAM pathway, offering valuable insights into its protective mechanisms in nephrotoxicity.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reem H Alrashoudi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sana S Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara M Alsaigh
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nikhat J Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia
| | - Arbila Umrani
- Department of Anatomy, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Stewart R, Hope Hutson K, Nestorova GG. Therapeutic potential of astrocyte-derived extracellular vesicles in mitigating cytotoxicity and transcriptome changes in human brain endothelial cells. Neuroscience 2024; 560:181-190. [PMID: 39343159 DOI: 10.1016/j.neuroscience.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
This study investigates the therapeutic effect of astrocyte-derived extracellular vesicles (EVs) in mitigating neurotoxicity-induced transcriptome changes, mitochondrial function, and base excision repair mechanisms in human brain endothelial cells (HBECs). Neurodegenerative disorders are marked by inflammatory processes impacting the blood-brain barrier (BBB) that involve its main components- HBECs and astrocytes. Astrocytes maintain homeostasis through various mechanisms, including EV release. The effect of these EVs on mitigating neurotoxicity in HBECs has not been investigated. This study assesses the impact of astrocyte-derived EVs on global transcriptome changes, cell proliferation, cytotoxicity, oxidative DNA damage, and mitochondrial morphology in HBECs exposed to the neurotoxic reagent Na2Cr2O7. Exposure to Na2Cr2O7 for 5 and 16 h induced oxidative DNA damage, measured by an increase in genomic 8OHdG, while the EVs reduced the accumulation of the adduct. A neurotoxic environment caused a non-statistically significant upregulation of the DNA repair enzyme OGG1 while the addition of astrocyte-derived EVs was associated with the same level of expression. EVs caused increased cell proliferation and reduced cytotoxicity in Na2Cr2O7-treated cells. Mitochondrial dysfunction associated with a reduced copy number and circular morphology induced by neurotoxic exposure was not reversed by astrocyte-derived EVs. High-throughput RNA sequencing revealed that exposure to Na2Cr2O7 suppressed immune response genes. The addition of astrocyte-derived EVs resulted in the dysregulation of long noncoding RNAs impacting genes associated with brain development and angiogenesis. These findings reveal the positive impact of astrocytes-derived EVs in mitigating neurotoxicity and as potential therapeutic avenues for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruth Stewart
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA
| | - K Hope Hutson
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA
| | - Gergana G Nestorova
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA.
| |
Collapse
|
3
|
El-Shoura EAM, Abdelzaher LA, Ahmed AAN, Abdel-Wahab BA, Sharkawi SMZ, Mohamed SA, Salem EA. Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways. J Trace Elem Med Biol 2024; 85:127474. [PMID: 38788404 DOI: 10.1016/j.jtemb.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. METHODS Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. RESULTS PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. CONCLUSION Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A N Ahmed
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
4
|
Okail HA, Anjum S, Emam NM, Abdel‐Gaber R, Dkhil MA, El‐Ashram S, Ibrahim MA. Ameliorative effect of aqueous avocado seed extract against chromium-induced oxidative stress and cellular damage in rabbit kidney. Food Sci Nutr 2024; 12:5799-5814. [PMID: 39139953 PMCID: PMC11317667 DOI: 10.1002/fsn3.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024] Open
Abstract
The accumulation of chromium in renal tissues promotes the generation of reactive oxygen species (ROS), leading to oxidative stress, genomic and cellular harm, and ultimately necrotic and apoptotic cell death induced by free radicals. Hence, the utilization of antioxidant phytochemicals becomes crucial for cellular defense against oxidative damage. This study endeavors to explore the potential protective effects of an aqueous avocado seed extract (ASE) on rabbit kidneys exposed to chromium-induced damage. Fifteen adult rabbits were distributed into three groups: Group 1 was kept as the control. The second and third groups received a daily dose of K2Cr2O7 (5 mg/kg) intraperitoneally for 2 weeks. While the third group was given an oral dose of ASE (400 mg/kg). In rabbits administered with Cr (VI), kidney homogenates showed a marked increase in Malondialdehyde (MDA) (69.3 ± 4.1 nmol/g) along with a decrease in glutathione (59 ± 5.8 nmol/mg) content and the activity superoxide dismutase (SOD) (0.5 ± 0.05 U/mg protein), glutathione peroxidase (GPx) (16.7 ± 1.1 μmol/mg protein), and catalase (CAT) (73.8 ± 3.9 U/g protein) compared to the levels in control group. Also, the gene expression data for the enzymes SOD, GPx, and CAT dropped dramatically in kidney tissue following Cr (VI) injection. Additionally, Bowman's capsule and glomerulus showed degenerative alterations in the kidney's histopathology and immunohistochemistry. ASE treatment when administered along with Cr (VI) enhanced the activity and gene expression of antioxidant enzymes and improved histopathological conditions. The findings of this study unequivocally show that avocado seed extract, which is rich in phenolic derivatives, is a potent nephroprotective agent that inhibits nephrotoxicity induced by Cr (VI) in rabbits.
