1
|
Zhang B, Ren L, Wang H, Xu D, Zeng X, Li F. Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme Microb Technol 2020; 140:109641. [PMID: 32912693 DOI: 10.1016/j.enzmictec.2020.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. In this study, the STL1 homolog KmSTL1, encoding a putative glycerol transporter contributing to cell osmo-tolerance, was identified in Kluyveromyces marxianus NBRC1777. We constructed the KmSTL1, KmGPD1, and KmFPS1 single-deletion mutants and the KmSTL1/KmGPD1 and KmSTL1/KmFPS1 double-deletion mutants of K. marxianus. Deletion of KmSTL1 or KmGPD1 resulted in K. marxianus cell sensitization to hyperosmotic stress, whereas deletion of KmFPS1 improved stress tolerance. The expression of KmSTL1 was osmotically induced, whereas that of KmFPS1 was osmotically inhibited. The expression of KmGPD1 was constitutive and continuous in the ΔKmSTL1 mutant strain but inhibited in the ΔKmFPS1 mutant strain due to feedback suppression by glycerol. In summary, our findings indicated that K. marxianus would increase glycerol synthesis by increasing GPD1 expression, increase glycerol import from the extracellular environment by increasing STL1 expression, and reduce glycerol efflux by reducing FPS1 expression under hyperosmotic stress.
Collapse
Affiliation(s)
- Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Haonan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
2
|
Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 2018; 281:1-10. [PMID: 29885339 DOI: 10.1016/j.jbiotec.2018.06.305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland.
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Falana
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Monika Janowicz
- Faculty of Food Science, Department of Food Engineering and Process Management, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| |
Collapse
|
3
|
Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:655-662. [PMID: 29704025 DOI: 10.1007/s00249-018-1302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
We applied a Raman spectroscopy approach to investigate the effect of a cryoprotectant on the redox state of cytochromes on freezing yeast cells. The redox activity of cytochromes was studied using time-resolved photobleaching of the resonance Raman lines. It is found that ice formation causes a drastic change in the redox state of cytochromes in cells frozen without cryoprotectant, whereas in the presence of glycerol the effects of ice formation are more gradual. The photobleaching rate of cells frozen in glycerol solution shows a gradual slowing with temperature decrease and an abrupt slowdown below - 48 °C. This abrupt decrease was interpreted as originating from changes in protein conformational dynamics. Our findings provide important new insights into the transition from active to inactive cytochrome states as cells undergo freezing in the presence and absence of cryoprotectant.
Collapse
|
4
|
Klein M, Swinnen S, Thevelein JM, Nevoigt E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 2017; 19:878-893. [DOI: 10.1111/1462-2920.13617] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Mathias Klein
- Department of Life Sciences and Chemistry; Jacobs University Bremen gGmbH; Campus Ring 1 Bremen 28759 Germany
| | - Steve Swinnen
- GlobalYeast NV; Kasteelpark Arenberg 31, Leuven-Heverlee 3001 Belgium
| | - Johan M. Thevelein
- GlobalYeast NV; Kasteelpark Arenberg 31, Leuven-Heverlee 3001 Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology, KU Leuven; Leuven Belgium
- Department of Molecular Microbiology; VIB; Kasteelpark Arenberg 31, 3001 Heverlee-Leuven Flanders Belgium
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry; Jacobs University Bremen gGmbH; Campus Ring 1 Bremen 28759 Germany
| |
Collapse
|
5
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
6
|
Dušková M, Ferreira C, Lucas C, Sychrová H. Two glycerol uptake systems contribute to the high osmotolerance ofZygosaccharomyces rouxii. Mol Microbiol 2015; 97:541-59. [DOI: 10.1111/mmi.13048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Michala Dušková
