1
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
2
|
Abstract
The S100B protein is an intra- and extracellular signaling protein that
plays a role in a multitude of cellular processes and abnormal S100B is
associated with various neurological diseases and cancers. S100B recognizes and
binds effector proteins in a calcium-dependent manner. S100B has been shown to
interact with the actin capping protein CapZ, protein kinase C, Hdm2 and 4, RAGE
receptor, and p53, among others. These protein partners interact with
a common area on the S100B protein surface, validating the method of using the
consensus sequence for S100B target search. In addition, each S100B target
protein distinguishes itself by additional contacts with S100B. This perspective
suggests that the combination of sequence homology search and structural
analysis promises to identify newer S100B-binding partners beyond the use of the
consensus sequence alone as the given example in the XPB subunit of the TFIIH
general transcription factor. XPB is a helicase required for both transcription
and DNA repair. Inherited xpb mutations are associated with human disease
Xeroderma Pigmentasum, Cockayne syndrome, and trichothiodystrophy. S100B protein
is likely associated with much more biological pathways and processes. We
believe that S100B will attract more and more attentions in the scientific
community and S100B related studies will have important implications in human
health and medicine.
Collapse
Affiliation(s)
- K D Prez
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| | - L Fan
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| |
Collapse
|
3
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
4
|
Duda T, Pertzev A, Makino CL, Sharma RK. Bicarbonate and Ca(2+) Sensing Modulators Activate Photoreceptor ROS-GC1 Synergistically. Front Mol Neurosci 2016; 9:5. [PMID: 26858600 PMCID: PMC4729890 DOI: 10.3389/fnmol.2016.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber's congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 "overlapping" phototransduction model (Peshenko et al., 2015b).
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School Boston, MA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
5
|
Sharma RK, Duda T. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci 2014; 7:56. [PMID: 25071437 PMCID: PMC4079103 DOI: 10.3389/fnmol.2014.00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963–1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca2+-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca2+]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a “[Ca2+]i bimodal switch” and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca2+-Modulated Neurocalcin δ ROS-GC1 Transduction System Exists in the Inner Plexiform Layer (IPL) of the Retinal Neurons, discovery of another CD-GCAP, NCδ, is made and its linkage with signaling of the inner plexiform layer neurons is established. Section ROS-GC Linkage With Other Than Vision-Linked Neurons discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, section Evolution of a General Ca2+-Interlocked ROS-GC Signal Transduction Concept in Sensory and Sensory-Linked Neurons, a theoretical concept is proposed where “Ca2+-interlocked ROS-GC signal transduction” machinery becomes a common signaling component of the sensory and sensory-linked neurons. Closure to the review is brought by the conclusion and future directions.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
6
|
Jankowska A, Sharma RK, Duda T. Ca(2+)-modulated ROS-GC1 transduction system in testes and its presence in the spermatogenic cells. Front Mol Neurosci 2014; 7:34. [PMID: 24808824 PMCID: PMC4010774 DOI: 10.3389/fnmol.2014.00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
ROS-GC1 belongs to the Ca2+-modulated sub-family of membrane guanylate cyclases. It primarily exists and is linked with signaling of the sensory neurons – sight, smell, taste, and pinealocytes. Exceptionally, it is also present and is Ca2+-modulated in t he non-neuronal cells, the sperm cells in the testes, where S100B protein serves as its Ca2+ sensor. The present report demonstrates the identification of an additional Ca2+ sensor of ROS-GC1 in the testes, neurocalcin δ. Through mouse molecular genetic models, it compares and quantifies the relative input of the S100B and neurocalcin δ in regulating the Ca2+ signaling of ROS-GC1 transduction machinery, and via immunochemistry it demonstrates the co-presence of neurocalcin δ and ROS-GC1 in the spermatogenic cells of the testes. The suggestion is that in more ways than one the Ca2+-modulated ROS-GC1 transduction system is linked with the testicular function. This non-neuronal transduction system may represent an illustration of the ROS-GC1 expanding role in the trans-signaling of the neural and non-neural systems.
Collapse
Affiliation(s)
- Anna Jankowska
- The Unit of Molecular Biology, Department of Cell Biology, Poznan University of Medical Sciences Poznan, Poland
| | - Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology Salus University PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology Salus University PA, USA
| |
Collapse
|
7
|
Sharma RK, Duda T. Ca(2+)-sensors and ROS-GC: interlocked sensory transduction elements: a review. Front Mol Neurosci 2012; 5:42. [PMID: 22509149 PMCID: PMC3321474 DOI: 10.3389/fnmol.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/20/2012] [Indexed: 02/01/2023] Open
Abstract
From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca(2+)-transduction system linked exclusively with the photo-transduction machinery to the successive finding that it embodies a remarkable bimodal Ca(2+) signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca(2+)-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca(2+) Binding Proteins 1:1, 7-11, 2006). The generated electric potential then becomes a mode of transmission of the parent [Ca(2+)](i) signal. Ca(2+) and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms. This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca(2+)-sensor (NCS) proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca(2+) signals to perform multiple tasks linked with the SENSES of vision, smell, and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca(2+) sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase.