Collapse
Affiliation(s)
- Hanan A. Okail
- Department of Zoology, Faculty of ScienceSohag UniversitySohagEgypt
| | - Sadia Anjum
- Biology Department, Faculty of ScienceHail UniversityHailSaudi Arabia
| | - Nahed M. Emam
- Department of Zoology, Faculty of ScienceAl‐Arish UniversityArishEgypt
| | - Rewaida Abdel‐Gaber
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
- Applied Science Research CenterApplied Science Private UniversityAmmanJordan
| | - Saeed El‐Ashram
- College of Life Science and EngineeringFoshan UniversityFoshanGuangdong ProvinceChina
| | - Mona A. Ibrahim
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
| |
Collapse
|
5
|
Orhan S, Turkmen R, Demirel HH, Akosman MS, Turkmen T, Fırat F. Chlorogenic acid mitigates potassium dichromate-induced acute hepato-nephrotoxicity by attenuating the NF-κB signalling pathway. Mol Biol Rep 2024; 51:798. [PMID: 39002019 DOI: 10.1007/s11033-024-09717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Hexavalent chromium (CrVI) is known to be a potentially hepatotoxic and nephrotoxic contaminant in humans and other animals, whose toxicity is associated with oxidative stress and inflammation. The aim of this study was to evaluate the potential protective effect of chlorogenic acid (CGA), which has known anti-inflammatory and antioxidant effects, on potassium dichromate (PDC)-induced acute hepatotoxicity and nephrotoxicity in rats. METHODS AND RESULTS Thirty-six Wistar albino rats were treated with CGA (10, 20, or 40 mg/kg, intraperitoneally) and/or PDC (15 mg/kg/day, intraperitoneally) as a single dose. Serum, liver, and kidney tissues were examined biochemically, histopathologically, and immunohistochemically. Compared to the control group, a significant increase in interleukin-6 (IL-6) levels and a significant decrease in serum and renal reduced glutathione (GSH) levels, liver catalase (CAT), tumour necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) levels were observed in the PDC group. The administration of PDC led to histopathological and immunohistochemical changes in rat liver and kidney tissues. With the administration of CGA, especially at the 10 mg/kg dosage, the above-mentioned parameters approached normal levels. CONCLUSIONS CGA had antioxidant and anti-inflammatory effects that alleviated PDC-induced acute hepato- and nephrotoxicity.
Collapse
Affiliation(s)
- Semiha Orhan
- Intensive Care Unit Afyonkarahisar, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ruhi Turkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | - Hasan Huseyin Demirel
- Department of Laboratory Research and Veterinary Medicine, Afyon Kocatepe University, Bayat Vocational School, Afyonkarahisar, Turkey
| | - Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Turkan Turkmen
- Faculty of Medical Microbiology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Fatma Fırat
- Department of Histology and Embryology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Jing B, Wei M, Chen H, Xie W, An S, Li J, Wang S, Zhou X. Pharmacodynamic Evaluation and Mechanism of Ginseng Polysaccharide against Nephrotoxicity Induced by Hexavalent Chromium. Nutrients 2024; 16:1416. [PMID: 38794654 PMCID: PMC11124142 DOI: 10.3390/nu16101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hexavalent chromium is a common pollutant in the environment. Long-term exposure to hexavalent chromium can cause damage to multiple organs. The kidney is one of the main organs that metabolizes heavy metal toxicity, and the accumulation of Cr (VI) in the body can lead to serious damage to kidney function. Studies have shown that ginseng polysaccharides have the function of preventing cisplatin-induced endoplasmic reticulum stress, inflammatory response, and apoptosis in renal cells, but their efficacy and mechanisms against hexavalent chromium-induced nephrotoxicity need to be explored. The aim of this study was to explore the efficacy and mechanism of ginseng polysaccharide against hexavalent chromium-induced nephrotoxicity. The results of pharmacodynamic experiments showed that ginseng polysaccharide could significantly reduce the kidney index, urea nitrogen (BUN), and serum creatinine (Cre) values of K2Cr2O7-treated mice. The results of mechanistic experiments showed that ginseng polysaccharides could alleviate oxidative stress, apoptosis, and biofilm damage in renal tissues caused by Cr (VI). Lipidomic correlation analysis showed that ginseng polysaccharides could protect the organism by regulating the expression of differential lipids. This study opens new avenues for the development of alternative strategies for the prevention of kidney injury caused by hexavalent chromium.