- Department of Membrane Transport; Institute of Physiology The Czech Academy of Sciences; Prague Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Hana Sychrová
- Department of Membrane Transport; Institute of Physiology The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
7
|
Ottaviano D, Montanari A, De Angelis L, Santomartino R, Visca A, Brambilla L, Rinaldi T, Bello C, Reverberi M, Bianchi MM. Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis. FEMS Yeast Res 2015; 15:fov028. [PMID: 26019145 DOI: 10.1093/femsyr/fov028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 01/03/2023] Open
Abstract
In the yeast Kluyveromyces lactis, the inactivation of structural or regulatory glycolytic and fermentative genes generates obligate respiratory mutants which can be characterized by sensitivity to the mitochondrial drug antimycin A on glucose medium (Rag(-) phenotype). Rag(-) mutations can occasionally be generated by the inactivation of genes not evidently related to glycolysis or fermentation. One such gene is the hypoxic regulatory gene KlMGA2. In this work, we report a study of the many defects, in addition to the Rag(-) phenotype, generated by KlMGA2 deletion. We analyzed the fermentative and respiratory metabolism, mitochondrial functioning and morphology in the Klmga2Δ strain. We also examined alterations in the regulation of the expression of lipid biosynthetic genes, in particular fatty acids, ergosterol and cardiolipin, under hypoxic and cold stress and the phenotypic suppression by unsaturated fatty acids of the deleted strain. Results indicate that, despite the fact that the deleted mutant strain had a typical glycolytic/fermentative phenotype and KlMGA2 is a hypoxic regulatory gene, the deletion of this gene generated defects linked to mitochondrial functions suggesting new roles of this protein in the general regulation and cellular fitness of K. lactis. Supplementation of unsaturated fatty acids suppressed or modified these defects suggesting that KlMga2 modulates membrane functioning or membrane-associated functions, both cytoplasmic and mitochondrial.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo De Angelis
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Luca Brambilla
- Department of Biotechnology and Biosciences, Bicocca University of Milan, p.zza Della Scienza 2, 20126 Milan, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy Pasteur Institut Cenci-Bolognetti Foundation, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristiano Bello
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michele M Bianchi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Duskova M, Borovikova D, Herynkova P, Rapoport A, Sychrova H. The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 2014; 362:1-8. [PMID: 25673653 DOI: 10.1093/femsle/fnu041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small and uncharged glycerol is an important molecule for yeast metabolism and osmoadaptation. Using a series of S. cerevisiae BY4741-derived mutants lacking genes encoding a glycerol exporter (Fps1p) and/or importer (Stl1p) and/or the last kinase of the HOG pathway (Hog1p), we studied their phenotypes and various physiological characteristics with the aim of finding new roles for glycerol transporters. Though the triple mutant hog1Δ stl1Δ fps1Δ was viable, it was highly sensitive to various stresses. Our results showed that the function of both Stl1p and Fps1p transporters contributes to the cell ability to survive during the transfer into the state of anhydrobiosis, and that the deletion of FPS1 decreases the cell's tolerance of hyperosmotic stress. The deletion of STL1 results in a slight increase in cell size and in a substantial increase in intracellular pH. Taken together, our results suggest that the fluxes of glycerol in both directions across the plasma membrane exist in yeast cells simultaneously, and the export or import predominates according to the actual specific conditions.
