1
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Bishop F, Wallace JM, Roper RJ. Sex-specific trisomic Dyrk1a-related skeletal phenotypes during development in a Down syndrome model. Dis Model Mech 2024; 17:dmm050914. [PMID: 39136051 PMCID: PMC11449447 DOI: 10.1242/dmm.050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN 46140, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared R Thomas
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew P Blackwell
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabella Crawford
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Flannery Bishop
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Wallace JM, Roper RJ. Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595804. [PMID: 38826419 PMCID: PMC11142220 DOI: 10.1101/2024.05.24.595804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.
Collapse
Affiliation(s)
- Jonathan M. LaCombe
- Department of Biology, Indiana University-Indianapolis, IN, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | - Jared R. Thomas
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN, USA
| | | |
Collapse
|
3
|
Sugahara G, Ishida Y, Lee JJ, Li M, Tanaka Y, Eoh H, Higuchi Y, Saito T. Long-term cell fate and functional maintenance of human hepatocyte through stepwise culture configuration. FASEB J 2023; 37:e22750. [PMID: 36607308 PMCID: PMC9830592 DOI: 10.1096/fj.202201292rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Human hepatocyte culture system represents by far the most physiologically relevant model for our understanding of liver biology and diseases; however, its versatility has been limited due to the rapid and progressive loss of genuine characteristics, indicating the inadequacy of in vitro milieu for fate maintenance. This study, therefore, is designed to define environmental requirements necessary to sustain the homeostasis of terminally differentiated hepatocytes. Our study reveals that the supplementation of dimethyl sulfoxide (DMSO) is indispensable in mitigating fate deterioration and promoting adaptation to the in vitro environment, resulting in the restoration of tight cell-cell contact, cellular architecture, and polarity. The morphological recovery was overall accompanied by the restoration of hepatocyte marker gene expression, highlighting the interdependence between the cellular architecture and the maintenance of cell fate. However, beyond the recovery phase culture, DMSO supplementation is deemed detrimental due to the potent inhibitory effect on a multitude of hepatocyte functionalities while its withdrawal results in the loss of cell fate. In search of DMSO substitute, our screening of organic substances led to the identification of dimethyl sulfone (DMSO2), which supports the long-term maintenance of proper morphology, marker gene expression, and hepatocytic functions. Moreover, hepatocytes maintained DMSO2 exhibited clinically relevant toxicity in response to prolonged exposure to xenobiotics as well as alcohol. These observations suggest that the stepwise culture configuration consisting of the consecutive supplementation of DMSO and DMSO2 confers the microenvironment essential for the fate and functional maintenance of terminally differentiated human hepatocytes.
Collapse
Affiliation(s)
- Go Sugahara
- University of Southern California, Keck School of Medicine, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Los Angeles, California, USA.,Research and Development Department, PhoenixBio, Co., Ltd, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- University of Southern California, Keck School of Medicine, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Los Angeles, California, USA.,Research and Development Department, PhoenixBio, Co., Ltd, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Jae Jin Lee
- University of Southern California, Keck School of Medicine, Department of Molecular Microbiology & Immunology, Los Angeles, California, USA
| | - Meng Li
- University of Southern California, Norris Medical Library, Bioinformatics Service Program, Los Angeles, California, USA
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hyungjin Eoh
- University of Southern California, Keck School of Medicine, Department of Molecular Microbiology & Immunology, Los Angeles, California, USA
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Takeshi Saito
- University of Southern California, Keck School of Medicine, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Los Angeles, California, USA.,USC Research Center for Liver Diseases, Los Angeles, California, USA.,Corresponding author: Takeshi Saito, M.D., Ph.D., Associate Professor of Medicine, Molecular Microbiology & Immunology, and Pathology, USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, University of Southern California, 2011 Zonal Avenue, HMR 801A, Los Angeles, CA 90033-9141, Phone: +1-323-442-2260, Fax:+1-323-442-5425,
| |
Collapse
|
4
|
Effect of Azithromycin on Mineralized Nodule Formation in MC3T3-E1 Cells. Curr Issues Mol Biol 2021; 43:1451-1459. [PMID: 34698079 PMCID: PMC8929154 DOI: 10.3390/cimb43030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Azithromycin displays immunomodulatory and anti-inflammatory effects in addition to broad-spectrum antimicrobial activity and is used to treat inflammatory diseases, including respiratory and odontogenic infections. Few studies have reported the effect of azithromycin therapy on bone remodeling processes. The aim of this study was to examine the effects of azithromycin on the osteogenic function of osteoblasts using osteoblast-like MC3T3-E1 cells. Cells were cultured in the presence of 0, 0.1, 1, and 10 µg/mL azithromycin, and cell proliferation and alkaline phosphatase (ALPase) activity were determined. In vitro mineralized nodule formation was detected with alizarin red staining. The expression of collagenous and non-collagenous bone matrix protein was determined using real-time PCR or enzyme-linked immunosorbent assays. In cells cultured with 10 µg/mL azithromycin, the ALPase activity and mineralized nodule formation decreased, while the type I collagen, bone sialoprotein, osteocalcin, and osteopontin mRNA expression as well as osteopontin and phosphorylated osteopontin levels increased. These results suggest that a high azithromycin concentration (10 µg/mL) suppresses mineralized nodule formation by decreasing ALPase activity and increasing osteopontin production, whereas low concentrations (≤l.0 µg/mL) have no effect on osteogenic function in osteoblastic MC3T3-E1 cells.