Collapse
Affiliation(s)
- Baitong Jing
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Mengyao Wei
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Silan An
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Jiawen Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Shenglin Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| |
Collapse
|
7
|
Dagar N, Habshi T, Shelke V, Jadhav HR, Gaikwad AB. Renoprotective effect of esculetin against ischemic acute kidney injury-diabetic comorbidity. Free Radic Res 2024; 58:69-87. [PMID: 38323807 DOI: 10.1080/10715762.2024.2313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Mitophagy maintains cellular homeostasis by eliminating damaged mitochondria. Accumulated damaged mitochondria can lead to oxidative stress and cell death. Induction of the PINK1/Parkin-mediated mitophagy is reported to be renoprotective in acute kidney injury (AKI). Esculetin, a naturally available coumarin, has shown protective action against diabetic complications. However, its effect on AKI-diabetes comorbidity has not been explored yet. Therefore, we aimed to investigate the renoprotective effect of esculetin against AKI under diabetic conditions via regulating PINK1/Parkin-mediated mitophagy. For this, type 1 diabetic male Wistar rats were treated with two doses of esculetin (50 and 100 mg/kg/day orally) for five days followed by AKI induction by bilateral ischemic-reperfusion injury (IRI). NRK-52E cells grown in high glucose were exposed to sodium azide (10 mM) for induction of hypoxia/reperfusion injury (HRI) in-vitro. Esculetin (50 µM) treatment for 24 h was given to the cells before HRI. The in-vitro samples were utilized for cell viability and ΔΨm assay, immunoblotting, and immunofluorescence. Rats' plasma, urine, and kidney samples were collected for biochemical analysis, histopathology, and western blotting. Our results showed a significant decrease in kidney injury-specific markers and increased expression of mitophagy markers (PINK1 and Parkin) with esculetin treatment. Moreover, esculetin prevented the HRI and hyperglycemia-induced decrease in ΔΨm and autophagosome marker. Also, esculetin therapy reduced oxidative stress via increased Nrf2 and Keap1 expression. Esculetin attenuated AKI under diabetic condition by preventing mitochondrial dysfunction via inducing PINK1/Parkin-mediated mitophagy, suggesting its potential as an effective therapy for preventing AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Tahib Habshi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | | |
Collapse
|
8
|
El-Fadaly AA, Younis IY, Abdelhameed MF, Ahmed YH, Ragab TIM, El Gendy AENG, Farag MA, Elshamy AI, Elgamal AM. Protective Action Mechanisms of Launaea mucronata Extract and Its Nano-Formulation against Nephrotoxicity in Rats as Revealed via Biochemical, Histopathological, and UPLC-QTOF-MS/MS Analyses. Metabolites 2023; 13:786. [PMID: 37512493 PMCID: PMC10384424 DOI: 10.3390/metabo13070786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Plants belonging to the Launaea genus have been extensively utilized ethnopharmacologically to treat a variety of diseases, including kidney disorders. Chromium is a common industrial pollutant that has been linked to kidney disease. The present work was designed for the investigation of the UPLC-QTOF-MS/MS metabolite profile of the L. mucronate ethanolic extract (LME), along with assessing the mechanistic protective actions of LME and its nano-silver formulation (LMNS) against K2Cr2O7-induced nephrotoxicity in rats. LMNE was successfully biosynthesized and confirmed using UV-Visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM). The nephroprotective effects of LME and LMNE was assessed in rats exposed to potassium dichromate (K2Cr2O7, 15 mg/kg BW) to cause nephrotoxicity. LME and LMNS, separately, were administered twice daily for 14 days at doses of 200 and 400 mg/kg BW, respectively. The kidney function, catalase, UGT, Nrf2, PGE2, Cox-2, ERK, and MAPK levels in renal tissue were all assessed, along with histopathological examinations for exploring their ameliorative effects. Forty-five bioactive metabolites were annotated belonging to flavonoids, phenolic and organic acids, coumarins, and fatty acids. Metabolite profiling revealed that chlorogenic acid, apigenin, and luteolin glycosides were the main phenolics, with chlorogenic acid-O-hexoside reported for the first time in LME. The findings