Collapse
Affiliation(s)
- Michala Duskova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Diana Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, LV-1586 Riga, Latvia
| | - Pavla Herynkova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, LV-1586 Riga, Latvia
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
9
|
Swinnen S, Klein M, Carrillo M, McInnes J, Nguyen HTT, Nevoigt E. Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:157. [PMID: 24209984 PMCID: PMC3835864 DOI: 10.1186/1754-6834-6-157] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/29/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Glycerol has attracted attention as a carbon source for microbial production processes due to the large amounts of crude glycerol waste resulting from biodiesel production. The current knowledge about the genetics and physiology of glycerol uptake and catabolism in the versatile industrial biotechnology production host Saccharomyces cerevisiae has been mainly based on auxotrophic laboratory strains, and carried out in the presence of growth-supporting supplements such as amino acids and nucleic bases. The latter may have resulted in ambiguous conclusions concerning glycerol growth in this species. The purpose of this study was to re-evaluate growth of S. cerevisiae in synthetic glycerol medium without the addition of supplements. RESULTS Initial experiments showed that prototrophic versions of the laboratory strains CEN.PK, W303, and S288c did not exhibit any growth in synthetic glycerol medium without supporting supplements. However, a screening of 52 S. cerevisiae isolates for growth in the same medium revealed a high intraspecies diversity. Within this group significant variation with respect to the lag phase and maximum specific growth rate was observed. A haploid segregant of one good glycerol grower (CBS 6412-13A) was selected for detailed analysis. Single deletions of the genes encoding for the glycerol/H+ symporter (STL1), the glycerol kinase (GUT1), and the mitochondrial FAD+-dependent glycerol 3-phosphate dehydrogenase (GUT2) abolished glycerol growth in this strain, implying that it uses the same glycerol utilization pathway as previously identified in auxotrophic laboratory strains. Segregant analysis of a cross between CBS 6412-13A and CEN.PK113-1A revealed that the glycerol growth phenotype is a quantitative trait. Genetic linkage and reciprocal hemizygosity analysis demonstrated that GUT1CBS 6412-13A is one of the multiple genetic loci contributing to the glycerol growth phenotype. CONCLUSION The S. cerevisiae intraspecies diversity with regard to glycerol growth is a valuable starting point to identify the genetic and molecular basis of this phenotype. This knowledge can be applied for further rational strain improvement with the goal of using glycerol as a carbon source in industrial biotechnology processes based on S. cerevisiae as a production organism.
Collapse
Affiliation(s)
- Steve Swinnen
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Martina Carrillo
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Joseph McInnes
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Huyen Thi Thanh Nguyen
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
10
|
Liu X, Mortensen UH, Workman M. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus. Microb Cell Fact 2013; 12:27. [PMID: 23514356 PMCID: PMC3610204 DOI: 10.1186/1475-2859-12-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. RESULTS Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. CONCLUSIONS P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Systems Biology, Building 223, Søltofts Plads, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | | |
Collapse
|
11
|
Biotechnological utilization of biodiesel-derived glycerol for the production of ribonucleotides and microbial biomass. Appl Biochem Biotechnol 2012; 167:2054-67. [PMID: 22653682 DOI: 10.1007/s12010-012-9749-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L(-1) h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L(-1) resulted in high biomass production. The highest biomass concentration (21 g L(-1)), yield (0.45 g g(-1)) and productivity (0.31 g L(-1) h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
Collapse
|
12
|
van der Nest MA, Steenkamp ET, Slippers B, Mongae A, van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Gene expression associated with vegetative incompatibility in Amylostereum areolatum. Fungal Genet Biol 2011; 48:1034-43. [PMID: 21889597 DOI: 10.1016/j.fgb.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chum WWY, Kwan HS, Au CH, Kwok ISW, Fung YW. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE. Fungal Genet Biol 2011; 48:359-69. [PMID: 21281728 DOI: 10.1016/j.fgb.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/29/2010] [Accepted: 01/23/2011] [Indexed: 11/25/2022]
Abstract
This study investigated the molecular mechanism of the fruiting body development and sporulation in the cap of the Shiitake mushroom, Lentinula edodes. Although there has been much research into L. edodes, there remain significant gaps in our knowledge of how the species reproduces. In order to provide molecular resources and to understand the molecular mechanism of the fruiting body development in basidiomycete comprehensively, we searched for the genes which are important for fruiting body development and sporulation in the cap of mature fruiting body of L. edodes by using the whole-genome approach. Massive cDNA pyrosequencing was used to generate >7000 sequence contigs from mature fruiting bodies. We used Gene Ontology to categorize the contigs to form the catalog of genes expressed at the stage of the mature fruiting body. We also assigned the contigs into the KEGG pathways. The catalog of expressed genes indicates that the mature fruiting bodies (1) sense the external environment, (2) transmit signals to express genes through regulatory systems, (3) produce many proteins, (4) degrade unwanted proteins, (5) perform extensive biosynthesis, (6) generate energy, (7) regulate the internal environment, (8) transport molecules, (9) carry out cell division, and (10) differentiate and develop. After establishing the catalog of expressed genes in L. edodes, we used the LongSAGE approach to analyze the expression levels of genes found in mature fruiting bodies before (FB) and after (FBS) spores appeared. Gene-expression patterns according to GO categories were similar in these two stages. We have also successfully identified genes differentially expressed in FB and FBS. Fold-changes in expression levels of selected genes based on LongSAGE tag counts were similar to those obtained by real-time RT-PCR. The consistency between real-time RT-PCR and LongSAGE results indicates reliability of the LongSAGE results. Overall, this study provides valuable information on the fruiting processes of L. edodes through a combination of massive cDNA pyrosequencing and LongSAGE sequencing, and the knowledge thereby obtained may provide insight into the improvement of the yield of commercially grown Shiitake mushrooms.