Collapse
|
5
|
Assis RIF, Schmidt AG, Racca F, da Silva RA, Zambuzzi WF, Silvério KG, Nociti FH, Pecorari VG, Wiench M, Andia DC. DNMT1 Inhibitor Restores RUNX2 Expression and Mineralization in Periodontal Ligament Cells. DNA Cell Biol 2021; 40:662-674. [PMID: 33751901 DOI: 10.1089/dna.2020.6239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Periodontal ligament cells (PDLCs) have well documented osteogenic potential; however, this commitment can be highly heterogenous, limiting their applications in tissue regeneration. In this study, we use PDLC populations characterized by high and low osteogenic potential (h-PDLCs and l-PDLCs, respectively) to identify possible sources of such heterogeneity and to investigate whether the osteogenic differentiation can be enhanced by epigenetic modulation. In h-PDLCs, low basal expression levels of pluripotency markers (NANOG, OCT4), DNA methyltransferases (DNMT1, DNMT3B), and enzymes involved in active DNA demethylation (TET1, TET3) were prerequisite to high osteogenic potential. Furthermore, these genes were downregulated upon early osteogenesis, possibly allowing for the increase in expression of the key osteogenic transcription factors, Runt-related transcription factor 2 (RUNX2) and SP7, and ultimately, mineral nodule formation. l-PDLCs appeared locked in the multipotent state and this was further enhanced upon early osteogenic stimulation, correlating with low RUNX2 expression and impaired mineralization. Further upregulation of DNMTs was also evident, while pretreatment with RG108, the DNMTs' inhibitor, enhanced the osteogenic program in l-PDLCs through downregulation of DNMTs, increased RUNX2 expression and nuclear localization, accelerated expression of osteogenic markers, and increased mineralization. These findings point toward the role of DNMTs and Ten Eleven Translocations (TETs) in osteogenic commitment and support application of epigenetic approaches to modulate biomineralization in PDLCs.
Collapse
Affiliation(s)
- Rahyza I F Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Arthur G Schmidt
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Francesca Racca
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Rodrigo A da Silva
- Program in Environmental and Experimental Pathology, Paulista University-UNIP, São Paulo, Brazil
| | - William F Zambuzzi
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu, Brazil
| | - Karina G Silvério
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Vanessa G Pecorari
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Malgorzata Wiench
- Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Denise C Andia
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| |
Collapse
|
6
|
Torii D, Kobayashi T, Horie T, Tsutsui TW. Characterization of dental pulp stem cells isolated from a patient diagnosed with Crouzon syndrome. J Cell Physiol 2021; 236:5317-5324. [PMID: 33386632 PMCID: PMC8048801 DOI: 10.1002/jcp.30241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Stem cells isolated from patients with rare diseases are important to elucidate their pathogeny and mechanisms to enable regenerative therapy. However, the mechanisms underlying tissue regeneration using patient‐derived dental pulp stem cells (DPSCs) are unclear. In this study, we investigated the levels of mRNA and protein expression related to cellular differentiation of Crouzon syndrome patient‐derived DPSCs (CS‐DPSCs) with a Gly338Arg fibroblast growth factor receptor 2 mutation. Multipotency‐related gene expression levels were equivalent in both healthy donor DPSCs and CS‐DPSCs. CS‐DPSCs showed higher osteocalcin (OCN) expression than healthy donor DPSCs. CS‐DPSCs showed a lower increase in the rate of OCN expression among phorbol 12‐myristate 13‐acetate (PMA)‐treated cells than healthy donor DPSCs compared with untreated control cells. CS‐DPSCs showed a lower phosphorylation rate of p38 and p44/42 in PMA‐treated cells than healthy donor DPSCs compared with untreated control cells. These results demonstrate that CS‐DPSCs have higher OCN expression and lower PMA stimulation‐responsiveness than healthy donor DPSCs.
Collapse
Affiliation(s)
- Daisuke Torii
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Tomoko Kobayashi
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan.,Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Tetsuro Horie
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan.,Department of Oral Health, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Takeo W Tsutsui
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| |
Collapse
|
7
|
Yi JK, Park S, Ha JJ, Kim DH, Huang H, Park SJ, Lee MH, Ryoo ZY, Kim SH, Kim MO. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020; 22:244-253. [DOI: 10.1089/cell.2020.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jun-Koo Yi
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jae-Jung Ha
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Dae-Hyun Kim
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Si-Jun Park
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, Korea
- China-US (Henan) Hormel Cancer Institute, No. 127 Dongming Road, Zhengzhou, Henan, China
| | - Zae-Young Ryoo
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sung-Hyun Kim
- Life Medicine Analysis Korea Polytechnics Institute, Nonsan, Korea
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
8
|
Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2138502. [PMID: 29854077 PMCID: PMC5944262 DOI: 10.1155/2018/2138502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output.
Collapse
|
9
|
Zhou Y, Deng G, Zheng YZ, Xu J, Ashraf H, Yu ZW. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs. Sci Rep 2016; 6:36932. [PMID: 27849028 PMCID: PMC5111121 DOI: 10.1038/srep36932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N−H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N−H/N−C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Zhen Zheng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Xu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hamad Ashraf
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages. Future Sci OA 2016; 2:FSO142. [PMID: 28116125 PMCID: PMC5242207 DOI: 10.4155/fsoa-2016-0034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
Aim: Intervertebral disc degeneration/low back pain is the number one global musculoskeletal condition in terms of disability and socioeconomic impact. Materials & methods Multipotent mesenchymal stem cells (MSCs) were cultured in micromass pellets ± FGF-2 or -18 up to 41 days, matrix components were immunolocalized and gene expression monitored by quantitative-reverse transcription PCR. Results: Chondrogenesis occurred earlier in FGF-18 than FGF-2 cultures. Lower COL2A1, COL10A1 and ACAN expression by day 41 indicated a downregulation in chondrocyte hypertrophy. MEF2c, ALPL, were upregulated; calcium, decorin and biglycan, and 4C3 and 7D4 chondroitin sulphate sulfation motifs were evident in FGF-18 but not FGF-2 pellets. Conclusion: FGF-2 and -18 preconditioned MSCs produced cell lineages which promoted chondrogenesis and osteogenesis and may be useful in the production of MSC lineages suitable for repair of cartilaginous tissue defects. Intervertebral disc degeneration and low back pain is the number one global musculoskeletal disorder effecting 80% of the general population. A remedy for this condition is being eagerly sought as part of a WHO research priority. Stem cells are one potential therapy that shows promise in animal models, laboratory studies, and preclinical and early clinical trials. Conditioning of stem cells in the laboratory before injection may improve their efficacy for the alleviation of low back pain. In the present study we have developed a means of improving how stem cells form cartilage and bone, which should be of application in the repair of spinal defects.