revealed that the serum kidney function indicators (urea and creatinine) were markedly elevated in K2Cr2O7-intoxicated rats. Furthermore, inflammatory indicators (COX-2 and PGE2), MAPK, and ERK were all markedly elevated in kidney tissue, whereas catalase, UGT, and Nrf2 levels were downregulated. Histological and immunohistochemical assays confirmed the toxic effects of K2Cr2O7 in the kidneys. In contrast, the administration of LME and LMNS prior to K2Cr2O7 considerably improved the architecture of the renal tissue, while also restoring levels of most biochemical markers. Functioning via the inhibition of the MAPK/ERK pathway, activating Nrf2, and modifying the antioxidant and metabolic enzymes, LME and LMNS exerted their nephroprotective effects against K2Cr2O7-induced toxicity.
Collapse
Affiliation(s)
- Amany A El-Fadaly
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abd El-Nasser G El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Chemistry of Natural and Microbial Products Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Dagar N, Kale A, Jadhav HR, Gaikwad AB. Nutraceuticals and network pharmacology approach for acute kidney injury: A review from the drug discovery aspect. Fitoterapia 2023; 168:105563. [PMID: 37295755 DOI: 10.1016/j.fitote.2023.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Acute kidney injury (AKI) has become a global health issue, with ~12 million reports yearly, resulting in a persistent increase in morbidity and mortality rates. AKI pathophysiology is multifactorial involving oxidative stress, mitochondrial dysfunction, epigenetic modifications, inflammation, and eventually, cell death. Hence, therapies able to target multiple pathomechanisms can aid in AKI management. To change the drug discovery framework from "one drug, one target" to "multicomponent, multitarget," network pharmacology is evolving as a next-generation research approach. Researchers have used the network pharmacology approach to predict the role of nutraceuticals against different ailments including AKI. Nutraceuticals (herbal products, isolated nutrients, and dietary supplements) belong to the pioneering category of natural products and have shown protective action against AKI. Nutraceuticals have recently drawn attention because of their ability to provide physiological benefits with less toxic effects. This review emphasizes the nutraceuticals that exhibited renoprotection against AKI and can be used either as monotherapy or adjuvant with conventional therapies to boost their effectiveness and lessen the adverse effects. Additionally, the study sheds light on the application of network pharmacology as a cost-effective and time-saving approach for the therapeutic target prediction of nutraceuticals against AKI.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ajinath Kale
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
10
|
Orozco-Ibarra M, Aparicio-Trejo OE, Jiménez-Uribe AP, Hernández-Cruz EY, Aranda-Rivera AK, Amador-Martínez I, Fernández-Valverde F, Pedraza-Chaverri J. Assessment of Kidney Mitochondrial Function by High-Resolution Respirometry, Transmission Electron Microscopy, and Histological Techniques. Methods Mol Biol 2023; 2664:283-308. [PMID: 37423995 DOI: 10.1007/978-1-0716-3179-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Proper kidney function depends highly on mitochondria homeostasis. This organelle is the primary source of ATP production in the kidney and regulates other cellular processes such as redox and calcium homeostasis. Although the mitochondria's primary recognized function is cellular energy production, through the function of the Krebs cycle, electron transport system (ETS), as well as oxygen and electrochemical gradient consumption, this function is interconnected with multiple signaling and metabolic pathways, making bioenergetics a central hub in renal metabolism. Furthermore, mitochondrial biogenesis, dynamics, and mass are also strongly related to bioenergetics. This central role is not surprising given that mitochondrial impairment, including functional and structural alterations, has been recently reported in several kidney diseases. Here, we describe assessment of mitochondrial mass, structure, and bioenergetics in kidney tissue and renal-derived cell lines. These methods allow investigation of mitochondrial alterations in kidney tissue and renal cells under different experimental conditions.
