1
|
Liu TT, Zeng KW. Recent advances in target identification technology of natural products. Pharmacol Ther 2025; 269:108833. [PMID: 40015520 DOI: 10.1016/j.pharmthera.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Natural products, characterized by their structural diversity, broad spectrum of biological activities, and safe yet effective therapeutic potential, have become pivotal resources in drug research and development. However, the target proteins of many natural products remain unidentified, a significant challenge that impedes their development into viable drug candidates. Therefore, the target identification is crucial for elucidating the pharmacological mechanisms of natural products and facilitating their therapeutic applications. In this review, we present a comprehensive overview of recent advancements in methodologies for target identification of natural products. Additionally, we predict future developments in new technologies for target discovery. Collectively, this review establishes a methodological framework for uncovering the cellular targets and pharmacological mechanisms of natural products, thereby advancing the development of innovative natural product-based drugs.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Sun Y, Liu T, Zhao X. Progress in the Study of Chemical Structure and Pharmacological Effects of Total Paeony Glycosides Isolated from Radix Paeoniae Rubra. Curr Issues Mol Biol 2024; 46:10065-10086. [PMID: 39329953 PMCID: PMC11430570 DOI: 10.3390/cimb46090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Radix paeoniae rubra, known as red peony root, is derived from the dried roots of Paeonia lactiflora pall or Paeonia veitchii lynch from the Ranunculaceae family. It is recognized for its properties of clearing heat, cooling blood, dispelling stasis, and alleviating pain, making it one of the most commonly used herbs in traditional Chinese medicine. Total paeony glycosides (TPGs) are identified as the principal active constituents of Radix paeoniae rubra, comprising monoterpenoid compounds with a cage-like pinane structure and monoterpenoids with a lactone structure. This review summarizes the chemical constituents and pharmacological effects of TPGs, with the aim of elucidating their relationships.
Collapse
Affiliation(s)
- Yumu Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Taiyu Liu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
4
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
5
|
Huang S, Ziros PG, Chartoumpekis DV, Psarias G, Duntas L, Zuo X, Li X, Ding Z, Sykiotis GP. Traditional Chinese Medicine for Hashimoto's Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants (Basel) 2024; 13:868. [PMID: 39061936 PMCID: PMC11274136 DOI: 10.3390/antiox13070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hashimoto's thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients' health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still incompletely understood, oxidative stress is believed to play an important role. Hypothyroidism related to later stages of HT can be treated with levothyroxine substitution therapy; various approaches such as selenium supplementation and iodine-restricted diets have been proposed as disease-modifying treatments for earlier stages, and even thyroidectomy has been suggested for refractory cases of painful HT. Nevertheless, many patients still report suboptimal HRQoL, highlighting an unmet medical need in this area. The concepts and approaches of traditional Chinese medicine (TCM) in treating HT are not broadly known in the West. Here, we provide an overview of TCM for HT, including combinations of TCM with selenium. We encompass evidence from clinical trials and other studies related to complex TCM prescriptions, single herbs used in TCM, and phytochemicals; wherever possible, we delineate the probable underlying molecular mechanisms. The findings show that the main active components of TCM for HT have commonly known or presumed antioxidant and anti-inflammatory activities, which may account for their potential utility in HT. Further exploring the practices of TCM for HT and combining them with evidence- and mechanism-based approaches according to Western standards may help to identify new strategies to alter the clinical course of the disease and/or to treat patients' symptoms better and improve their HRQoL.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China;
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Georgios Psarias
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Leonidas Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenideion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Xinhe Zuo
- Thyroid Disease Diagnosis and Treatment Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China;
| | - Xinyi Li
- Department of Traditional Chinese Medicine and Rehabilitation, Beijing Health Vocational College, Beijing 101101, China;
| | - Zhiguo Ding
- Department of Thyropathy, Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727100, China
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| |
Collapse
|
6
|
Chen Y, Li H, Zhang XL, Wang W, Rashed MMA, Duan H, Li LL, Zhai KF. Exploring the anti-skin inflammation substances and mechanism of Paeonia lactiflora Pall. Flower via network pharmacology-HPLC integration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155565. [PMID: 38579646 DOI: 10.1016/j.phymed.2024.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.
Collapse
Affiliation(s)
- Yuan Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Han Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Xin-Lian Zhang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Hong Duan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China.
| | - Li-Li Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Ke-Feng Zhai
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China.
| |
Collapse
|
7
|
He S, Chen H, Yi Y, Hou D, Fu X, Xie J, Zhang J, Liu C, Ru X, Wang J. A novel bioinformatics strategy to uncover the active ingredients and molecular mechanisms of Bai Shao in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1406188. [PMID: 39005933 PMCID: PMC11239447 DOI: 10.3389/fphar.2024.1406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Hantao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Chongbin Liu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
8
|
Zhang CW, Zou YF, Zou Y, JiZe XP, Li CY, Fu YP, Huang C, Li LX, Yin ZQ, Wu FM, Rise F, Inngjerdingen KT, Zhang SQ, Zhao XH, Song X, Zhou X, Ye G, Tian ML. Ultrasonic-assisted extraction of polysaccharide from Paeoniae Radix alba: Extraction optimization, structural characterization and antioxidant mechanism in vitro. Int J Biol Macromol 2024; 268:131816. [PMID: 38677682 DOI: 10.1016/j.ijbiomac.2024.131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.
Collapse
Affiliation(s)
- Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Yun Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Sha-Qiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Meng L, Chen Y, Zheng Z, Wang L, Xu Y, Li X, Xiao Z, Tang Z, Wang Z. Ultrasound-Assisted Extraction of Paeonol from Moutan Cortex: Purification and Component Identification of Extract. Molecules 2024; 29:622. [PMID: 38338367 PMCID: PMC10856641 DOI: 10.3390/molecules29030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medicinal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction process, which is based on single-factor experiments and response surface methodology (RSM). Subsequently, eight macroporous resins of different properties were used to purify paeonol from MC. The main components of the purified extract were identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS). The results indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concentration 62%, ultrasonic time 31 min, ultrasonic temperature 36 °C, ultrasonic power 420 W. Under these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40% (purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic compounds and two principal monoterpene glycosides were characterized by comparison with reference compounds. These findings will make a contribution to the isolation and utilization of the active components from MC.
Collapse
Affiliation(s)
- Ling Meng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yan Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Lei Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yahui Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiujun Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhijian Xiao
- Shandong Wake Fresh Food Technology Co., Ltd., Taian 271400, China
| | - Zheng Tang
- Shandong Wake Fresh Food Technology Co., Ltd., Taian 271400, China
| | - Zhaosheng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|