Collapse
|
11
|
Tan J, Fu X, Sun CG, Liu C, Zhang XH, Cui YY, Guo Q, Ma T, Wang H, Du GH, Yin X, Liu ZJ, Leng HJ, Xu YS, Song CL. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs. Osteoporos Int 2016. [PMID: 26223190 DOI: 10.1007/s00198-015-3230-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The ultimate goal of osteoporosis treatment is prevention of fragile fracture. Local treatment targeting specific bone may decrease the incidence of osteoporotic fractures. We developed an injectable, thermosensitive simvastatin/poloxamer 407 hydrogel; a single CT-guided percutaneous intraosseous injection augmented vertebrae in ovariectomized minipigs. INTRODUCTION The greatest hazard associated with osteoporosis is local fragility fractures. An adjunct, local treatment might be helpful to decrease the incidence of osteoporotic fracture. Studies have found that simvastatin stimulates bone formation, but the skeletal bioavailability of orally administered is low. Directly delivering simvastatin to the specific bone that is prone to fractures may reinforce the target bone and reduce the incidence of fragility fractures. METHODS We developed an injectable, thermosensitive simvastatin/poloxamer 407 hydrogel, conducted scanning electron microscopy, rheological, and drug release analyses to evaluate the delivery system; injected it into the lumbar vertebrae of ovariectomized minipigs via minimally invasive CT-guided percutaneous vertebral injection. Three months later, BMD, microstructures, mineral apposition rates, and strength were determined by DXA, micro-CT, histology, and biomechanical test; expression of VEGF, BMP2, and osteocalcin were analyzed by immunohistochemistry and Western blots. RESULTS Poloxamer 407 is an effective controlled delivery system for intraosseous-injected simvastatin. A single injection of the simvastatin/poloxamer 407 hydrogel significantly increased BMD, bone microstructure, and strength; the bone volume fraction and trabecular thickness increased nearly 150 %, bone strength almost doubled compared with controls (all P < 0.01); and induced higher expression of VEGF, BMP2, and osteocalcin. CONCLUSIONS CT-guided percutaneous vertebral injection of a single simvastatin/poloxamer 407 thermosensitive hydrogel promotes bone formation in ovariectomized minipigs. The underlying mechanism appears to involve the higher expression of VEGF and BMP-2.
Collapse
MESH Headings
- Absorptiometry, Photon/methods
- Animals
- Bone Density/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Chemistry, Physical
- Drug Combinations
- Drug Delivery Systems
- Drug Evaluation, Preclinical/methods
- Female
- Hydrogel, Polyethylene Glycol Dimethacrylate
- Injections, Spinal
- Lumbar Vertebrae/diagnostic imaging
- Lumbar Vertebrae/metabolism
- Lumbar Vertebrae/physiopathology
- Microscopy, Electron, Scanning
- Osteogenesis/drug effects
- Osteoporosis/diagnostic imaging
- Osteoporosis/drug therapy
- Osteoporosis/physiopathology
- Ovariectomy
- Poloxamer/administration & dosage
- Poloxamer/chemistry
- Poloxamer/pharmacology
- Poloxamer/therapeutic use
- Radiography, Interventional
- Rheology
- Simvastatin/administration & dosage
- Simvastatin/pharmacology
- Simvastatin/therapeutic use
- Swine
- Swine, Miniature
- Tomography, X-Ray Computed
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- J Tan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - X Fu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - C G Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - C Liu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - X H Zhang
- Department of Pharmacology, Peking University Third Hospital, Beijing, 100191, China
| | - Y Y Cui
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Q Guo
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - T Ma
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - H Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - G H Du
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - X Yin
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - Z J Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - H J Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China
| | - Y S Xu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - C L Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Spinal Diseases, Beijing, 100191, China.
| |
Collapse
|
12
|
The Effect of Dimethyl Sulfoxide on Supercoiled DNA Relaxation Catalyzed by Type I Topoisomerases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320490. [PMID: 26682217 PMCID: PMC4670693 DOI: 10.1155/2015/320490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/30/2022]
Abstract
The effects of dimethyl sulfoxide (DMSO) on supercoiled plasmid DNA relaxation catalyzed by two typical type I topoisomerases were investigated in our studies. It is shown that DMSO in a low concentration (less than 20%, v/v) can induce a dose-related enhancement of the relaxation efficiency of Escherichia coli topoisomerase I (type IA). Conversely, obvious inhibitory effect on the activity of calf thymus topoisomerase I (type IB) was observed when the same concentration of DMSO is used. In addition, our studies demonstrate that 20% DMSO has an ability to reduce the inhibitory effect on EcTopo I, which was induced by double-stranded oligodeoxyribonucleotides while the same effect cannot be found in the case of CtTopo I. Moreover, our AFM examinations suggested that DMSO can change the conformation of negatively supercoiled plasmid by creating some locally loose regions in DNA molecules. Combining all the lines of evidence, we proposed that DMSO enhanced EcTopo I relaxation activity by (1) increasing the single-stranded DNA regions for the activities of EcTopo I in the early and middle stages of the reaction and (2) preventing the formation of double-stranded DNA-enzyme complex in the later stage, which can elevate the effective concentration of the topoisomerase in the reaction solution.
Collapse
|
13
|
|
14
|
Wharton's jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 2015; 117:329-38. [PMID: 25747736 DOI: 10.1016/j.acthis.2015.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/31/2015] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
Multipotent mesenchymal stromal cells, also known as mesenchymal stem cells (MSC), can be isolated from bone marrow or other tissues, including fat, muscle and umbilical cord. It has been shown that MSC behave in vitro as stem cells: they self-renew and are able to differentiate into mature cells typical of several mesenchymal tissues. Moreover, the differentiation toward non-mesenchymal cell lineages (e.g. neurons) has been reported as well. The clinical relevance of these cells is mainly related to their ability to spontaneously migrate to the site of inflammation/damage, to their safety profile thanks to their low immunogenicity and to their immunomodulation capacities. To date, MSCs isolated from the post-natal bone marrow have represented the most extensively studied population of adult MSCs, in view of their possible use in various therapeutical applications. However, the bone marrow-derived MSCs exhibit a series of limitations, mainly related to their problematic isolation, culturing and use. In recent years, umbilical cord (UC) matrix (i.e. Wharton's jelly, WJ) stromal cells have therefore emerged as a more suitable alternative source of MSCs, thanks to their primitive nature and the easy isolation without relevant ethical concerns. This review seeks to provide an overview of the main biological properties of WJ-derived MSCs. Moreover, the potential application of these cells for the treatment of some known dysfunctions in the central and peripheral nervous system will also be discussed.