Collapse
Affiliation(s)
- W W Y Chum
- Division of Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | | | | | | | | |
Collapse
|
14
|
Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. J Basic Microbiol 2010; 50:494-8. [PMID: 20806246 DOI: 10.1002/jobm.200900391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factor Stb5p, previously known as one of the multidrug resistance gene regulators in Saccharomyces cerevisiae, was shown here to play an essential role in acetaldehyde tolerance. A mutant strain, Δstb5 exhibited increased acetaldehyde sensitivity, and failed to induce genes such as GND1, TKL1 and TAL1 involved in the pentose phosphate pathway (PPP) upon acetaldehyde stress. Using this strain it was revealed that Stb5p acts as a repressor for PGI1 encoding glucose-6-phosphate isomerase under acetaldehyde stress. In reverse, over-expression of Stb5p reinforced acetaldehyde tolerance to the yeast. Furthermore, various deletion mutants of the genes involved in glycolysis showed increased acetaldehyde tolerance compared to the wild-type strain. From these results, it was suggested that Stb5p participates in acetaldehyde tolerance by regulating expression of the PPP genes and PGI1, and that down-regulation of glycolytic pathway may lead to vitalization of PPP and to increased acetaldehyde tolerance.
Collapse
Affiliation(s)
- Yoshimi Matsufuji
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
15
|
Bosson R, Jaquenoud M, Conzelmann A. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 2006; 17:2636-45. [PMID: 16597698 PMCID: PMC1474799 DOI: 10.1091/mbc.e06-02-0104] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The anchors of mature glycosylphosphatidylinositol (GPI)-anchored proteins of Saccharomyces cerevisiae contain either ceramide or diacylglycerol with a C26:0 fatty acid in the sn2 position. The primary GPI lipid added to newly synthesized proteins in the ER consists of diacylglycerol with conventional C16 and C18 fatty acids. Here we show that GUP1 is essential for the synthesis of the C26:0-containing diacylglycerol anchors. Gup1p is an ER membrane protein with multiple membrane-spanning domains harboring a motif that is characteristic of membrane-bound O-acyl-transferases (MBOAT). Gup1Delta cells make normal amounts of GPI proteins but most mature GPI anchors contain lyso-phosphatidylinositol, and others possess phosphatidylinositol with conventional C16 and C18 fatty acids. The incorporation of the normal ceramides into the anchors is also disturbed. As a consequence, the ER-to-Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. Gup1Delta cells have fragile cell walls and a defect in bipolar bud site selection. GUP1 function depends on the active site histidine of the MBOAT motif. GUP1 is highly conserved among fungi and protozoa and the gup1Delta phenotype is partially corrected by GUP1 homologues of Aspergillus fumigatus and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Régine Bosson
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
16
|
Gomes KN, Freitas SMAC, Pais TM, Fietto JLR, Totola AH, Arantes RME, Martins A, Lucas C, Schuller D, Casal M, Castro IM, Fietto LG, Brandão RL. Deficiency of Pkc1 activity affects glycerol metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:767-76. [PMID: 15851105 DOI: 10.1016/j.femsyr.2005.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 01/04/2005] [Accepted: 01/17/2005] [Indexed: 12/17/2022] Open
Abstract
Protein kinase C is apparently involved in the control of many cellular systems: the cell wall integrity pathway, the synthesis of ribosomes, the appropriated reallocation of transcription factors under specific stress conditions and also the regulation of N-glycosylation activity. All these observations suggest the existence of additional targets not yet identified. In the context of the control of carbon metabolism, previous data had demonstrated that Pkc1p might play a central role in the control of cellular growth and metabolism in yeast. In particular, it has been suggested that it might be involved in the derepression of genes under glucose-repression by driving an appropriated subcellular localization of transcriptional factors, such as Mig1p. In this work, we show that a pkc1Delta mutant is unable to grow on glycerol because it cannot perform the derepression of the GUT1 gene that encodes glycerol kinase. Additionally, active transport is also partially affected. Using this phenotype, we were able to isolate a new pkc1Delta revertant. We also isolated two transformants identified as the nuclear exportin Msn5 and the histone deacetylase Hos2 extragenic suppressors of this mutation. Based on these results, we postulate that Pkc1p may be involved in the control of the cellular localization and/or regulation of the activity of nuclear proteins implicated in gene expression.