Collapse
Affiliation(s)
- Rameshwar K. Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins ParkPA, USA
| | | |
Collapse
|
8
|
Wen XH, Duda T, Pertzev A, Venkataraman V, Makino CL, Sharma RK. S100B serves as a Ca(2+) sensor for ROS-GC1 guanylate cyclase in cones but not in rods of the murine retina. Cell Physiol Biochem 2012; 29:417-30. [PMID: 22508049 DOI: 10.1159/000338496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2012] [Indexed: 01/19/2023] Open
Abstract
Rod outer segment membrane guanylate cyclase (ROS-GC1) is a bimodal Ca(2+) signal transduction switch. Lowering [Ca(2+)](i) from 200 to 20 nM progressively turns it "ON" as does raising [Ca(2+)](i) from 500 to 5000 nM. The mode operating at lower [Ca(2+)](i) plays a vital role in phototransduction in both rods and cones. The physiological function of the mode operating at elevated [Ca(2+)](i) is not known. Through comprehensive studies on mice involving gene deletions, biochemistry, immunohistochemistry, electroretinograms and single cell recordings, the present study demonstrates that the Ca(2+)-sensor S100B coexists with and is physiologically linked to ROS-GC1 in cones but not in rods. It up-regulates ROS-GC1 activity with a K(1/2) for Ca(2+) greater than 500 nM and modulates the transmission of neural signals to cone ON-bipolar cells. Furthermore, a possibility is raised that under pathological conditions where [Ca(2+)](i) levels rise to and perhaps even enter the micromolar range, the S100B signaling switch will be turned "ON" causing an explosive production of CNG channel opening and further rise in [Ca(2+)](i) in cone outer segments. The findings define a new cone-specific Ca(2+)-dependent feature of photoreceptors and expand our understanding of the operational principles of phototransduction machinery.
Collapse
Affiliation(s)
- Xiao-Hong Wen
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Venkataraman V, Duda T, Ravichandran S, Sharma RK. Neurocalcin delta modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 2010; 47:6590-601. [PMID: 18500817 DOI: 10.1021/bi800394s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ROS-GC1 membrane guanylate cyclase is a Ca(2+) bimodal signal transduction switch. It is turned "off" by a rise in free Ca(2+) from nanomolar to the semicromolar range in the photoreceptor outer segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons it is turned "on". These opposite operational modes of the switch are specified by its Ca(2+) sensing devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin delta is a CD-GCAP. In the present study, the neurocalcin delta-modulated site, V(837)-L(858), in ROS-GC1 has been mapped. The location and properties of this site are unique. It resides within the core domain of the catalytic module and does not require the alpha-helical dimerization domain structural element (amino acids 767-811) for activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically active; it is directly regulated by the neurocalcin delta-modulated Ca(2+) signal and is dimeric in nature. A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin delta docking simulations were carried out to define the three-dimensional features of the interacting domains of the two molecules. These findings define a new transduction model for the Ca(2+) signaling of ROS-GC1.
Collapse
|
10
|
Sharma RK. Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol Cell Biochem 2009; 334:3-36. [PMID: 19957201 DOI: 10.1007/s11010-009-0336-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/09/2009] [Indexed: 01/08/2023]
Abstract
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| |
Collapse
|
11
|
ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus. Mol Cell Biochem 2009; 334:199-206. [PMID: 19953306 DOI: 10.1007/s11010-009-0334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In the continuous efforts to test the validity of the theme that the Ca(2+)-modulated ROS-GC subfamily system is a universal transduction component of the sensory and sensory-linked network of neurons, this article focuses on the presence and variant biochemical forms of this transduction system in the gustatory epithelium, the site of gustatory transduction; in the pineal, a light-sensitive gland; and in the hippocampus neurons, linked with the perception of all SENSES.
Collapse
|
12
|
Jankowska A, Warchol JB. Ca(2+)-modulated membrane guanylate cyclase in the testes. Mol Cell Biochem 2009; 334:169-79. [PMID: 19915996 DOI: 10.1007/s11010-009-0329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022]
Abstract
To date, the calcium-regulated membrane guanylate cyclase Rod Outer Segment Guanylate Cyclase type 1 (ROS-GC1) transduction system in addition to photoreceptors is known to be expressed in three other types of neuronal cells: in the pinealocytes, mitral cells of the olfactory bulb and the gustatory epithelium of tongue. Very recent studies from our laboratory show that expression of ROS-GC1 is not restricted to the neuronal cells; the male gonads and the spermatozoa also express ROS-GC1. In this presentation, the authors review the existing information on the localization and function of guanylate cyclase with special emphasis on Ca(2+)-modulated membrane guanylate cyclase, ROS-GC1, in the testes. The role of ROS-GC1 and its Ca(2+)-sensing modulators in the processes of spermatogenesis and fertilization are discussed.