Collapse
|
15
|
Hebling J, Bianchi L, Basso FG, Scheffel DL, Soares DG, Carrilho MRO, Pashley DH, Tjäderhane L, de Souza Costa CA. Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dent Mater 2015; 31:399-405. [PMID: 25681221 DOI: 10.1016/j.dental.2015.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/27/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To evaluate the cytotoxicity of dimethyl sulfoxide (DMSO) on the repair-related activity of cultured odontoblast-like MDPC-23 cells. METHODS Solutions with different concentrations of DMSO (0.05, 0.1, 0.3, 0.5 and 1.0 mM), diluted in culture medium (DMEM), were placed in contact with MDPC-23 cells (5 × 104 cells/cm(2)) for 24 h. Eight replicates (n = 8) were prepared for each solutions for the following methods of analysis: violet crystal dye for cell adhesion (CA), quantification of total protein (TP), alizarin red for mineralization nodules formation (MN) and cell death by necrosis (flow cytometry); while twelve replicates (n = 12) were prepared for viable cell number (Trypan Blue) and cell viability (MTT assay). Data were analyzed by ANOVA and Tukey or Kruskal-Wallis and Mann-Whitney's tests (p < 0.05). RESULTS Cell viability, adhesion and percentage of cell death by necrosis were not affected by DMSO at any concentration, with no statistical significant difference among the groups. A significant reduction in total protein production was observed for 0.5 and 1.0 mM of DMSO compared to the control while increased mineralized nodules formation was seen only for 1.0 mM DMSO. SIGNIFICANCE DMSO caused no or minor cytotoxic effects on the pulp tissue repair-related activity of odontoblast-like cells.
Collapse
Affiliation(s)
- J Hebling
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Araraquara, SP, Brazil.
| | - L Bianchi
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Araraquara, SP, Brazil
| | - F G Basso
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Araraquara, SP, Brazil
| | - D L Scheffel
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Araraquara, SP, Brazil
| | - D G Soares
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Araraquara, SP, Brazil
| | - M R O Carrilho
- Anhanguera University of São Paulo (UNIAN), São Paulo, Brazil
| | - D H Pashley
- Georgia Regents University, College of Dental Medicine, Department of Oral Biology, Augusta, GA, USA
| | - L Tjäderhane
- Institute of Dentistry, University of Oulu, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - C A de Souza Costa
- UNESP - Univ Estadual Paulista, Araraquara School of Dentistry, Departament of Physiology and Pathology, Araraquara, SP, Brazil
| |
Collapse
|
16
|
Siddiqi MH, Siddiqi MZ, Ahn S, Kim YJ, Yang DC. Ginsenoside Rh1 induces mouse osteoblast growth and differentiation through the bone morphogenetic protein 2/runt-related gene 2 signalling pathway. J Pharm Pharmacol 2014; 66:1763-73. [DOI: 10.1111/jphp.12306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/04/2014] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
This study aimed to investigate the stimulative and pharmacological effects of ginsenoside Rh1 (hereinafter referred to as: Rh1) on differentiation and mineralization of osteoblast and its possible mechanism of action on the expression of bone morphogenetic protein 2 (BMP-2)/Runt-related gene 2 (Runx2) signalling pathways using mouse preosteoblastic MC3T3-E1 cell line as in-vitro model.
Methods
An in-vitro stimulative activity of Rh1 was assessed by analyzing alkaline phosphatase activity (ALP), type-I collagen (Coll-I) synthesis, mineralization and glutathione content. Its antioxidant activity was measured by evaluating the reactive oxygen species (ROS) production in the presence of antimycin A (AMA), one of the mitochondrial dysfunction factors. The level of BMP-2/Runx2 signal-regulated osteoblast-specific proteins such as osteocalcin (OCN), Coll-I and ALP were detected using Western blot analysis.
Key findings
Rh1 was capable to stimulate cell growth, ALP activity, Coll-I synthesis, mineralization and glutathione content in the MC3T3-E1 cells. BMP-2 and Runx2 expression were also increased by Rh1 concentration dependently. Additionally, Rh1 also showed inhibitory action on the level of ROS production enhanced by AMA in MC3T3-E1 cells. Rh1 could increase the expression level of BMP-2/Runx2 signal-regulated osteogenic markers such as ALP, Coll-I and OCN.
Conclusions
Rh1, a protopanaxatriol type's active ingredients of Panax ginseng Meyer, possesses osteoblast differentiation, osteogenic stimulatory and anti-oxidative activity.
Collapse
Affiliation(s)
- Muhammad Hanif Siddiqi
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Giheunggu Yonginsi, Gyeonggido, South Korea
| | - Muhammad Zubair Siddiqi
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Giheunggu Yonginsi, Gyeonggido, South Korea
| | - Sungeun Ahn
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Giheunggu Yonginsi, Gyeonggido, South Korea
| | - Yeon-Ju Kim
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Giheunggu Yonginsi, Gyeonggido, South Korea
| | - Deok Chun Yang
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Giheunggu Yonginsi, Gyeonggido, South Korea
| |
Collapse
|
17
|
Yang N, Cui Y, Tan J, Fu X, Han X, Leng H, Song C. Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats. J Bone Miner Metab 2014; 32:252-60. [PMID: 23934055 DOI: 10.1007/s00774-013-0496-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/27/2013] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the effects and explore the mechanism of a local injection of a single dose of simvastatin as a strategy to strengthen target bone. Simvastatin was injected into the femurs (5 or 10 mg) or caudal vertebrae (1 or 2 mg) of ovariectomized rats, with an equal volume of vehicle injected as a control. Bone mineral density (BMD), bone microstructure and strength were evaluated at 1 and 5 months post-injection for the femurs and at 12 days post-injection for the vertebrae. Bone mass, adipocyte numbers and Runx2 expression were also examined using histology and immunohistochemistry. Compared with controls, simvastatin significantly increased BMD, bone volume fraction (BV/TV), improved bone microstructural parameters and bone strength in the femurs at both time points (all P < 0.01). Simvastatin-treated femurs contained fewer adipocytes and a higher Runx2 expression. For the caudal vertebrae, simvastatin significantly improved BV/TV, bone microstructures, and bone strength (all P < 0.01) as compared with controls. In conclusion, local injection of a single dose of simvastatin induces early onset and long-lasting bone augmentation in osteoporotic bone, significantly improving BMD, and bone microstructure and biomechanical strength. Simvastatin induces Runx2 expression, which may function to induce osteogenesis and inhibit adipogenesis as an underlying mechanism to augment bone mass.