Collapse
Affiliation(s)
- Katia N Gomes
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Deparatmento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, 35.400-000 Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bleve G, Zacheo G, Cappello M, Dellaglio F, Grieco F. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein. Biochem J 2005; 390:145-55. [PMID: 15813700 PMCID: PMC1184570 DOI: 10.1042/bj20042045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1-GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1-GFP or GFP-Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters.
Collapse
Affiliation(s)
- Gianluca Bleve
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Giuseppe Zacheo
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Maria Stella Cappello
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Franco Dellaglio
- †Dipartimento Scientifico e Tecnologico, Universita’ di Verona, 37134 Verona, Italy
| | - Francesco Grieco
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Reiner S, Micolod D, Zellnig G, Schneiter R. A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast. Mol Biol Cell 2005; 17:90-103. [PMID: 16251356 PMCID: PMC1345649 DOI: 10.1091/mbc.e05-06-0515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that govern intracellular transport of sterols in eukaryotic cells are not well understood. Saccharomyces cerevisiae is a facultative anaerobic organism that becomes auxotroph for sterols and unsaturated fatty acids in the absence of oxygen. To identify pathways that are required for uptake and transport of sterols, we performed a systematic screen of the yeast deletion mutant collection for genes that are required for growth under anaerobic conditions. Of the approximately 4800 nonessential genes represented in the deletion collection, 37 were essential for growth under anaerobic conditions. These affect a wide range of cellular functions, including biosynthetic pathways for certain amino acids and cofactors, reprogramming of transcription and translation, mitochondrial function and biogenesis, and membrane trafficking. Thirty-three of these mutants failed to grow on lipid-supplemented media when combined with a mutation in HEM1, which mimics anaerobic conditions in the presence of oxygen. Uptake assays with radio- and fluorescently labeled cholesterol revealed that 17 of the 33 mutants strongly affect uptake and/or esterification of exogenously supplied cholesterol. Examination of the subcellular distribution of sterols in these uptake mutants by cell fractionation and fluorescence microscopy indicates that some of the mutants block incorporation of cholesterol into the plasma membrane, a presumably early step in sterol uptake. Unexpectedly, the largest class of uptake mutants is affected in mitochondrial functions, and many of the uptake mutants show electron-dense mitochondrial inclusions. These results indicate that a hitherto uncharacterized mitochondrial function is required for sterol uptake and/or transport under anaerobic conditions and are discussed in light of the fact that mitochondrial import of cholesterol is required for steroidogenesis in vertebrate cells.
Collapse
Affiliation(s)
- Sonja Reiner
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | | | | | | |
Collapse
|
19
|
Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A. A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:2068-76. [PMID: 15703210 PMCID: PMC1073684 DOI: 10.1091/mbc.e04-10-0884] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 01/13/2005] [Accepted: 01/21/2005] [Indexed: 11/11/2022] Open
Abstract
Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1.
Collapse
|
20
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|