Collapse
Affiliation(s)
- Marisol Orozco-Ibarra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Isabel Amador-Martínez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
11
|
Cuevas-Magaña MY, Vega-García CC, León-Contreras JC, Hernández-Pando R, Zazueta C, García-Niño WR. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria. Toxicol Appl Pharmacol 2022; 454:116242. [PMID: 36108929 DOI: 10.1016/j.taap.2022.116242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Nephrotoxicity is an important adverse effect of oxidative stress induced by hexavalent chromium [Cr(VI)]. The effect of ellagic acid, a dietary polyphenolic compound with potent antioxidant activity, was investigated in Cr(VI)-induced kidney injury. Six groups of male Wistar rats were treated intragastrically with vehicle or ellagic acid (15 and 30 mg/kg) for 10 days. On day 10, rats received saline or Cr(VI) (K2Cr2O7 15 mg/kg) subcutaneously. Cr(VI) significantly increased kidney weight, affected kidney function assessed by biomarkers in blood and urine (protein, creatinine and urea nitrogen), caused histological changes (tubular injury and glomerular capillary tuft damage), increased markers of oxidative stress and reduced the activity of antioxidant enzymes. In addition, Cr(VI) altered mitochondrial ultrastructure, impaired mitochondrial respiration, increased lipid peroxidation, and inhibited the function of mitochondrial enzymes. Pretreatment with ellagic acid (30 mg/kg) attenuated all the aforementioned alterations. Furthermore, we explored whether ellagic acid might regulate the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 3 (RIPK3) pathway, reducing Cr(VI)-induced tubular necrosis. Cr(VI) upregulated both TNF-α and RIPK3, but ellagic acid only decreased TNF-α levels, having no effect on RIPK3 content. Therefore, understanding the mechanisms through which Cr(VI) promotes necroptosis is crucial for future studies, in order to design strategies to mitigate kidney damage. In conclusion, ellagic acid attenuated Cr(VI)-induced renal alterations by preventing oxidative stress, supporting enzymatic activities, suppressing TNF-α, and preserving mitochondrial ultrastructure and function, most likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Claudia Cecilia Vega-García
- Department of Biology of Reproduction, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
12
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
14
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
15
|
Chakraborty R, Renu K, Eladl MA, El-Sherbiny M, Elsherbini DMA, Mirza AK, Vellingiri B, Iyer M, Dey A, Valsala Gopalakrishnan A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother 2022; 151:113119. [PMID: 35613529 DOI: 10.1016/j.biopha.2022.113119] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heavy metal Chromium (Cr), can adversely affect humans and their health if accumulated in organs of the body, such as the lungs, liver, and kidneys. Cr (VI) is highly toxic and has a higher solubility in water than Cr (III). One of the most common routes for Cr exposure is through inhalation and is associated with liver, lung, kidney damage, widespread dermatitis, GI tract damage, human lung cancer, cardiomyopathies, and cardiovascular disease. The increase in ROS production has been attributed to most of the damage caused by Cr toxicity. Cr-induced ROS-mediated oxidative stress has been seen to cause a redox imbalance affecting the antioxidant system balance in the body. The Nrf2 pathway dysregulation has been implicated in the same. Deregulation of histone acetylation and methylation has been observed, together with gene methylation in genes such as p16, MGMT, APC, hMLH1, and also miR-143 repression. Several ultra-structural changes have been observed following Cr (VI)-toxicity, including rough ER dilation, alteration in the mitochondrial membrane and nuclear membrane, pycnotic nuclei formation, and cytoplasm vacuolization. A significant change was observed in the metabolism of lipid, glucose, and the metabolism of protein after exposure to Cr. Cr-toxicity also leads to immune system dysregulations with changes seen in the expression of IL-8, IL-4, IgM, lymphocytes, and leukocytes among others. P53, as well as pro-and anti-apoptotic proteins, are involved in apoptosis. These Cr-induced damages can be alleviated via agents that restore antioxidant balance, regulate Nrf-2 levels, or increase anti-apoptotic proteins while decreasing pro-apoptotic proteins.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arshi Khalid Mirza