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Tamjidipoor A, Tavafi M, Ahmadvand H. Effect of dimethyl sulfoxide on inhibition of post-ovariectomy osteopenia in rats. Connect Tissue Res 2013; 54:426-31. [PMID: 24020358 DOI: 10.3109/03008207.2013.841678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence that oxidative stress, due to estrogen deficiency, leads to osteopenia. In this study, dimethyl sulfoxide (DMSO), an antioxidant solvent, was used against post-ovariectomy osteopenia (PO) in rats. Forty female rats were divided into 5 groups randomly as follows: Sham, control group; OVX, ovariectomized group; DMSO1, ovariectomized injected DMSO (0.5 ml/kg/d ip); DMSO2, ovariectomized injected DMSO (1 ml/kg/day ip) and DMSO3, ovariectomized injected DMSO (2 ml/kg/d ip). DMSO therapy started 1 week after ovariectomy and continued for 13 weeks. After 13th weeks, sera were prepared, and then L4 vertebrae and right tibial bones rinsed in fixative. Serum bone alkaline phosphatase (BALP), osteocalcin, pyridinoline, malondialdehyde (MDA) and glutathione (GSH) were measured. Trabecular volume density, trabecular and cortex thickness were estimated. Osteoclast and osteoblast numbers were counted morphometrically. The data were analyzed by ANOVA and then post hoc Tukey test at p < 0.05. The increase of pyridinoline and decrease of BALP in DMSO injected groups were inhibited compared with OVX group (p < 0.05). In DMSO injected groups, decrease of bone density, trabecular volume density, thickness of trabecular and tibial cortex were inhibited compared with OVX group (p < 0.05). MDA decreased significantly in DMSO injected groups compared with OVX group. Osteoclast number decreased in DMSO injected groups compared with OVX group (p < 0.05). Osteoblast number did not show significant change in DMSO groups compared with OVX group. In conclusion, DMSO ameliorates PO through decrease of osteoclast number, osteoclast inhibition and osteoblast activation. These effects may probably be mediated via antioxidant property of DMSO.
Collapse
Affiliation(s)
- Ahmad Tamjidipoor
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences , Khorramabad , Iran and
| | | | | |
Collapse
|
19
|
Benjamin S, Flotho S, Börchers T, Spener F. Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model. J Zhejiang Univ Sci B 2013; 14:115-23. [PMID: 23365010 PMCID: PMC3566404 DOI: 10.1631/jzus.b1200175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/04/2012] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to examine the induction profiles (as judged by quantitative reverse transcription polymerase chain reaction (qRT-PCR)) of peroxisome proliferator-activated receptor (PPAR) α, β, γ subtypes and major PPAR-target genes bearing a functional peroxisome proliferator responsive element (PPRE) in HepG2 cell model upon feeding with cis-9,trans-11-octadecadienoic acid (9-CLA) or trans-10,cis-12-octadecadienoic acid (10-CLA) or their precursor fatty acids (FAs). HepG2 cells were treated with 100 μmol/L 9-CLA or 10-CLA or their precursor FAs, viz., oleic, linoleic, and trans-11-vaccenic acids against bezafibrate control to evaluate the induction/expression profiles of PPAR α, β, γ subtypes and major PPAR-target genes bearing a functional PPRE, i.e., fatty acid transporter (FAT), glucose transporter-2 (GLUT-2), liver-type FA binding protein (L-FABP), acyl CoA oxidase-1 (ACOX-1), and peroxisomal bifunctional enzyme (PBE) with reference to β-actin as house keeping gene. Of the three housekeeping genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin, and ubiquitin), β-actin was found to be stable. Dimethyl sulfoxide (DMSO), the common solubilizer of agonists, showed a significantly higher induction of genes analyzed. qRT-PCR profiles of CLAs and their precursor FAs clearly showed upregulation of FAT, GLUT-2, and L-FABP (~0.5-2.0-fold). Compared to 10-CLA, 9-CLA decreased the induction of the FA metabolizing gene ACOX-1 less than did PBE, while 10-CLA decreased the induction of PBE less than did ACOX-1. Both CLAs and precursor FAs upregulated PPRE-bearing genes, but with comparatively less or marginal activation of PPAR subtypes. This indicates that the binding of CLAs and their precursor FAs to PPAR subtypes results in PPAR activation, thereby induction of the target transporter genes coupled with downstream lipid metabolising genes such as ACOX-1 and PBE. To sum up, the expression profiles of these candidate genes showed that CLAs and their precursor FAs are involved in lipid signalling by modulating the PPAR α, β, or γ subtype for the indirect activation of the PPAR-target genes, which may in turn be responsible for the supposed health effects of CLA, and that care should be taken while calculating the actual fold induction values of candidate genes with reference to housekeeping gene and DMSO as they may impart false positive results.
Collapse
Affiliation(s)
- Sailas Benjamin
- Department of Biochemistry, University of Münster, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
20
|
Cona MM, Li J, Chen F, Feng Y, Alpizar YA, Vanstapel F, Talavera K, de Witte P, Verbruggen A, Sun Z, Oyen R, Ni Y. A safety study on single intravenous dose of tetrachloro-diphenyl glycoluril [iodogen] dissolved in dimethyl sulphoxide (DMSO). Xenobiotica 2013; 43:730-7. [PMID: 23294333 DOI: 10.3109/00498254.2012.756559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Iodogen (tetrachloro-diphenyl glycoluril) dissolved in DMSO (dimethyl sulphoxide) appears indispensable in radioiodination of hypericin for a new anticancer strategy. We studied the safety of intravenously administered iodogen/DMSO in mice (n = 132). 2. Median lethal dose (LD50) of iodogen/DMSO was determined with doses of 40.0, 50.0, 55.0, 60.0, 65.0 and 70.0 mg/kg. Next, toxicity of iodogen/DMSO at 30.0 mg/kg was evaluated using saline and DMSO as controls. Changes in behaviour, body weight and serum biochemistry were evaluated. Histopathology of lungs, heart, liver and kidney was performed. 3. LD50 values of iodogen/DMSO were 59.5 mg/kg (95% confidence limits (CI): 54.1-65.4 mg/kg) and 61.0 mg/kg (95%CI: 56.2-66.2 mg/kg) for female and male mice, respectively. Similar to that of control groups, no animal deaths were encountered after iodogen/DMSO administration at 30.0 mg/kg. Body weights over 24 h were not altered in all groups, but significantly higher in iodogen/DMSO and DMSO groups (p < 0.05) 14 d post-injection. Blood urea nitrogen and alkaline phosphatase increased (p < 0.05) in iodogen/DMSO group without clinical symptoms. No pathologies were found by gross and microscopic inspection. 4. A single dose of iodogen/DMSO up to 30.0 mg/kg, over 3000 times the dose in potential human applications, appears safe, with an LD50 doubling that dose in mice.