Collapse
Affiliation(s)
- Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland.
| | | |
Collapse
|
13
|
Krishnan A, Duda T, Pertzev A, Kobayashi M, Takamatsu K, Sharma RK. Hippocalcin, new Ca(2+) sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system. Mol Cell Biochem 2009; 325:1-14. [PMID: 19165577 DOI: 10.1007/s11010-008-0015-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
Hippocalcin is a member of the neuronal Ca(2+) sensor protein family. Among its many biochemical functions, its established physiological function is that via neuronal apoptosis inhibitory protein it protects the neurons from Ca(2+)-induced cell death. The precise biochemical mechanism/s, through which hippocalcin functions, is not clear. In the present study, a new mechanism by which it functions is defined. The bovine form of hippocalcin (BovHpca) native to the hippocampus has been purified, sequenced, cloned, and studied. The findings show that there is the evolutionary conservation of its structure. It is a Ca(2+)-sensor of a variant form of the ROS-GC subfamily of membrane guanylate cyclases, ONE-GC. It senses physiological increments of Ca(2+) with a K(1/2) of 0.5 microM and stimulates ONE-GC or ONE-GC-like membrane guanylate cyclase. The Hpca-modulated ONE-GC-like transduction system exists in the hippocampal neurons. And hippocalcin-modulated ONE-GC transduction system exists in the olfactory receptor neuroepithelium. The Hpca-gene knock out studies demonstrate that the portion of this is about 30% of the total membrane guanylate cyclase transduction system. The findings establish Hpca as a new Ca(2+) sensor modulator of the ROS-GC membrane guanylate cyclase transduction subfamily. They support the concept on universality of the presence and operation of the ROS-GC transduction system in the sensory and sensory-linked neurons. They validate that the ROS-GC transduction system exists in multiple forms. And they provide an additional mechanism by which ROS-GC subfamily acts as a transducer of the Ca(2+) signals originating in the neurons.
Collapse
|
14
|
Jankowska A, Burczyńska B, Duda T, Warchol JB. Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) calcium-modulated transduction system in the sperm. Fertil Steril 2008; 93:904-12. [PMID: 19111294 DOI: 10.1016/j.fertnstert.2008.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluation of the presence of a Ca(2+)-regulated membrane guanylate cyclase signal transudation system in the spermatozoa. DESIGN Experimental study. SETTING Research university laboratory. PATIENT(S) Human sperm obtained from healthy donors who met the criteria of the World Health Organization for normozoospermia and bovine semen collected from bulls of proven fertility. INTERVENTION(S) Radioimmunoassay and immunohistochemistry of human and bovine spermatozoa. MAIN OUTCOME MEASURE(S) The membrane guanylate cyclase activity and the presence of membrane guanylate cyclase transduction machinery components in the spermatozoa. RESULT(S) The identity of a Ca(2+)-modulated membrane guanylate cyclase transduction machinery in human and bovine spermatozoa has been documented. The machinery is both inhibited and stimulated within nanomolar to semimicromolar range of free Ca(2+). The transduction component of this machinery is the rod outer segment membrane guanylate cyclase type 1 (ROS-GC1). The enzyme coexists with three Ca(2+)-dependent modulators: guanylate cyclase activating protein type 1 (GCAP1), S100B and neurocalcin delta. ROS-GC1 and its modulators are present in the heads and tails of both species' spermatozoa. CONCLUSION(S) The coexpression of ROS-GC1 and its activators in spermatozoa suggests that the Ca(2+)-modulated ROS-GC1 transduction system may be a part of the fertilization machinery.
Collapse
Affiliation(s)
- Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland.
| | | | | | | |
Collapse
|
15
|
Fik-Rymarkiewicz E, Duda T, Sharma RK. Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol Cell Biochem 2006; 291:187-204. [PMID: 16733800 DOI: 10.1007/s11010-006-9215-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Frequenin is a member of the neuronal Ca(2+) sensor protein family, implicated in being the modulator of the neurotransmitter release, potassium channels, phosphatidylinositol signaling pathway and the Ca(2+)-dependent exocytosis of dense-core granules in the PC12 cells. Frequenin exhibits these biological activities through its Ca(2+) myristoyl switch, yet the switch is functionally inactive. These structural and functional traits of frequenin have been derived through the use of recombinant frequenin. In the present study, frequenin (BovFrq) native to the bovine hippocampus has been purified, sequenced for its 9 internal fragments, cloned, and studied. The findings show that structure of the BovFrq is identical to its form present in chicken, rat, mouse and human, indicating its evolutionary conservation. Its Ca(2+) myristoyl switch is active in the hippocampus. And, BovFrq physically interacts and turns on yet undisclosed ONE-GC-like ROS-GC membrane guanylate cyclase transduction machinery in the hippocampal neurons. This makes BovFrq a new Ca(2+)-sensor modulator of a novel ROS-GC transduction machinery. The study demonstrates the presence and mechanistic features of this cyclic GMP signaling pathway in the hippocampal neurons, and also provides one more support for the evolving concept where the Ca(2+)-modulated membrane guanylate cyclase transduction machinery in its variant forms is a central operational component of all neurons.
Collapse
Affiliation(s)
- Ewa Fik-Rymarkiewicz
- Unit of Regulatory and Molecular Biology, Departments of Cell Biology and Ophthalmology, SOM and NJMS, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | | | |
Collapse
|