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
16
|
Autophagy and mitochondrial dynamics contribute to the protective effect of diosgenin against 3-MCPD induced kidney injury. Chem Biol Interact 2022; 355:109850. [PMID: 35149085 DOI: 10.1016/j.cbi.2022.109850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022]
Abstract
3-Chloro-1, 2-propanediol (3-MCPD) is a widespread food contaminant with kidney as the main target organ. The exploration of ingredients as intervention strategy towards 3-MCPD induced nephrotoxicity is needed. Diosgenin (DIO) is a steroidal saponin presented in several plants and foods. Here we assessed whether DIO attenuates nephrotoxicity induced by 3-MCPD using Human embryonic kidney 293 (HEK293) cells and Sprague-Dawley (SD) rats. The results showed that DIO (2, 6, 8 μM) increased cell viability and exerted inhibitory effect on caspase 3 and caspase 9 activities. Histological examination of rats showed that 15 mg/kg bw DIO ameliorated renal pathological changes caused by 3-MCPD (30 mg/kg bw). DIO also induced autophagy and the blockade of autophagy with 3-Methyladenine (3-MA) aggravated mitochondrial apoptosis induced by 3-MCPD in HEK293 cells. Moreover, treatment with DIO caused an increase in p-LKB1/LKB1 and p-AMPK/AMPK expressions and a decrease in p-mTOR/mTOR, p-ULK1(Ser757), p-P70S6K and p-4EBP1 expressions. Additionally, DIO improved mitochondrial dynamics mainly through inhibiting the relocation of DRP1 on mitochondria and enhancing MFN1 and MFN2 expressions. In conclusion, our study demonstrated for the first time that DIO protected against kidney injury induced by 3-MCPD through the induction of autophagy via LKB1-AMPK-mTOR pathway and the improvement of mitochondrial fission and fusion.
Collapse
|
17
|
Lan J, Tang L, Wu S, Huang R, Zhong G, Jiang X, Tang Z, Hu L. Curcumin alleviates arsenic-induced injury in duck skeletal muscle via regulating the PINK1/Parkin pathway and protecting mitochondrial function. Toxicol Appl Pharmacol 2022; 434:115820. [PMID: 34896432 DOI: 10.1016/j.taap.2021.115820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Arsenic is a well-known environmental pollutant due to its toxicity, which can do harm to animals and human. Curcumin is a polyphenolic compound derived from turmeric, commonly accepted to have antioxidant properties. However, whether curcumin can ameliorate the damage caused by arsenic trioxide (ATO) in duck skeletal muscle remains largely unknown. Therefore, the present study aims to investigate the potential molecular mechanism of curcumin against ATO-induced skeletal muscle injury. The results showed that treating with curcumin could attenuate body weight loss induced by ATO and reduced arsenic content accumulation in the skeletal muscle of duck. Curcumin was also able to alleviated the oxidative stress triggered by ATO, which was manifested by the increase of T-AOC and SOD, and MDA decrease. Moreover, we observed that curcumin could ease mitochondrial damage and vacuolate degeneration of nucleus. Our further investigation found that ATO disrupted normal mitochondrial fission/fusion (Drp1, OPA1, Mfn1/2) and restrained mitochondrial biogenesis (PGC-1α, Nrf1/2, TFAM), while curcumin could promote mitochondrial fusion and activated PGC-1α pathway. Furthermore, curcumin was found that it could not only reduce the mRNA and protein levels of mitophagy (PINK1, Parkin, LC3, p62) and pro-apoptotic genes (p53, Bax, Caspase-3, Cytc), but also increased the levels of anti-apoptotic genes (Bcl-2). In conclusion, curcumin was able to alleviate ATO-induced skeletal muscle damage by improving mitophagy and preserving mitochondrial function, which can serve as a novel strategy to take precautions against ATO toxicity.
Collapse
Affiliation(s)
- Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|