Collapse
Affiliation(s)
- Marlein Miranda Cona
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2. Biochimie 2012; 94:2360-5. [PMID: 22706281 DOI: 10.1016/j.biochi.2012.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022]
Abstract
A rapid and efficient method to stimulate bone regeneration would be useful in orthopaedic stem cell therapies. Rolipram is an inhibitor of phosphodiesterase 4 (PDE4), which mediates cyclic adenosine monophosphate (cAMP) degradation. Systemic injection of rolipram enhances osteogenesis induced by bone morphogenetic protein 2 (BMP-2) in mice. However, there is little data on the precise mechanism, by which the PDE4 inhibitor regulates osteoblast gene expression. In this study, we investigated the combined ability of BMP-2 and cilomilast, a second-generation PDE4 inhibitor, to enhance the osteoblastic differentiation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity of MSCs treated with PDE4 inhibitor (cilomilast or rolipram), BMP-2, and/or H89 was compared with the ALP activity of MSCs differentiated only by osteogenic medium (OM). Moreover, expression of Runx2, osterix, and osteocalcin was quantified using real-time polymerase chain reaction (RT-PCR). It was found that cilomilast enhances the osteoblastic differentiation of MSCs equally well as rolipram in primary cultured MSCs. Moreover, according to the H89 inhibition experiments, Smad pathway was found to be an important signal transduction pathway in mediating the osteogenic effect of BMP-2, and this effect is intensified by an increase in cAMP levels induced by PDE4 inhibitor.
Collapse
|
22
|
Thaler R, Spitzer S, Karlic H, Klaushofer K, Varga F. DMSO is a strong inducer of DNA hydroxymethylation in pre-osteoblastic MC3T3-E1 cells. Epigenetics 2012; 7:635-51. [PMID: 22507896 PMCID: PMC3398991 DOI: 10.4161/epi.20163] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.
Collapse
Affiliation(s)
- Roman Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling; First Medical Department; Hanusch Hospital; Vienna, Austria
| | - Silvia Spitzer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling; First Medical Department; Hanusch Hospital; Vienna, Austria
| | - Heidrun Karlic
- Ludwig Boltzmann Institute for Leukemia Research and Hematology; Hanusch Hospital; Ludwig Boltzmann Cluster Oncology; Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling; First Medical Department; Hanusch Hospital; Vienna, Austria
| | - Franz Varga
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling; First Medical Department; Hanusch Hospital; Vienna, Austria
| |
Collapse
|
23
|
Sullivan K, El-Hoss J, Little DG, Schindeler A. JNK inhibitors increase osteogenesis in Nf1-deficient cells. Bone 2011; 49:1311-6. [PMID: 21964323 DOI: 10.1016/j.bone.2011.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/14/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that is associated with a variety of manifestations, including orthopedic complications such as scoliosis and tibial pseudarthrosis. Orthopedic management of these skeletal complications is rendered more challenging due to a lack of standardized adjunctive pharmacotherapies. NF1 leads to disruption of the canonical Ras/Raf-1/MEK/ERK axis, and this has been associated with defects in bone anabolism. The roles of other non-canonical Ras effector pathways, such as the c-Jun N-terminal Kinase (JNK) pathway, are less well understood. In this study we examine the effects of an anthrapyrazolone inhibitor of JNK (SP600125) on inducible osteoprogenitors as well as Nf1-deficient and Nf1-null primary osteoblasts. C2C12 cells, which are highly responsive to rhBMP-2, were examined with exogenous rhBMP-2 and a range of SP600125 doses. Based on the expression of early and late bone markers and matrix mineralization, 10 μM SP600125 was found to be pro-osteogenic whether delivered concurrent with or following 2 days of rhBMP-2 treatment. Aberrant JNK activity was identified in Nf1-deficient osteoprogenitors (increased rhBMP-2 induced phospho-c-Jun) and in Nf1-null mature osteoblasts (increased total c-Jun). Next, SP600125 was used to treat these cells and was found to facilitate osteogenesis in Nf1-deficient osteoprogenitors, and in Nf1-null osteoblasts when given in conjunction with rhBMP-2. Outcome measures included alkaline phosphatase activity, matrix mineralization, and osteogenic gene expression. In summary, JNK inhibitors represent a class of potentially useful adjunctive agents for orthopedic medicine, particularly in the context of NF1.
Collapse
Affiliation(s)
- Kate Sullivan
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia.
| | | | | | | |
Collapse
|
24
|
Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA. Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 2011; 286:30071-86. [PMID: 21652706 PMCID: PMC3191047 DOI: 10.1074/jbc.m111.253518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/17/2011] [Indexed: 02/01/2023] Open
Abstract
Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization. Furthermore, similar DMSO-mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1, we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among the numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical, and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased alkaline phosphatase activity, and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. A flow on knockdown of bone-specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c, suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.
Collapse
Affiliation(s)
- Alexandre S. Stephens
- From the School of Medical Science, Griffith University, Gold Coast Campus, Queensland 4215, Australia
| | - Sebastien R. Stephens
- From the School of Medical Science, Griffith University, Gold Coast Campus, Queensland 4215, Australia
| | - Carl Hobbs
- Guy's Campus, Kings College, WC2R 2LS London, United Kingdom, and
| | - Deitmar W. Hutmacher
- the Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Desa Bacic-Welsh
- From the School of Medical Science, Griffith University, Gold Coast Campus, Queensland 4215, Australia
| | - Maria Ann Woodruff
- the Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nigel A. Morrison
- From the School of Medical Science, Griffith University, Gold Coast Campus, Queensland 4215, Australia
| |
Collapse
|
25
|
Nakura A, Higuchi C, Yoshida K, Yoshikawa H. PKCα suppresses osteoblastic differentiation. Bone 2011; 48:476-84. [PMID: 20951242 DOI: 10.1016/j.bone.2010.09.238] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 09/29/2010] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) plays an essential role in cellular signal transduction for mediating a variety of biological functions. There are 11 PKC isoforms and these isoforms are believed to play distinct roles in cells. Although the role of individual isoforms of PKC has been investigated in many fields, little is known about the role of PKC in osteoblastic differentiation. Here, we investigated which isoforms of PKC are involved in osteoblastic differentiation of the mouse preosteoblastic cell line MC3T3-E1. Treatment with Gö6976, an inhibitor of PKCα and PKCβI, increased alkaline phosphatase (ALP) activity as well as gene expression of ALP and Osteocalcin (OCN), and enhanced calcification of the extracellular matrix. Concurrently, osteoblastic cell proliferation decreased at a concentration of 1.0 μM. In contrast, a PKCβ inhibitor, which inhibits PKCβI and PKCβII, did not significantly affect osteoblastic differentiation or cell proliferation. Knockdown of PKCα using MC3T3-E1 cells transfected with siRNA also induced an increase in ALP activity and in gene expression of ALP and OCN. In contrast, overexpression of wild-type PKCα decreased ALP activity and attenuated osteoblastic differentiation markers including ALP and OCN, but promoted cell proliferation. Taken together, our results indicate that PKCα suppresses osteoblastic differentiation, but promotes osteoblastic cell proliferation. These results imply that PKCα may have a pivotal role in cell signaling that modulates the differentiation and proliferation of osteoblasts.
Collapse
Affiliation(s)
- Akio Nakura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
26
|
Lo KWH, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 2011; 6:40-8. [PMID: 21312339 DOI: 10.1002/term.395] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022]
Abstract
Osteoblastic differentiation is an important landmark for bone formation, bone repair and regeneration; however, it is a very complex process controlled by different signalling mechanisms. Several groups have reported that the cyclic adenosine monophosphate (cAMP) signalling system is responsible for regulating osteoblast cell differentiation. Nonetheless, to date, the principle role of the cAMP molecules related to this process remains controversial. Moreover, the underlying cAMP-dependent signalling cascade governing the osteoblastic differentiation has not been clarified. In this study we investigated the roles of the cAMP-dependent protein kinase A (PKA) signalling in proliferation, differentiation and mineralization of osteoblast-like MC3T3-E1 cells, using the PKA-specific small molecule cAMP analogue, 6-Bnz-cAMP, at 100 µM. Alkaline phosphatase (ALP) activity, runt transcription factor 2 (Runx2), osteopontin (OPN) and osteocalcin (OCN) protein expressions were used as osteoblast-specific markers to demonstrate osteoblastic differentiation. Further, calcium measurement of the extracellular matrix was employed as the hallmark of matrix mineralization or calcification. We report here that activation of PKA by the small molecule 6-Bnz-cAMP induces osteoblastic differentiation and matrix mineralization of osteoblast-like MC3T3-E1 cells. Moreover, 6-Bnz-cAMP does not induce cytotoxicity to the cells, as revealed by our cell proliferation studies. Therefore, based on these findings, we propose that the PKA-specific small molecule 6-Bnz-cAMP may serve as a novel bone-inducing growth factor for repairing and regenerating bone tissues during bone-regenerative engineering.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Department of Orthopaedic Surgery, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | |
Collapse
|
27
|
Chaves Neto AH, Queiroz KC, Milani R, Paredes-Gamero EJ, Justo GZ, Peppelenbosch MP, Ferreira CV. Profiling the changes in signaling pathways in ascorbic acid/β-glycerophosphate-induced osteoblastic differentiation. J Cell Biochem 2010; 112:71-7. [DOI: 10.1002/jcb.22763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Schindeler A, Morse A, Peacock L, Mikulec K, Yu NYC, Liu R, Kijumnuayporn S, McDonald MM, Baldock PA, Ruys AJ, Little DG. Rapid cell culture and pre-clinical screening of a transforming growth factor-beta (TGF-beta) inhibitor for orthopaedics. BMC Musculoskelet Disord 2010; 11:105. [PMID: 20509926 PMCID: PMC2896919 DOI: 10.1186/1471-2474-11-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/28/2010] [Indexed: 12/19/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMPs) utilize parallel and related signaling pathways, however the interaction between these pathways in bone remains unclear. TGF-β inhibition has been previously reported to promote osteogenic differentiation in vitro, suggesting it may have a capacity to augment orthopaedic repair. We have explored this concept using an approach that represents a template for the testing of agents with prospective orthopaedic applications. Methods The effects of BMP-2, TGF-β1, and the TGF-β receptor (ALK-4/5/7) inhibitor SB431542 on osteogenic differentiation were tested in the MC3T3-E1 murine pre-osteoblast cell line. Outcome measures included alkaline phosphatase staining, matrix mineralization, osteogenic gene expression (Runx2, Alp, Ocn) and phosphorylation of SMAD transcription factors. Next we examined the effects of SB431542 in two orthopaedic animal models. The first was a marrow ablation model where reaming of the femur leads to new intramedullary bone formation. In a second model, 20 μg rhBMP-2 in a polymer carrier was surgically introduced to the hind limb musculature to produce ectopic bone nodules. Results BMP-2 and SB431542 increased the expression of osteogenic markers in vitro, while TGF-β1 decreased their expression. Both BMP-2 and SB431542 were found to stimulate pSMAD1 and we also observed a non-canonical repression of pSMAD2. In contrast, neither in vivo system was able to provide evidence of improved bone formation or repair with SB431542 treatment. In the marrow ablation model, systemic dosing with up to 10 mg/kg/day SB431542 did not significantly increase reaming-induced bone formation compared to vehicle only controls. In the ectopic bone model, local co-administration of 38 μg or 192 μg SB431542 did not increase bone formation. Conclusions ALK-4/5/7 inhibitors can promote osteogenic differentiation in vitro, but this may not readily translate to in vivo orthopaedic applications.
Collapse
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu J, Someren E, Mentink A, Licht R, Dechering K, van Blitterswijk C, de Boer J. The effect of PKC activation and inhibition on osteogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2009; 4:329-39. [DOI: 10.1002/term.242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Cheung CL, Chan BYY, Chan V, Ikegawa S, Kou I, Ngai H, Smith D, Luk KDK, Huang QY, Mori S, Sham PC, Kung AWC. Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet 2009; 18:679-87. [PMID: 19064610 DOI: 10.1093/hmg/ddn397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bone mineral density (BMD) is one of the major determinants of risk for osteoporotic fracture. Multiple studies reveal that peak bone mass is under strong genetic influence. One of the major susceptibility loci for peak spine BMD has been mapped to chromosome 1q21-q23 in the Caucasian population. We have previously replicated this finding in Southern Chinese pedigrees and detected a maximum multipoint log of odds (LOD) score of 2.36 in this region. To further fine-map this region, 380 single-nucleotide polymorphic (SNP) markers were genotyped in 610 sibpairs from 231 families. Several markers were identified in the association analysis as important candidates underlying BMD variation. Among them, successful replication was demonstrated for SNPs in pre-B-cell leukemia homeobox 1 (PBX1) gene in two other unrelated case-control cohorts. The functional role of PBX1 in bone metabolism was examined in vitro using human bone-derived cells (HBDC) and murine MC3T3-E1 pre-osteoblasts. PBX1 mRNA was constitutively expressed in both HBDC and MC3T3-E1 cells. Immunostaining revealed that PBX1 is localized in the nucleus compartment. Silencing of PBX1 by RNAi in MC3T3-E1 cells decreased the expression of Runx2 and Osterix, the critical transcription factors for osteogenesis, but accelerated cell proliferation and bone nodule formation. Overall, our data suggest a genetic and functional association of PBX1 with BMD.
Collapse
Affiliation(s)
- Ching-Lung Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chan BY, Lau KS, Jiang B, Kennelly EJ, Kronenberg F, Kung AWC. Ethanolic extract of Actaea racemosa (black cohosh) potentiates bone nodule formation in MC3T3-E1 preosteoblast cells. Bone 2008; 43:567-73. [PMID: 18555764 DOI: 10.1016/j.bone.2008.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 04/03/2008] [Accepted: 04/23/2008] [Indexed: 11/25/2022]
Abstract
Aceaea racemosa (formerly Cimicifuga racemosa, black cohosh, AR) extracts have been widely used as an alternative to hormonal replacement therapy for menopausal symptoms. Recent evidences suggest AR extracts are also effective in protecting against postmenopausal bone loss. To determine whether AR has any direct anabolic effect on osteoblasts, we investigated the ethanolic extract of AR on bone nodule formation in mouse MC3T3-E1 preosteoblast cells. AR did not stimulate osteoblast proliferation. Rather, at high doses of 1000 ng/mL for 48 h, AR suppressed (7.2+/-0.9% vs. control) osteoblast proliferation. At 500 ng/mL, a significant increase in bone nodule formation was seen with Von Kossa staining. Using quantitative PCR analysis, AR was shown to enhance the gene expression of runx2 and osteocalcin. Co-treatment with ICI 182,780, the selective estrogen receptor antagonist, abolished the stimulatory effect of AR on runx2 and osteocalcin gene induction, as well as on bone nodule formation in MC3T3-E1 cells. This is a first report of the direct effect of AR on enhancement of bone nodule formation in osteoblasts, and this action was mediated via an estrogen receptor-dependent mechanism. The results provide a scientific rationale at the molecular level for the claim that AR can offer effective prevention of postmenopausal bone loss.
Collapse
Affiliation(s)
- B Y Chan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
32
|
Effect of dimethylsulfoxide on the functions of mesenchymal and hemopoietic precursors. Bull Exp Biol Med 2008; 143:535-8. [PMID: 18214317 DOI: 10.1007/s10517-007-0173-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effects of dimethylsulfoxide on the state of mesenchymal precursors in vivo were demonstrated. Treatment with dimethylsulfoxide reduced the content of stromal clonogenic elements in the bone marrow and inhibited mobilization of mesenchymal precursors induced by granulocyte colony-stimulating factor. In in vitro system, dimethylsulfoxide inhibited proliferation of fibroblast, erythroid, and granulomonocytic colony-forming units and stimulates maturation of hemopoietic precursors.
Collapse
|
33
|
Zini N, Bavelloni A, Lisignoli G, Ghisu S, Valmori A, Martelli AM, Facchini A, Maraldi NM. PKC-ζ expression is lower in osteoblasts from arthritic patients: IL1-β and TNF-α induce a similar decrease in non-arthritic human osteoblasts. J Cell Biochem 2008; 103:547-55. [PMID: 17541951 DOI: 10.1002/jcb.21424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC) is a family of enzymes detected in a diverse range of cell types where they regulate various cellular functions such as proliferation, differentiation, cytoskeletal remodelling, cytokine production, and receptor-mediated signal transduction. In this study we have analyzed the expression of 11 PKC isoforms (-alpha, -beta(I), -beta(II), -gamma, -delta, -eta, -theta, -epsilon, -zeta, -iota/lambda, and -micro) in osteoblasts from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) in comparison with osteoblasts from post-traumatic (PT) patients. By Western blotting analysis, nine isoforms, -alpha, -beta(I), -beta(II), -delta, -theta, - epsilon, -zeta, - iota/lambda, and -micro, were detected in osteoblasts. In RA and OA patients, PKC -theta and -micro were greater expressed whereas PKC-epsilon and -zeta decreased when compared with normal cells. The subcellular distribution and quantitative differences were confirmed by immuno-electron microscopy. Furthermore, we demonstrated that treatment with the proinflammatory cytokines, IL-1beta and TNF-alpha, significantly decreased PKC-zeta expression in PT osteoblasts. This suggests that proinflammatory cytokines can modulate the expression of this PKC isoform in osteoblasts in a way which is similar to changes detected in arthritic patients.
Collapse
Affiliation(s)
- Nicoletta Zini
- IGM-CNR, Sezione di Bologna c/o IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sainz B, Chisari FV. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 2006; 80:10253-7. [PMID: 17005703 PMCID: PMC1617281 DOI: 10.1128/jvi.01059-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) has been shown to induce the differentiation of primary hepatocytes in vitro. When actively dividing poorly differentiated human hepatoma-derived (Huh7) cells were cultured in the presence of 1% DMSO, cells became cytologically differentiated and transitioned into a nondividing state, characterized by the induction of hepatocyte-specific genes. Moreover, these cells were highly permissive for acute hepatitis C virus (HCV) infection, and persistent long term infection of these cultures could also be achieved. As HCV naturally replicates in highly differentiated nondividing human hepatocytes, this system may more accurately mimic the conditions under which HCV replicates in vivo than previous models using poorly differentiated rapidly dividing hepatoma cells.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SBR-10, La Jolla, CA 92037, USA
| | | |
Collapse
|